
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-19)

Computational Intractability and
Solvability for the Birds of a Feather Game

Richard Hoshino, Max Notarangelo

Quest University Canada
Squamish, British Columbia, Canada

Abstract

In this paper, we analyze Birds of a Feather (BoaF), a perfect-
information one-player card game that is the subject of the
2019 EAAI Undergraduate Research Challenge. We prove
that the generalized N ×N BoaF game is NP-complete, and
then explore the one million deals in the 4× 4 BoaF testbed.
We present several graph-theoretic algorithms to prove that
1880 of these million deals are unsolvable, and conclude the
paper with two search algorithms that efficiently show that all
of the remaining 998,120 deals are in fact solvable.

Games are the ideal platform for Artificial Intelligence re-
search, as games are accessible to a general audience while
providing highly constrained contexts that enable computer
scientists to determine optimal decision-making strategies.
A recent textbook (Yannakakis and Togelius 2018) explores
the applications of games to AI, including procedural con-
tent generation and computational creativity.

There is a large body of work on one-player combinatorial
games, also known as puzzles (Demaine 2018). Popular ex-
amples of puzzles include Tetris, Sudoku, and Minesweeper,
which are among a collection of puzzles that are known to
be NP-complete (Kendall, Parkes, and Spoerer 2008).

An active research area is the analysis of open solitaire
card games, due to its application to classical planning prob-
lems (Ghallab, Nau, and Traverso 2004). In these perfect-
information puzzles, all the cards are dealt face-up. By elim-
inating the element of chance, we can determine the effect
of any sequence of moves, and generate powerful algorithms
for efficiently solving deals without exhaustive search.

FreeCell is an example of an open solitaire NP-complete
game, where there exist sophisticated methods to solve ran-
dom deals. One team of researchers has examined 108 Free-
Cell deals, showing that only 1282 are unsolvable, corre-
sponding to one loss every 78,000 deals (Keller 2018).

The 2019 EAAI Undergraduate Research Challenge was
to analyze Birds of a Feather (BoaF), a recently invented
open solitaire card game (Neller 2016). After defining this
game, we prove that the N × N version of BoaF is com-
putationally intractable, i.e., NP-complete. We then present
various algorithms for determining the solvability of a deal,
and fully analyze the million deals in the 4×4 BoaF testbed.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Definition and Rules
Birds of a Feather is played with a standard 52-card deck,
with 4 suits and 13 ranks of each suit from Ace to King. The
deck is shuffled and 16 cards are dealt, forming 4 rows and
4 columns. The remaining cards are not used.

Each card initially consists of a 1-card “stack.” Any stack
of cards can be picked up and placed on top of another stack
in the same row or column, as long as the top card of each
stack is either the same suit or their ranks differ by at most
one. A move denotes the process of joining two stacks.

Two cards in the same row or column are defined as a
match by position, and two cards that share a suit, rank,
or are of adjacent rank, are a match by card. In any legal
move, we must have a match by position and by card. In this
game, Aces and Kings are not considered adjacent, so the
Ace of Diamonds (AD) cannot be placed on top of the King
of Clubs (KC), even if they share the same row or column.

For any initial state (i.e., a deal), the game is won if we
can determine a sequence of 15 moves that creates a single
stack of 16 cards. We say that such a deal is solvable. If no
such sequence exists, then we say that the deal is unsolvable.

Consider the random deal given in Table 1.

JD 2D 9H JC
5D 7H 6C 5H
KD KC 9S 5S
AD QC KH 3H

Table 1: The initial board state of a BoaF deal

For instance, 7H can be moved on top of 6C, since
|6 − 7| = 1. This move results in Table 2, with 6C being
“eliminated” from the board.

JD 2D 9H JC
5D 7H 5H
KD KC 9S 5S
AD QC KH 3H

Table 2: The board state after the move 7H→ 6C

We now make the following move sequence: 9H → 9S,
5H→ 5S, 7H→ 9H, KH→ 7H, KH→ 5H, KH→ 3H, QC
→ KH, QC→ JC. This results in Table 3.

9648

JD 2D QC
5D
KD KC
AD

Table 3: The board state after nine moves

Note that KD can be stacked on each of the remaining
cards. So we use KD to solve this deal, via a sequence of
moves analogous to how a rook moves in chess. Specifically,
the sequence KD→ KC, KD→ 2D, KD→ QC, KD→ JD,
KD→ 5D, KD→ AD results in the end state with a single
stack in the bottom-left corner, with KD as the top card.

