
The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19)

Discovering Temporal Patterns from Insurance Interaction Data

Maleeha Qazi,2 Srinivas Tunuguntla,1 Peng Lee,2 Teja Kanchinadam,2
Glenn Fung,2 Neeraj Arora1
1University of Wisconsin - Madison

2American Family Insurance
{stunuguntla,neeraj.arora}@wisc.edu, {mqazi,plee,tkanchin,gfung}@amfam.com

Abstract

In the insurance industry, timely and effective interaction with
customers are at the core of everyday operations and pro-
cesses that are key for a satisfactory customer experience.
These interactions often result in sequences of data derived
from events that occur over time. Such recurrent patterns can
provide valuable information that can be used in a variety of
ways to improve customer related work-flows. In this paper
we demonstrate the application of a recently proposed algo-
rithm to uncover such time patterns that takes into account the
time between events to form such patterns. We use temporal
customer data generated from two different use-cases (satis-
faction and fraud) to show that this algorithm successfully
detects patterns that occur in the insurance context.

1 Motivation/Introduction
Recurrent patterns in event sequences occur in diverse con-
texts that include notes in a musical composition, moves
such as give-and-go in sports and turn-taking behavior ex-
hibited by humans. In a retail context, buyers may engage in
predictable on-line browsing behavior patterns before mak-
ing a purchase. Similarly, in many processes and work-flows
in the insurance industry, policyholders of an insurance
provider may experience distinct patterns of interactions as
they navigate the claims process. Examples of events during
this process include claim reporting, bill paying, adding a
coverage, and general inquires. Patterns extracted from the
temporal data in the claims process reveal insights that could
be used to optimize customer interactions and enhance the
overall customer experience with the insurance company.
The purpose of this paper is two fold:
1. To introduce the recently proposed scalable T-pattern al-

gorithm (Arora, Fung, and Tunuguntla 2017) that has
been proposed in a business setting to the AI and data
mining community and to relate it to other similar meth-
ods for temporal discovery.

2. To showcase how this proposed algorithm can be used to
extract patterns from temporal sequence data that arise in
the insurance domain.
The recently proposed algorithm (Arora, Fung, and

Tunuguntla 2017) builds upon prior work (Magnusson 2000)

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration from (Magnusson 2000)

which defined the term T-pattern as a sequence of events
that occur with a relatively consistent time interval between
each event and where the sequence appears in the data
more often than one would statistically expect by chance
alone. The time dimension adds significant complexity to
the task of detecting patterns in any data, and identifica-
tion of such patterns becomes quite difficult for even mod-
est sized data. Most algorithms known in the data mining
community either assume that the time intervals between
events is constant (Mannila, Toivonen, and Inkeri Verkamo
1997), or ignore the time intervals between events and fo-
cus only in the sequential order of the events (Zaki 2000;
2001).

A simple illustration from (Magnusson 2000) helps mo-
tivate the thinking behind a T-pattern. In this illustration,
there are six events (a, b, c, d, w, k) that occur several dif-
ferent times during the period [1, NT ] as shown in the first
row in Figure 1. The second row reveals the time pattern
among some of the variables. At the first level of the hier-
archy, two T-patterns are found: [a, b] and [c, d]. The sec-
ond level of the hierarchy reveals one more T-pattern: [a, b],
[c, d]. Even in this simple example, the underlying T-pattern
is not self-evident from the observed data. As we will show,
under this paradigm, the problem of detecting a T-pattern
gets exponentially difficult as the number of events in the
data increase.

The rest of the paper is laid out as follows: In section 2, we
summarize relevant related prior work and in section 3, we
outline the original T-pattern algorithm (Magnusson 2000).
We identify several limitations that preclude this algorithm
from being usable for typical business problems and offer
possible solutions. In section 4 we summarize our algorithm
that proposes a solution for each limitation. This algorithm is

9573



scalable to typical business problems that have a large num-
ber of events and individuals.

In (Arora, Fung, and Tunuguntla 2017) we conducted
simulations to exhibit the properties of the proposed algo-
rithm and it’s ability to recover T-patterns when the true T-
patterns are known. In the empirical section of this paper,
section 6, we test the algorithm using customer insurance
data derived form two different use-cases. The final section
of the paper summarizes the main aspects of the paper and
offers conclusions.

2 Related Work
Over the years the T-pattern algorithm has been applied in
a variety of contexts to study interactions and behavior in-
volving animals and humans. (Casarrubea et al. 2015) does
an excellent job of summarizing these applications. The re-
search involving T-patterns and humans span topics such as
cognitive and social disorders, gender relations, team effec-
tiveness, and sports. In their paper on T-patterns involving
performance of soccer teams, (Borrie, Jonsson, and Mag-
nusson 2002) observe that traditional analyses focus on fre-
quency of event occurrence (e.g. number of passes, assists,
unforced errors, etc.) as the index of performance. What’s
missing from such analyses, they note, is the temporal struc-
ture and interrelationships between events. Using the T-
pattern approach, the authors point to the importance of tem-
poral aspects of sports performance that reveal novel pat-
terns that impact team performance. We believe that such
temporal patterns are widely prevalent in business applica-
tions and are important to study.

In (Batal et al. 2016), the authors present Recent Tempo-
ral Pattern (RTP) mining as a “novel approach for efficiently
finding predictive patterns for event detection problems” in
complex multivariate temporal data like electronic health
records (EHRs). Although their methodology has some sim-
ilarities to our approach, for example using supervised prun-
ing to help scalability, easy interpretability of detected pat-
terns, and bottom-up detection of patterns, their technique is
built on the assumption that more recent patterns are more
predictive than past patterns. This assumption holds for the
medical domain but doesn’t necessarily apply to domains
such as insurance. Also, their algorithm requires abstracting
the concept of time in two different ways: trend abstractions
and value abstractions. In addition, the concept of “recent”
is declared using a user-defined parameter. Our algorithm, in
contrast, is not limiting in this aspect. Time doesn’t require
a user-defined restriction or abstraction in our approach and
the purpose of our algorithm is to find the most salient time
boundaries to define the detected patterns.

Various algorithms known in the data mining commu-
nity have been compared to one another in previous sur-
veys (Roddick and Spiliopoulou 2002; Mooney and Roddick
2013). In Table 1 we chose three well known algorithms,
WINEPI/MINEPI (Mannila, Toivonen, and Inkeri Verkamo
1997), SPADE/cSPADE (Zaki 2000; 2001) & RTP (Batal et
al. 2016), to compare against our algorithm along some key
dimensions of interest. As can be seen, WINEPI/MINEPI
& SPADE/cSPADE do not represent time explicitly in their
output rules. Although RTP does represent time in its output

rules, it is re-represented as pre-defined relationships (e.g.
co-occurs, contains, etc.) This is a common trend for time
series data. It can limit the knowledge the rules can represent
to what a human has given an algorithm access to represent.
If knowledge isn’t represented at the correct granularity for
learning, then the algorithm cannot produce the desired re-
sults. This is one of the reasons we allow time to remain as-is
within our algorithm.

As far as we know, our proposed algorithm is the only
algorithm (other than Magnusson’s) that considers both or-
der and variable time between events, without having to re-
represent time in any way, & while being able to scale to
address the demand of many present-day business problems.

3 Original T-pattern Algorithm
We begin this section by formalizing the definitions used by
our proposed algorithm (Arora, Fung, and Tunuguntla 2017)
and the algorithm proposed by (Magnusson 2000). Let event
i occur for person j during time t. We define the following
variable to capture the occurrence of event type E.

Eijt =

{
1 if event i for person j occurs during time t

0 otherwise
(1)

As an example, for four individuals (P1 to P4) and nine
event types (E1 to E9). For i = 1, ..., 9 events, the possible
set of T-patterns is Q and includes all possible event combi-
nations.

Q = {(E1, E2), (E1, E3), .., (E8, E9), .., (E1, E2, .., E9),

.., (E2, E1), .., (E9, .., E3, E2, E1)}
(2)

The goal is to detect T-patterns such as (E1, E2) that fol-
low the definition that a T-pattern is (i) a sequence of events
that occur with a relatively consistent time interval between
each event and (ii) where the sequence appears in the data
more often than one would statistically expect by chance
alone. We use the subscript k to refer to a T-pattern where
k ∈ {1, ...,K} is a small subset of all possible event combi-
nations in Q.

The T-patterns are not expected to follow a deterministic
time pattern. That is, the inter-event time maybe stochastic.
One of our goals is to find a critical interval that corresponds
to each T-pattern. Formally, for a two-event T-pattern k we
will uncover the interval (ck1, ck2) such that the second ele-
ment of the T-pattern falls somewhere between t = ck1 and
t = ck2 after the first element. For example, E1(4, 10)E2

implies that E2 is likely to occur 4 to 10 time units after E1.
The same notations naturally extends to longer T-patterns
that exceed two events. For example, E3(3, 11)E5(2, 5)E7

implies that E5 is likely to occur 3 to 11 time units after E3

and E7 is likely to occur 2 to 5 time units after E5.