Naturally, there exist deals that are unsolvable. For an ex-
treme case, consider Table 4, where the 16 cards form a mu-
tually orthogonal Latin square of order 4. Since no pair of
cards can be matched, the best we can do is leave 16 stacks
of a single card (colloquially referred to as “odd birds”), with
no two birds able to “flock together.”

2C 4S 6H 8D
6D 8H 2S 4C
8S 6C 4D 2H
4H 2D 8C 6S

Table 4: A BoaF deal that is unsolvable

A brute-force approach determines whether a deal is solv-
able. There are at most 16 · 6 ways to make the first move,
since there are 16 options to choose the card that moves, and
6 possible locations for that card (3 in the same row and 3 in
the same column). There are at most 15 · 6 choices for the
second move, 14 · 6 for the third move, and so on. Since the
number of steps is at most 16! · 616, the 4 × 4 BoaF game
can be solved in constant time.

Of course, there are much better ways to verify the solv-
ability of a deal, and we will present several heuristics later
in this paper. These algorithms efficiently find a sequence of
moves to complete a solvable deal, and quickly confirm that
an unsolvable deal has no single-stack solution.

Let us define the N ×N BoaF game, where the N2 cards
are randomly dealt from a deck of size SR ≥ N2, where
there are S suits and R ranks of each suit. If there exists a
sequence of N2 − 1 moves that turns an initial deal into a
single N2-card stack, then we say that the deal is solvable.

We denote each card as rs, where r is the rank and s is
the suit. For the purposes of the analysis that follows, we
will assume that 1 ≤ r ≤ L and 1 ≤ s ≤ L, where L
is some sufficiently large number for which L ≥ N . Two
stacks with top cards rs and r∗s∗ can be joined if and only if
|r− r∗| ≤ 1 or s = s∗, and the two cards match by position.

Given the success of our heuristics for N = 4, we might
conjecture that there is a simple polynomial-time algorithm
to verify whether a given N × N BoaF deal is solvable.
We show that this is not the case, by proving that this de-
cision problem is NP-complete. To do this, we obtain a re-
duction from 3-SAT, the well-known NP-complete problem
on Boolean satisfiability (Garey and Johnson 1979).

Proof that BoaF is NP-complete
Let S = C1∧C2∧ . . .∧Cm be the conjunction of m clauses
with three literals on the variables u1, u2, . . . , uv . From S
we will define BoaF(S), a deal with N = 12m + 2v + 1
rows and N = 12m+2v+1 columns. We will prove that S
is satisfiable if and only if BoaF(S) is solvable, thus estab-
lishing the desired reduction from 3-SAT.

For example, let S = C1 ∧C2 ∧C3 ∧C4 ∧C5 ∧C6 ∧C7,
where C1 = (u1 ∨ u2 ∨ u4), C2 = (u2 ∨ u3 ∨ u4), C3 =
(u1 ∨ u3 ∨ u4), C4 = (u1 ∨ u2 ∨ u4), C5 = (u2 ∨ u3 ∨ u4),
C6 = (u1∨u3∨u4), and C7 = (u1∨u2∨u3). By definition,
S is an instance of 3-SAT.

We can show that (u1, u2, u3, u4) = (T, T, T, F) is a
truth assignment that satisfies the Boolean formula S, i.e.,
each clause Cj evaluates to TRUE for all 1 ≤ j ≤ 7. It is
straightforward to verify that (T, T, T, F) and (T, T, T, T)
are the only 4-tuples that satisfy S.

Thus, if we construct the 8-clause formula S∗ = S ∧ C8,
where C8 = (u1 ∨ u2 ∨ u3), then we immediately see that
S∗ is not satisfiable.

The construction of BoaF(S) involves the concatenation
of m different “blocks” with 12 rows and 12m + 2v + 1
columns, with one block corresponding to each clause, fol-
lowed by 2v+1 additional rows concatenated at the bottom.
In the example above, S has m = 7 clauses and v = 4
variables. By the definition of 3-SAT, note that v ≤ 3m.

The first 2v columns correspond to the 2v possible literals
in S, and will be denoted by the labels u1, u1, . . . , uv, uv .
The next 6m columns will be used by the m blocks, with
each clause having six unique columns. These columns will
be labeled C1

j , C
2
j , . . . C

6
j , for each 1 ≤ j ≤ m. The final

(12m+2v+1)− 2v− 6m = 6m+1 > 0 columns will not
be labeled, since they are not important in our construction.