3.1 Magnusson’s Algorithm
For any pair of events Ei and Ei′ , next we outline how the al-
gorithm originally proposed by (Magnusson 2000) proceeds
to determine whether the two events follow a T-pattern and if
so, what is the corresponding critical interval. The test for a

9574



Table 1: Comparison of Various Algorithms
Comparison Fac-
tors

�WINEPI MINEPI SPADE/cSPADE RTP T-pattern

Algorithm family Temporal Sequence Temporal Sequence Apriori based Temporal
Sequence

Temporal Se-
quence

Association
Discovery Mode

Inter-transaction Inter-transaction Intra-transaction Inter-
transaction

Inter-transaction

Gap allowed
between individ-
ual elements in
sequence

Syntax gives the
maximum total rule
time, including both
antecedent and conse-
quent; no information
about the time from
observation of the
antecedent to the
consequent

Syntax gives the ability to
find different rules based
on the time between the
occurrences in the an-
tecedent, e.g. if the events
A and B occur within 10
minutes this results in C,
but if they occur within 45
minutes it will most likely
result in Y

max/min gap be-
tween each set of
elements kept the
same

max/min gap
between each
set of elements
kept the same

max/min gap be-
tween each set of
elements allowed
to be distinct

Order of events
matters

Yes Yes Yes Yes Yes

Time representa-
tion

Used as input, but not
represented in rules
output

Used as input, but not rep-
resented in rules output

Used as input, but
not represented in
rules output

Time rep-
resented as
pre-defined
relationships
between el-
ements (e.g.
co-occurs)

Used as input,
and represented
numerically in
output

Example Rule A, B → C (min: 10,
avg: 30, max: 60) (sup:
7%, conf: 90%, lift: 7)

A, B → C (min: 10, avg:
30, max: 60) (sup: 7%,
conf: 90%, lift: 7)

{A,B},{C} A=H co-
occurs B=H →
C=RENAL

{A(1,4)B}(3,8)C

T-pattern is based on the null hypothesis that the two events
Ei and Ei′ are distributed independently with the observed
frequency during the observation period [1, T ]. The follow-
ing probabilities are necessary to test for the presence of
T-pattern (Ei, Ei′). The marginal probabilities for Ei′ are
given by:

Pr(Ei′ = 1) =
NEi′

NT
; Pr(Ei′ = 0) = 1−

NEi′

NT
(3)

For the event Ei, let us focus our attention on an arbitrary
interval [c1, c2] that follows Ei. The probability that one or
more events Ei′ lie in the interval [c1, c2] that follows Ei, is
calculated as follows,

Pr(Ei′ ≥ 1|c1, c2) = 1− (1−
NEi′

NT
)c2−c1+1 (4)

Let nEi,Ei′ be the number of instances when Ei′ occurs
within the interval [c1, c2] after Ei. Using equation 4, one
can calculate the probability distribution of nEi,Ei′ .

Pr(nEi,Ei′ = n|c1, c2) = Binomial(NEi
, n,

Pr(Ei′ = 1|c1, c2))
(5)

For the NEi
occasions that event Ei occurs, the expected

number of times the event Ei′ occurs within the interval
[c1, c2] after Ei can be written as

E(nEi,Ei′ ) = NEi
× (1− (1−

NEi′

NT
)c2−c1+1) (6)

Given that we observe the number of times Ei′ occurs
within the interval [c1, c2], the probability that the (Ei, Ei′)
is not a T-pattern is given below.

p = 1−
NEi,Ei′

−1∑
n=0

Binomial(NEi , n, Pr(Ei′ = 1|c1, c2))

(7)
This is also the probability of the null hypothesis that the

two events Ei and Ei′ are distributed independently to be
true. Therefore, small values of p in Magnusson’s algorithm
indicate evidence in support of a T-pattern.

The algorithm begins by recording the time until the near-
est occurrence of Ei′ after Ei and defines the distribution
of these distance intervals. In doing so, it ignores any event
that occurs between Ei and Ei′ . Then, the algorithm checks
all the possible time intervals (ck, ck′) where Ei′ occurs
after Ei for statistical significance. If an interval is found
to be significant based upon the test criterion explained in
Equation 7, the candidate pattern Ei(cl, cl∗)Ei′ is called a
T-pattern and saved as a candidate to be part of a more com-
plex t-pattern in future iterations.