Table 5 illustrates the block for j = 1, corresponding to
C1 = (u1 ∨ u2 ∨ u4). We omit any columns with no entries.

u1 u1 u2 u2 u4 u4 C1
1 C2

1 C3
1 C4

1 C5
1 C6

1

21 44 171 571
25 42 172 572

23 46 174 574
71 L2

72 35
73 38

81 36
82 L3

83 39
34 91
37 92
L1 93

Table 5: The block corresponding to C1 = (u1 ∨ u2 ∨ u4)

Each block will have this form, where the cards in the jth
block will use the ranks from 10j−9 to 10j−1 and the suits
from 10j − 9 to 10j, in addition to three cards with rank L
and six cards with suits ranging from 10m+ 1 to 10m+ v.

Since C1 = (u1 ∨ u2 ∨ u4), the 18 cards with ranks in
the set {10j− 7, 10j− 3, 10j− 2, 10j− 1, L} appear in the
three columns corresponding to these literals.

9649

In the first three rows, the cards in the first six columns
alternate between 10j − 8 and 10j − 6. The suits of these
six cards will all be different, chosen from the set {10j −
9, 10j − 8, 10j − 7} if that column’s literal is in clause Cj ,
and from the set {10j − 6, 10j − 5, 10j − 4} if it is not.

The cards in the final six columns alternate between 10j−
9 and 10j − 5. Each pair of cards will be assigned the suits
10m+ p, 10m+ q, 10m+ r, where {p, q, r} are the indices
of the literals in Cj . We will assume that p < q < r, since
we can disregard tautological clauses such as Cj = (up ∨
uq ∨ uq) from our Boolean formula S.

Table 6 illustrates the block for j = 6, corresponding to
C6 = (u1 ∨ u3 ∨ u4). We see that this is similar to Table 5,
except that the suits and ranks have been incremented by 50,
and the 18 cards in the bottom nine rows have been placed
directly below the columns labeled u1, u3, and u4.

u1 u1 u3 u3 u4 u4 C1
6 C2

6 C3
6 C4

6 C5
6 C6

6

5254 5451 5171 5571
5252 5455 5173 5573

5256 5453 5174 5574
5751 L52

5752 5355
5753 5358

5851 5356
5852 L53

5853 5359
5354 5951
5357 5952
L51 5953

Table 6: The block corresponding to C6 = (u1 ∨ u3 ∨ u4)

Each block consists of 12 rows and 12m+2v+1 columns.
Only 30 entries are filled above. Each of the remaining
12(12m + 2v + 1) − 30 entries is assigned a card with suit
10j, where the rank is some number larger than 10m. Since
L is a sufficiently large number, we can ensure that each card
is unique. Finally, we’ll ensure one of these cards is L10j .

By this construction, we see that all cards with suits from
10j−9 to 10j belong to block j. Furthermore, all cards with
ranks from 10j − 9 to 10j − 1 belong to block j. Thus, if
all m blocks are concatenated together to form our N × N
deal BoaF(S), then we must ensure that each of these cards
is stacked up (i.e., eliminated) strictly within each block.

For example, in Table 6, there are 21 cards of the form rs,
where 51 ≤ r, s ≤ 59. If our BoaF(S) deal is solvable, then
we must find a way to match up these 21 cards within this
block so that our deal can become a single stack.

The bottom nine rows in a block cannot be fully cleared
by itself, since the six cards with rank 10j − 7 can, at best,
form three stacks of two cards. In order for us to combine
these cards into a single stack, we require the help of a card
appearing in the first three rows, whose column corresponds
to a literal in Cj . This card serves as an activator to stack up
the 18 cards in the bottom nine rows.

In Table 6, the only three possible activator cards are
{5451, 5252, 5453}, namely the cards with suits 10j − 9,
10j − 8, and 10j − 7. Any of these activators enables us
to move the cards in the bottom nine rows to a single stack.

Lemma 1 Let S be an instance of 3-SAT with m clauses,
and consider the 12× (12m+2v+1) block corresponding
to the jth clause of S, whose literals have indices p, q, r.
There exists a sequence of moves that leave just four top
cards, with one card having rank L in the activator column,
and the other three having suits 10m+p, 10m+q, 10m+r,
all in columns whose literals are not the activator.

For readability, we demonstrate the proof through our ex-
ample in Table 6 with j = 6 and m = 7, from which it will
be clear that this sequence of moves exists for all cases.

In Table 6, if 5451 is the activator, then the following se-
quence of moves stacks up the cards in the bottom nine rows:
5751 → 5752, 5751 → 5753, 5354 → 5357, 5355 → 5358,
5852 → L52, 5852 → 5853, 5851 → 5852, 5356 → 5359,
5953 → L53, 5953 → 5952, 5951 → 5953, 5451 → 5751,
5451 → 5355, 5451 → 5851, 5451 → 5356, 5451 → 5951,
5451 → 5354, L51 → 5451. This leaves Table 7, where the
final card L51 appears in the u1 column, the same column as
our eliminated activator.

u1 u1 u3 u3 u4 u4 C1
6 C2

6 C3
6 C4

6 C5
6 C6

6

5254 5171 5571
5252 5455 5173 5573

5256 5453 5174 5574

L51

Table 7: Partially clearing the block corresponding to C6

By symmetry, the other two activators create the same re-
sult: if 5252 is our activator, there exists a sequence of moves
that makes L52 the final card in the u3 column, and if 5453
is our activator, there exists a sequence of moves that makes
L53 the final card in the u4 column.

We note that more than one card can be the activator, but
only one is necessary to combine the bottom 18 cards in each
block to leave one stack whose top card has rank L.

There are still 5 cards of the form rs, where 10j − 9 ≤
r, s ≤ 10j − 1. To ensure that our BoaF(S) deal is solvable,
we must stack up these cards as well. To do that, we use
the six cards whose suits are larger than 10m. Since the Ck

j

columns are only used in the jth block, we must move these
six cards over to the columns corresponding to our literals.

In Table 7 above, we must leave a card with suit 71 in the
u1 column, which is the column opposite our activator. We
can do this via the sequence 5171 → 5571, 5171 → 5254.

Since 5252 was not the activator, we can leave a card with
suit 73 in either the u3 or the u3 column. We apply the moves
5173 → 5252 and 5573 → 5455, and then decide how we
wish to combine these two stacks into one. The same is true
for the other non-activator, where we can leave a card with
suit 74 in either the u4 or the u4 column.

9650

Table 8 gives one possible result of this process, the first
three rows of the cleared block of C6 = (u1 ∨ u3 ∨ u4).

u1 u1 u3 u3 u4 u4 C1
6 C2

6 C3
6 C4

6 C5
6 C6

6

5171
5573

5174

Table 8: First three rows of the cleared block of C6

Finally, there are 12(12m + 2v + 1) − 30 cards in this
block that have not been considered in our analysis. Each
of these cards has suit 10j, with one card being L10j . We
use L10j to stack up all of the cards with suit 10j, ending
in the same row or column as the L card in our activator
column (L51 in our example), so that the final card is L10j . �

In our earlier example with S = C1 ∧ C2 ∧ C3 ∧ C4 ∧
C5 ∧ C6 ∧ C7, we saw that (u1, u2, u3, u4) = (T, T, T, F)
is a satisfying truth assignment, so that at least one literal in
each clause evaluates to TRUE. We pick any such literal to
be the column of the activator card, for each of our 7 blocks.

For example, in the clause C4 = (u1 ∨ u2 ∨ u4), either
the u1 column or the u4 column can hold the activator. By
our earlier analysis, this forces a card with suit 71 into the
u1 column or a card with suit 74 into the u4 column.

By Lemma 1, we can leave just four cards in each of
the seven blocks of BoaF(S), where the seven rank L cards
are in our activator columns u1, u2, u3, u4, and the twenty-
one cards with suits 71, 72, 73, 74 are in our non-activator
columns u1, u2, u3, u4.

In general, the satisfying truth assignment of S corre-
sponds exactly to our v activator columns, and the v literals
that evaluate to FALSE are the v columns containing the 3m
cards whose suits range from 10m+ 1 to 10m+ v.

Now consider the Boolean formula S∗ = S ∧ C8, where
C8 = (u1 ∨ u2 ∨ u3). If we were to construct BoaF(S∗),
then we must have one of these three FALSE literals being
the activator for block 8, forcing some suit 10m + k (with
m = 7 and 1 ≤ k ≤ 3) to appear in both columns uk and
uk, in two different rows. Note that this “duplication” result
must occur whenever the Boolean formula is not satisfiable.

More formally, we have established the following result.
Lemma 2 Let S be an instance of 3-SAT with m clauses,
and consider the first 12m rows in our deal BoaF(S). S is
satisfiable if and only if, for all 1 ≤ k ≤ v, there exists a
sequence of moves that leave all the cards with suit 10m+k
in either the uk column or the uk column, but not both.

Given S, we have described how to concatenate the m
blocks corresponding to each clause, to form a BoaF deal
with 12m rows and 12m+2v+1 columns. Table 9 explains
how to construct the final 2v + 1 rows of BoaF(S), where
the final column f is a previously unused column.