3.2 Limitations of Magnusson’s Algorithm
The original algorithm suffers from a series of limitations
when applied to typical business contexts, and we outline
them here:

1. Scalability: The algorithm is usually applied to a few in-
dividuals with a limited number of events and is ill-suited

9575



for data that are larger in scope - including many individ-
uals and events. As the number of events and individuals
increase, the algorithm breaks down because the number
of combinations increase exponentially.

2. Heterogeneous individuals: The original algorithm fails
to recognize that events occur at different frequencies for
different individuals. As a result, the algorithm uncovers
T-patterns that exhibit long critical intervals that do not
occur very frequently.

3. Distributional assumptions: The test for a pattern Ei,
Ei′ is based on the null hypothesis that the two events
are independent Bernoulli processes over the observation
period with constant probabilities of occurrence within a
time unit. The original algorithm (see Equation 3) uses
this to calculate the probability of an event Ei′ occur-
ring in the interval [d1, d2] after an event Ei. We note
that, since the nearest occurrences of Ei′ after Ei are
used to calculate the distance intervals, under the null
hypothesis, these distance intervals should be geometri-
cally distributed. We incorporate this correction from the
Bernoulli to a geometric distribution in the algorithm.

4 A Revised T-pattern Algorithm
Our revised T-pattern algorithm is documented in (Arora,
Fung, and Tunuguntla 2017) and offers several improve-
ments to address the limitations pointed out above. These
improvements are summarized below.

4.1 Scalability
Our proposed algorithm addresses this problem by: (a) op-
tionally incorporating the use of labels in a supervised man-
ner to discard patterns that have poor or no discriminative
value for classification problems, (b) proposing an adequate
data structure that makes calculations more tractable, and (c)
parallelizing the algorithm. In this section we will focus on
(a) while (b) and (c) will be addressed in section 5.

A challenging aspect of typical business applications is
that the number of individuals and events maybe large.
For example, the data we use in our experimental section
involves thousands of samples (individuals, observations),
hundreds of event types, and millions of total event occur-
rences. This imposes substantial computation burden on the
algorithm. The challenge is presented by the large set size
for Q (the total number of T-pattern candidates to evalu-
ate) and critical interval determination for each possible T-
pattern. Our proposed solution to tackle this combinatorial
hurdle is to use “smart” pruning. For our revised T-pattern
algorithm, both unsupervised and supervised pruning proves
valuable in scaling and hence avoiding, or reducing, the pos-
sibility of a combinatorial explosion that may lead to in-
tractability.

When applying unsupervised pruning the idea is pretty
simple: T-patterns that may have very low event counts or
are associated with events with significant low counts may
offer little or no information. In contrast, their inclusion may
result in substantial computational cost. For industrial appli-
cations, an important application for T-patterns is in the area
of classification problems.

When applying supervised pruning, we are interested
in measuring the information gain from the occurrence of
a candidate pattern (Ei, Ei′) to a given label by using the
Kullback-Leibler (KL) divergence criterion (Kullback and
Leibler 1951). This allows us to uncover T-patterns that are
likely candidates to be the drivers of the difference between
two classes. Such a supervised pruning approach is gen-
eral and could be applied to any classification target variable
or label (e.g. satisfied/unsatisfied customers, loyal/switchers,
etc.).

4.2 Heterogeneous Individuals
To account for the fact that the number of events per indi-
vidual vary, the probability of an event Ei′ occurring in the
interval [c1, c2] after Ei is calculated at the individual level.

Unlike the binomial distribution that involves a sequence
of Bernoulli trials with the same success probability for each
individual, the Poisson Binomial distribution involves a se-
quence of Bernoulli trials with a different success probabil-
ity for each individual. So we chose to replace the use of
the Bernoulli distribution with the Poisson Binomial distri-
bution.

Hence, the evidence against the T-pattern is given by

p = 1−
NEi,Ei′

−1∑
n=0

PoissonBinomial(NEi
, n, Pr) (8)

Small values of p indicate evidence in support of a T-pattern.

4.3 Distributional Assumptions
Starting at an arbitrary point in time, the distance of the first
occurrence of event Ei after that point, follows a geomet-
ric distribution with success probability PEi . Similarly, the
distance to the first occurrence of event Ei′ after Ei, fol-
lows a geometric distribution with parameter PEi′ . An event
Ei′ is paired with an event Ei, at a distance d only if it is
the first occurrence of Ei′ after Ei. It can be shown (Arora,
Fung, and Tunuguntla 2017) that the probability of an event
Ei′ occurring in the interval [c1, c2] after an event Ei can be
calculated as

Pr(c1 ≤ D ≤ c2) = Pr(D ≤ c2)− Pr(D ≤ c1 − 1)

= (1− pdist)
c1−1 − (1− pdist)

c2

(9)
We therefore replace Equation 4 by Equation 9 in the origi-
nal algorithm.

4.4 CI Search Stopping Criteria
In the critical interval (CI) search algorithm, (Magnusson
2000) suggests that the search process should stop when a
critical interval is found to be significant at an alpha level.
We find this stopping criteria to be somewhat arbitrary and
associated with a cost. Since the search process starts with
the longest possible interval and iteratively reduces it un-
til a significant interval is found, we find that the resulting
T-patterns often exhibit long critical intervals. A T-pattern
with a shorter critical interval, that also occurs more fre-
quently, often goes undetected. To overcome this problem
we propose that the search process should continue to find
the interval that has the lowest p-value.

9576



4.5 Summary of Proposed Algorithm

We start by treating each event type as a 1-event T-Pattern.
For each event type, the start time and end time for each of its
instances are recorded for all the individuals in the dataset.
In general, a candidate pattern is of the form (Pi, Pj) where
Pi, Pj are two T-Patterns found in the data. The algorithm
can be summarized in the following steps:

Algorithm 1 Revised Scalable T-pattern Algorithm
Input: Vector of targets or labels L - {l1, l2, . . . , lm}

Matrix of events M
Output: Final list of T-patterns

1: Create a list of candidate patterns C.
2: for each candidate pattern (Pi, Pj) ∈ C do
3: Create a list of event pair instances for all the in-

dividuals. The event pair instances are of the form
(Pi(d)Pj), where d is the distance between the event
instances Pi, Pj .

4: Evaluate if the candidate pattern is a T-Pattern.
5: if Candidate is a t-pattern then
6: calculate the critical interval (d1, d2) and add the

pattern (Pi, Pj) to the list of found T-Patterns T .
7: end if
8: add the top-k features to the BN in a Naive Bayes

fashion.
9: end for

10: Go to step (1) if any new T-Patterns are found in step (2)
11: return T

5 A Parallel and Scalable Implementation
5.1 Data Structures

In algorithm 1, step (3), for a given candidate pattern
(Pi, Pj), we create a list of all event pair instances of the
form (Pi(d)Pj), where d is the distance between the end
time of an instance of Pi and the start time of the instance of
Pj that immediately follows. To improve the computational
efficiency of this step, we use the following data structure to
store data corresponding to any pattern (see Figure 2). The
instances of the pattern are stored in the increasing order of
their times of occurrence. The order is the same irrespec-
tive of using the start times or the end times of the instances
to sort, because the instances are non-overlapping. For each
instance, the start and end times are recorded.

For a given candidate pattern (Pi, Pj), to calculate the
event pair instances as in algorithm 1, step (3), it is sufficient
to perform a simultaneous linear search on the instances
of both the patterns, because the instances are sorted. The
event pair instances now form the instances of the candidate
pattern (Pi, Pj). The start time of an instance of the form
(Pi(d)Pj) is the start time of the instance of Pi. Similarly,
the end time of the instance is the end time of the instance
of Pj . If the candidate pattern is found to be a T-Pattern with
critical interval (d1, d2), the event pair instances that satisfy
d1 ≤ d ≤ d2 are collected, sorted and stored as data for the
new T-Pattern.

Figure 2: Data Restructuring: Start with events stored in the
increasing order of their times of occurrence, then sample
pairs to see if pattern exists.

5.2 Parallel Implementation
With large datasets that include many event types, the algo-
rithm requires significant computation because of the need
to evaluate many candidate patterns. With the ease of access
to cloud computing and the availability of multiple cores on
each computer, parallelization can be used to speed up the
algorithm significantly.