Let {a1, . . . , av, b1, . . . , bv, c1, . . . , cv, d1, . . . , dv} be a
set of distinct suits, so that none of these suits appears on
any other card in BoaF(S). Let X be a rank with 10m <
X < L, which does not form a match with any other card in
BoaF(S). Since L is a sufficiently large number, the rank X ,
as well as the 4v distinct suits, are guaranteed to exist.

u1 u1 u2 u2 uv uv f
Xc1 Xd1 X10m+1

Xb1 Xa1

Xc2 Xd2 X10m+2

Xb2 Xa2

.

.
Xcv Xdv X10m+v

Xbv Xav

La1 Lb1 La2 Lb2 Lav Lbv

Table 9: The final 2v + 1 rows of our BoaF(S) deal

The blank entries in Table 9 are filled with an arbitrary
card with rank L, as are the entries in the (12m+2v+1)−
(2v + 1) = 12m columns that do not appear in this table.

We are now ready to prove the main theorem in this paper.

Theorem 1 BoaF is NP-complete.

Proof Let S be an instance of 3-SAT with m clauses, and
consider the (12m+2v+1)×(12m+2v+1) deal BoaF(S).
By Lemma 2, if S is satisfiable, then for each 1 ≤ k ≤ v,
there exists a sequence of moves so that all the cards with
suit 10m+ k appears in either the uk or the uk column.

If these cards are in the uk column, the move sequence
Xdk

→ Xck , X10m+k → Xdk
enables X10m+k to stack

up all these cards with suit 10m + k. Then the sequence
X10m+k → Xbk , Xak

→ X10m+k, Lak
→ Xak

eliminates
all the cards from columns uk and uk except for some cards
all with rank L. By symmetry, we get the same result if all
the cards with suit 10m+ k appear in the uk column.

Therefore, if S is satisfiable, then the deal BoaF(S) has
the property that there exists a sequence of moves that elim-
inates all of the cards, except for some cards whose rank is
L. We can then move all these rank L cards to the bottom
2v + 1 rows of our deal, stacking these cards on top of our
“blank” entries, whose cards all have rank L. And then we
can take any one rank L card to match up all of the other
cards, leaving a single stack with (12m+ 2v + 1)2 cards.

If S is not satisfiable, then we claim that BoaF(S) is not
solvable. To see why, recall that we must have an activator
in each of the m blocks in order for us to eliminate the cards
within these blocks. Because S is not satisfiable, there must
exist some index k, with 1 ≤ k ≤ v, for which card P10m+k

exists in column uk and another card Q10m+k exists in col-
umn uk, in a different row.

Suppose there exists a sequence of moves that stacks up
both P10m+k and Q10m+k. Then it is straightforward to see
that any such sequence, which must involve X10m+k moving
to both columns uk and uk, leaves a card with rank X in one
of these columns that cannot be matched to any other card.
Thus, BoaF(S) cannot be reduced to a single stack.

We have therefore shown that S is satisfiable if and only if
BoaF(S) is solvable. This establishes the desired reduction
from 3-SAT, proving the NP-hardness of BoaF.

Finally, we note that BoaF is clearly in NP, since we can
verify the solution to any solvable deal in polynomial time,
specifically in (12m+2v+1)2−1 ≤ (18m+1)2−1 steps.
Therefore, we conclude that BoaF is NP-complete. �

9651

Conditions for Unsolvability
Having proven that the N ×N BoaF game is NP-complete,
we strongly suspect that there is no simple characterization
or classification of all solvable N × N deals. Nonetheless,
we can develop several sufficient conditions to verify that a
given N ×N deal is unsolvable, without having to resort to
an exhaustive search. Each of these graph-theoretic criteria
can be checked in polynomial time.

Given a deal, we construct the match-by-card graph G,
in which the vertex set V (G) is the set of N2 cards, and an
edge connects two vertices if and only if the corresponding
cards match by card (but not necessarily by position). This
graph G is similar, but not identical to, the dependency graph
used to analyze FreeCell (Paul and Helmert 2016).

The BoaF testbed consists of one million random 4 × 4
deals, representing seeds 0 to 999,999 of the open-source
FreeCell shuffler (Mol 2018).

Table 10 provides one of those deals, which we will show
is unsolvable. The corresponding graph G is presented be-
low, in Figure 1.