In algorithm 1, step (2), we evaluate whether each of the
candidate patterns is a T-Pattern. The evaluation of a candi-
date pattern is independent of the evaluation of other can-
didate patterns. Hence, this step can be easily parallelized.
Each candidate pattern can be processed on a different core
of a computer. In the implementation, a master thread and a
number of worker threads are used to evaluate candidate pat-
terns efficiently. The master thread creates a queue of candi-
date patterns. This is a FIFO queue and is serviced by the
worker threads. The worker threads watch the queue and
pick up a candidate pattern to evaluate whenever they be-
come available. If a candidate pattern is found to be a T-
Pattern, it is returned to the master thread. All the T-Patterns
that are found in Algorithm 1, step (2) are collected by the
master thread and the process is repeated. We use a cluster of
16 computers that use Message Passing Interface (MPI) pro-
tocol to communicate. MPI is a communication protocol that
supports both point-to-point and collective communication
in parallel programming. Each computer has 16 cores and
has its own private memory of 60 GB. We choose the MPI
protocol over the others because it allows the computers in
the cluster to read data in parallel and store it in their private
memory. The use of the cluster reduced the run time of the
algorithm from approximately 16 days on a single computer
to less than 2 hours.

6 T-patterns from Insurance Work-flows
Next, we use temporal customer data generated from two
different insurance-related use-cases to show that the T-
pattern algorithm successfully detects discriminative pat-
terns that occur in the context of insurance work-flows.

9577



6.1 Customer Satisfaction
We selected claims data from a well-known insurance com-
pany to test the T-pattern algorithm. In order for an insurance
policy holder to get reimbursed for a loss or an incident, a
claim has to be filed. The claim process usually consists of
a series of events and interactions that involve the insurance
company, the insured, and various third parties. The process
ends shortly after a payment is adjudicated.

According to Accenture in their news release of Oct. 13,
2014: “83 percent of dissatisfied customers [after a claim]
are planning to switch or have already switched to another
insurer”. Given that the insurance company mentioned had
142K property and 644K auto claims submitted in 2014,
even with low levels of dissatisfaction, capturing these early
on can result in fewer households leaving the company af-
ter a claim. This in turn can translate to roughly 4 million
dollars in business a year.

We use the concept of a journey-map as a data-driven
structured time-line where all the events pertinent to the
claim process are identified and positioned temporally with
respect to each other. To generate the dataset used for this
problem we created claim journey-maps. These journey-
maps integrate events from different data sources that are
available during the claim process. Most of these events are
internal to the company and some involve the customer or a
third party (e.g. a car repair shop). We have two primary pur-
poses in these analyses. First, we want to show that the pro-
posed algorithm can detect T-patterns that routinely occur in
the context of insurance claims. This would serve as a face
validity check for the algorithm. Second, we want to uncover
T-patterns that separate dissatisfied customers from satis-
fied ones. Such T-patterns may help identify touch-points
that could help minimize customer dissatisfaction with the
claims process.

We used data from auto and property claims in our anal-
ysis. Upon completion of the claim process each customer
filled out a satisfaction survey. In total, there are 166,504
claims in our data, of which 7,874 (4.73%) customers indi-
cated that they were dissatisfied with the claims process. Of
these, 109,031 claims belonged to the auto category (3.2%
dissatisfaction), and 57,473 claims belonged to the property
category (7.6% dissatisfaction).

There are a total of 236 event types in our data (232
for auto, 202 for property), 12,758,448 event instances
(8,965,952 for auto, 3,792,496 for property) and, on aver-
age, 86 event instances/claim.

Both the auto and property datasets were split into 60/40
train/test sets. Then the algorithm was run on each training
set separately. We used a p-value threshold of 0.01 and set
the pruning cutoffs at 2.84% of the total event instances in
each train set. For our experiments we allowed the cutoff
for infrequent events and the cutoff for infrequent pairs be
the same value. A smaller cut-off results in a substantially
larger number of T-patterns, that increases the run-time for
the algorithm exponentially. In addition, the KL divergence
cutoff was varied between 0.01 and 0.000625. The primary
benefit of the KL cutoff is that it helps identify the T-patterns
that are more likely to discriminate between satisfied and
dissatisfied customers.

Table 2: Auto & Property AUCs for Train/Test sets; super-
vised runs with varying KL cutoff parameter, best results
shown at KL cutoff of 0.00125. Best performance in bold.
TP (= T-pattern). BOW (= Bag-Of-Words) features are basic
counts of each event. We excluded adding any aggregate fea-
tures (e.g. total number of events in claim, number of unique
events in claim, duration of claim, etc.) for simplicity of com-
parison.

Feature Set Algo Auto Train Auto Test Prop Train Prop Test
TP GB 0.744 0.714 0.720 0.678
BOW GB 0.771 0.747 0.739 0.703
BOW+TP GB 0.783 0.753 0.757 0.721
cSPADE GB 0.757 0.523 - -

Next, we used each discovered T-pattern as a binary fea-
ture to classify satisfied and dissatisfied customers. Using
these features, we trained 4 different scikit-learn (Pedregosa
et al. 2011) (version 0.18) models: Logistic Regression with
L1 penalty (LogR L1), Logistic Regression with L2 penalty
(LogR L2), Random Forest (RF; with 100 estimators, and
out-of-bag sampling set to True), and Gradient Boosting
Classifier (GB). Each algorithm used it’s default parame-
ter settings unless otherwise specified here. The best results
were consistently obtained with GB so for the rest of the pa-
per we will only report GB results. The training set is used
to generate the T-Patterns. The binary features correspond-
ing to these T-Patterns are used to build a model over the
training set. The model is then used to predict satisfaction of
claimants in the hold-out/test set.

We use a simple summary measure of binary preci-
sion/recall: Receiver Operating Characteristic (ROC) curves
(Fawcett 2006), and report Area Under the ROC Curve
(AUC) as our prediction measure. The prediction results
for GB can be seen in Table 2. This shows that the pres-
ence/absence of these T-Patterns are a good indicator of sat-
isfaction. Example T-Patterns can be seen in Table 3.

We compare our algorithm’s result against a classic fre-
quent sequence mining algorithm called cSPADE (Zaki
2000). We used the R package aRulesSequences to run the
cSPADE code against our datasets (R Core Team 2018;
Hahsler et al. 2018; Hahsler, Gruen, and Hornik 2005;
Hahsler et al. 2011). This algorithm was chosen because it
represents sequence mining that takes into account the or-
der of events, but not the variable time between events - an
aspect of our algorithm which we believe is distinguishing.
This would allow for the closest possible match for the sake
of comparison between algorithms and it would help illus-
trate why variable time between events is desirable to in-
clude. (Zaki 2000) states that the cSPADE algorithm can be
run with a constraint to handle classes, and we chose to run
the algorithm with this constraint so the results would be
comparable to our supervised runs. The results can be seen
in Table 2. Note that cSPADE cannot handle datasets with
events that only occur in the testset but are never seen in
the training set, hence we could not generate results for the
property dataset.

The cSPADE algorithm was run using a support value of
0.6 which resulted in 31,642 sequences found after 4.3 hrs of
run time on a single machine with 256 GB of RAM, and 20

9578



Table 3: Example T-patterns from Auto & Property
Data T-patterns
Auto (ClaimReported 1,7 (VehicleEdited 1,22

ClaimClosed))
Auto (ClaimReported 1,28 ((Suspense 1,8

ClaimClosed) 1,56 grpPymtSubmit))
Prop ((ClaimSetup 1,14 ClaimClosed) 5,51 As-

sociatedToParty)
Prop ((ClaimSetup 1,57 (FYISent 1,7 Sus-

pended Item)) 5,53 ClaimReopened)

1. The first example shows that changes to the vehicle de-
scription/condition were made 1 to 7 days after a claim
is reported, and within 1 to 22 days after that the claim
was closed. This is correlated with a bad assessment or a
complicated claim.

2. The second example shows a claim that was reported and
paid for after 1-2 months via a batch payment method.

3. The third example shows a claim setup and closure within
1 to 14 days, but associated to an internal handler 5 to
51 days after closure. This correlates with a complicated
claim not going smoothly and/or swiftly.

4. The forth example shows a claim which was suspended
for a long time during it’s resolution process, and then
reopened 5 to 53 days after it was closed. This is a pattern
from a slow moving claim.

physical CPU cores (note that this R session was one of mul-
tiple processes occupying the machine at runtime). Lower
support values would error out for various reasons.

As was the case for T-pattern detection, we used the train-
ing set to generate the sequences. The binary features cor-
responding to the sequences was used to build a model over
the training set, and the model was then used to predict sat-
isfaction in the test set. As can be seen by the testset AUCs,
cSPADE doesn’t do as well with the classification task as
our T-pattern algorithm. Clearly the order of events alone
(in cSPADE) isn’t as discriminative as when the time aspect
is also taken into account (in T-patterns).