2H 3D KD 3H
4D AH TS 6D
3C 4H KC 9S
KH AC 6C 2C

Table 10: Deal #1264, an unsolvable deal

Figure 1: The match-by-card graph of Deal #1264

For a given N × N deal, the graph G can be determined
in O(N4) time, since there are

(
N2

2

)
= N2(N2−1)

2 pairs of
vertices, and we can check in constant time whether each
pair of cards shares a suit, rank, or are of adjacent rank.

In constructing our graph G, we create an N2×N2 adja-
cency matrix M that enables us to keep track of E(G), the
edge set of G, where Mi,j = 1 if and only if vertices i and
j are connected by an edge. The sum of the vth row of M
gives us deg(v), the degree of each vertex v ∈ V (G).

We now present our four unsolvability conditions, starting
with one that has been previously published.

Odd Bird condition: (Neller 2018) A deal is unsolvable if
the graph G has some vertex v with degree 0.

Let v be a vertex with degree 0. Then the card cor-
responding to this vertex cannot be placed on top of another
stack, nor can any card be stacked on top of this card. As
a result, it is impossible to find a sequence of moves that
leaves a single stack of N2 cards.

Clearly, we can test this condition in polynomial time,
since we have the values of deg(v) from our adjacency
matrix M . Out of the million deals from our testbed, 1484
are unsolvable due to the Odd Bird condition.

Multiple Flocks condition: A deal is unsolvable if the
graph G is disconnected.

This is a generalization of the first condition. If G
is disconnected, then there exists a set of vertices U , with
0 < |U | < N2, for which no edge in E(G) connects a
vertex in U to a vertex in V (G) − U . In other words, the
stack(s) formed by the cards of U cannot be matched to any
of the remaining cards in the deal, which implies that it is
impossible to end the game with a single stack of N2 cards.

As an example, the graph in Figure 1 satisfies the Multi-
ple Flocks condition, since the set U = {9S, TS} is discon-
nected from the rest of the graph, forcing any move sequence
to conclude with a minimum of two stacks.

We can test this condition in polynomial time as follows:
start with any vertex v and use the adjacency matrix M to
generate the breadth-first search tree with root v, one level at
a time. When we cannot add any more vertices, we simply
count the number of vertices in the breadth-first search tree.
G is connected if and only if this number is N2.

Out of the million deals from our testbed, 287 are unsolv-
able due to the Multiple Flocks condition, with |U | ≥ 2.
(The case |U | = 1 is equivalent to the Odd Bird condition.)

These two conditions are sufficient for unsolvabil-
ity, but they are not necessary conditions. There could
be deals where G is connected, but certain moves that
must be made will cause G to become disconnected. This
often occurs when there is a cut edge, i.e., an edge uw for
which G is connected but the removal of edge uw leaves G
disconnected. This observation inspires the following.

Cut Edge condition: A deal is unsolvable if all of the
following hold: G is a connected graph for which there
exists a cut edge uw, the 2-edge connected component U
that contains u is not collapsible, and there is no position on
the board for w (excluding its original position) where the
reduced board consisting of the cards U ∪ w is solvable.

If G is a connected graph having a cut edge uw ∈ E(G),
then the vertex set V (G) can be partitioned into two sets U
and W , with U ∩W = ∅, u ∈ U , and w ∈W .

If the deal is solvable, then any move sequence that re-
duces the N2 cards to a single stack must contain either
u→ w or w → u. However, we cannot make either move if
this results in a disconnected graph G.

9652

Since uw is a cut edge, either the cards of U must be col-
lapsible to a single stack with u as the top card, or the cards
in W must be collapsible to a single stack with w as the top
card.

Without loss of generality, assume that |U | ≤ |W |. We
check to see if the cards in U can be moved to a single stack
with u on top. If no such sequence exists, then solvability
implies that the cards in W can be moved to a single stack
with top card w, where the position of this single stack is
different from the original location of card w.

So given a deal of N2 cards, we just need to consider the
N2 − |U | − 1 positions where this card w can end up, and
consider U ∪w, the subset of |U |+1 cards. If none of these
N2 − |U | − 1 mini-deals can result in a single stack, our
N ×N deal must be unsolvable.

This technique is extremely powerful and fast when |U |
is small. To illustrate the Cut Edge condition, consider the
following deal from our testbed, whose match-by-card graph
is presented in Figure 2.

QD 4C 4H JS
TS 9D 3C 2C
QH KS 9S JD
AC 6D QS 7D

Table 11: Deal #221,602, an unsolvable deal

Figure 2: The match-by-card graph of the deal in Table 11.

We see that uw is a cut edge of G, where u = 4H and
w = QH. We readily see that the five-card mini-deal with
U = {AC, 2C, 3C, 4C, 4H} cannot be reduced to a single
stack with 4H on top. Thus, we consider the 10 possible po-
sitions of the card QH in the table below (indicated by *),
and consider whether the six-card mini-deal U ∪ w is solv-
able in any of these ten cases.

* 4C 4H *
* * 3C 2C

* * *
AC * * *

Table 12: Reducing the analysis to ten easy subproblems

We can quickly verify that none of these ten cases results
in a single stack, which implies that this deal is unsolvable.

Each of the criteria in the Cut Edge condition can be ver-
ified in polynomial time, provided the cardinality of U is

bounded by a constant. We have coded an algorithm that
considers all cases where G is a connected graph with a cut
edge uw, for which |U | ≤ 6.

Out of the million deals from our testbed, 49 are unsolv-
able due to the Cut Edge condition.

Lollipop Stick condition: A deal is unsolvable if the
graph G contains three vertices {x, u, w} that form a
“lollipop stick,” having a specific property described below.

Consider the following deal from our testbed.

5S 7D QS 2C
4C AD 8D 5C
QH 7C TC 3C
8C 2D 9C 3D

Table 13: Deal #360,528, an unsolvable deal

The corresponding graph is presented in Figure 3. We see
that G is in the shape of a lollipop, with the cards 5S, QS,
QH forming the lollipop stick.

Figure 3: The match-by-card graph of the deal in Table 13.

Let x = QH, u = QS, w = 5S. Since uw is a cut edge,
we let U = {x, u} and W = V (G) − U . As x and u do
not match by position, U is not collapsible. Consequently,
the deal is only solvable if W can be collapsed into a single
stack with w as the top card. Since x and w do not match
by card, the final two moves must be u → w, followed by
either x→ u or u→ x.

These moves are only possible if the cards in W can be
collapsed, where the top card w ends up in a location that
matches by position with both x and u. In this deal, w must
move from the top-left corner to the cell in Row 3, Column
3, while only moving on top of cards in W . This requires w
to move at least three times. However, w matches with only
two cards in W , which implies that this deal is unsolvable.

In general, a deal is unsolvable if all of the following cri-
teria are met:

1. Three cards, x, u, w, form a lollipop stick with deg(x) =
1 and deg(u) = 2, with both xu and uw being cut edges.

2. x and u do not match by position.

3. w matches by card with fewer cards in W = V (G) −
{x, u} than the number of moves it must make such that
it both matches by position with x and u, and is the top
card of a single stack of all the cards in W .

9653

The Lollipop Stick condition can be verified in polyno-
mial time, since we can determine in O(N6) steps all the
ways that three vertices {x, u, w} from V (G) can form a
lollipop stick, from which the remaining two criteria can be
checked in either constant or linear time.

Out of the million deals from our testbed, 8 are unsolvable
due to the Lollipop Stick condition.

Solving with Search
In the previous section, we presented four unsolvability con-
ditions that proved that 1484 + 287 + 49 + 8 = 1828 of the
million deals from the 4 × 4 BoaF testbed are unsolvable.
In this section, we efficiently find the solutions to 998,120
deals, and then show that the remaining 52 deals are unsolv-
able.

We use two different search algorithms to find solutions to
the deals in our testbed: a heuristic depth-first search and a
standard depth-first search. There is a tradeoff between com-
putation time per step and number of steps: the heuristic al-
gorithm takes fewer steps to find a solution, but each step
takes longer to run. For this reason, we present both search
algorithms.

To do this, we introduce the match-by-position graph, de-
fined similarly to the match-by-card graph, except that two
vertices are connected by an edge if and only if their corre-
sponding cards match by position.

Heuristic depth-first search is a search algorithm that
combines elements of depth-first and best-first search (Poole
and Mackworth 2017). The initial search node is the initial
state of the deal; this node starts in an open list. Next, the
board state that results after each legal move from the initial
state is added to the open list, and the node that was evalu-
ated is added to a closed set; this expansion is one step. The
open list is a priority queue ordered by a heuristic function of
the board state h(x). As the name implies, search is depth-
first, so only the leaf nodes with greatest depth are possible
candidates for expansion.

We use the heuristic function

h(x) = a(x) + b(x) + c(x)− p1(x)− p2(x)

where a(x), b(x), and c(x) are the heuristic components,
and p1(x) and p2(x) are the penalty functions for the board
state x being unsolvable. The heuristic components are de-
fined as follows:

• a(x) is the number of pairs that match by card;

• b(x) is the number of pairs that match by position;

• c(x) is the number of legal moves.

The two penalty functions are

p1(x) =

{
1000 if there are multiple flocks
0 otherwise

p2(x) =

1000
if the match-by-position
graph is disconnected

0 otherwise

If either of the penalty functions is triggered, the board
must be unsolvable, so search nodes x with h(x) < 0 are
never expanded.

Our standard depth-first search algorithm is almost ex-
actly the same as classical depth-first search. The only dif-
ference is that search nodes are only expanded if they are
not provably unsolvable using the penalty functions; i.e., if
p1(x) + p2(x) = 0.

The two search algorithms were implemented in Java, on
top of an existing codebase (Neller 2018). We tested both of
the search algorithms on a personal computer with a 1.4GHz
Intel Core i5 processor and 4GB RAM.

First, we tested the heuristic depth-first search algorithm
on all of the 998,172 deals that were not proven to be un-
solvable. Due to the long runtime per step of the heuristic
search algorithm, we gave up if it did not find a solution in
100 steps. Next, we tested the standard depth-first search on
all of the remaining undetermined deals. It gave up after 5.5
million steps due to memory constraints.

The heuristic algorithm solved 57% of deals (569,449)
in 15 steps, the minimum possible. It solved 90% of deals
(898,503) in fewer than 100 steps.

The standard depth-first search algorithm was tested on
the remaining 99,669 deals. It solved 99,617 deals, in a me-
dian of 4,055 steps. It proved 50 of the remaining 52 deals
unsolvable via exhaustive search. The authors have man-
ually shown that the remaining two deals (#618,979 and
#687,168) are unsolvable using a graph-theoretic analysis.

Conclusion
In this paper, we have shown that the N × N Birds of a
Feather game is NP-complete, demonstrating the compu-
tational intractability of this recently invented puzzle. We
also developed several graph-theoretic tests for unsolvabil-
ity, as well as two depth-first search algorithms, and applied
them to analyze the million deals in the 4× 4 BoaF testbed.
We successfully found solutions to every solvable deal, and
demonstrated that the remaining 1880 deals were indeed un-
solvable.

Our general approach may be useful for combinatorial
games beyond Birds of a Feather. The combined approach of
quickly ruling out most unsolvable options, using a heuris-
tic search to find solutions to “easy” problems quickly, and
then using an uninformed search to either find solutions to
the “hard” problems or exhaustively prove them unsolvable
might be a good approach to other NP-complete classical
planning problems.

There are several directions for future work. There are
undoubtedly other graph-theoretic unsolvability conditions
that can be checked in polynomial time, especially tests that
also include the match-by-position graph in their analysis. In
addition, whenever there is a cut vertex in the match-by-card
graph of a deal, a more restricted search could be performed
even if it is not possible to directly confirm the deal’s unsolv-
ability. Of course, more deals could be tested to see if the
performance of these algorithms generalizes. Finally, these
algorithms could be tested on larger boards beyond the case
N = 4, as well as N ×M boards with N 6= M .

9654

References
Demaine, E. 2018. Erik Demaine’s Combinatorial Games
Page. http://erikdemaine.org/games.
Garey, M., and Johnson, D. 1979. Computers and In-
tractability: A guide to the theory of NP-completeness. New
York: W.H. Freeman.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Keller, M. 2018. Freecell: Frequently Asked Questions.
http://www.solitairelaboratory.com/fcfaq.html.
Kendall, G.; Parkes, A.; and Spoerer, K. 2008. A survey of
NP-complete puzzles. International Computer Games Asso-
ciation Journal 31:13–34.
Mol, M. 2018. Rosetta Code: Deal cards for Freecell. https:
//rosettacode.org/wiki/Deal cards for FreeCell#Java.
Neller, T. W. 2016. AI education: Birds of a Feather. AI
Matters 2(4):7–8.
Neller, T. W. 2018. Birds of a Feather Solitaire Card Game.
http://cs.gettysburg.edu/∼tneller/puzzles/boaf/index.html.
Paul, G., and Helmert, M. 2016. Optimal solitaire game so-
lutions using A* search and deadlock analysis. In Proceed-
ings of the 9th Annual Symposium on Combinatorial Search
(SoCS 2016), 135–136.
Poole, D. L., and Mackworth, A. K. 2017. Artificial intel-
ligence: foundations of computational agents. Cambridge
University Press.
Yannakakis, G., and Togelius, J. 2018. Artificial Intelligence
and Games. Springer. http://gameaibook.org.

9655