6.2 Fraud Detection
Insurance fraud is an act committed by a party, resulting in
an unlawful gain from an insurance company. Parties who
may commit fraud include insurance applicants, policyhold-
ers, third-party claimants, professionals rendering services
during the claims process such as doctors, lawyers and chi-
ropractors, or other parties associated with a claim such as
a witness in an accident. The majority of insurance com-
pany respondents in a 2013 survey conducted by FICO es-
timate that fraud can cost between 5% and 20% of claim
volume. Hence, insurance companies are investing in auto-
mated fraud detection solutions more so than ever before.

Automated insurance fraud detection solutions rely heav-
ily on business rules derived by domain experts and features
manually engineered by the data analyst. In some cases, ar-
bitrary time cutoffs are selected as part of the feature engi-
neering process. For instance, a claim on a recently bound
policy is a red flag. However, “recent” is usually an arbitrary

point selected by the analyst with input from the business
expert. Our algorithm helps in the automation of hand en-
gineered features, resulting in more robust and data-driven
feature engineering.

In addition to automated feature engineering, there is de-
sire by the Special Investigations Unit (SIU) for a white box
solution where T-patterns provide information beyond sim-
ply flagging a claim. The sequences of events detected by the
T-patterns provide the necessary information for SIU triage
to make quicker hand-offs to the next line of defense, the SIU
investigator. In addition, the sequences of events found can
be used as information to ultimately support the SIU inves-
tigator in the mitigation of a claim. This stretches the value
of the data beyond a simple model input or business rule.

The analysis in this paper was focused on private passen-
ger auto (PPA) claims that were referred to, and reviewed by
SIU, at the well-known insurance company mentioned pre-
viously. The primary motivation for this analysis was to help
in reducing the false positives of claims already referred to
SIU. SIU was receiving about 70% of their leads from a par-
ticular source. 89% of claims referred by this source were
false positives. By ranking or prioritizing already referred
claims, this can allow SIU triage to ignore claims of lower
quality, while focusing their energy on those with higher
quality. In addition, as discussed, T-patterns provide automa-
tion in feature engineering, and visibility into the types of
sequences of events that are associated with fraudulent activ-
ity. This additional information can help SIU triage be more
efficient in their review.

SIU referrals constitute roughly 1.5% of the total PPA
claims population. In addition to claims information, the
data includes policy and billing transactions, and claim his-
tory. Each claim had a binary label indicating fraudulent or
no fraudulent activity associated with the claim.

There were a total of 35,230 claims in the dataset, with
317 event types represented, and an overall fraud signal of
12.46%. The data were split into 70/30 train/test sets. Sim-
ilar to what we did for the last set of experiments with the
claims data, we used a p-value threshold of 0.01. We kept
the cutoff for infrequent events and the cutoff for infrequent
pairs to be of the same value. In addition, the KL divergence
cutoff was varied between 0.01 and 0.000625.

We then used each discovered T-pattern as a binary fea-
ture to classify fraud claims. We applied the same 4 models
previously described. The training set was used to generate
the T-Patterns, and build a model. The model is then used to
predict if a claim was fraudulent or not on the hold-out/test
set. The prediction results for the best algorithm (GB) can be
seen in Table 4; we again used AUC as our prediction mea-
sure. Our experiments indicate that for a signal ratio like we
have in this dataset, a KL cutoff of 0.00125 provided the best
pattern set. Example T-Patterns can be seen in Table 5.

The results show that the human engineered features
(H.E.F.) work best for this complex problem. But the T-
patterns detected enhance the results when added to the mix
of features used for modeling. They increased the testset
AUC by 1.5%. Due to their interpretability, they can also be
easily explained for business purposes. End-user evaluation
is underway.

9579



Table 4: Fraud AUCs for Test sets; supervised runs with
varying KL cutoff parameter, best results shown at KL cut-
offs mentioned. Best performance in bold. H.E.F. = Human
Engineered Features

Feature Set Algorithm AUC
TP GB 0.568
H.E.F. GB 0.744
H.E.F.+TP GB 0.759

Table 5: Example T-patterns from Fraud
T-patterns
(backdated policy change 1,86 (loss occurrence
1,3 loss setup))
(payment late 1,3 payment process)

1. The first example shows that the customer made a policy
coverage change that they asked to be backdated (i.e. ap-
plicable from some day in the past vs. from the time of
the request). Within 1 to 86 days later they experienced a
loss, and 1 to 3 days after that they submitting a claim for
that loss.

2. The second example shows a customer made a late pay-
ment which was processed within 1 to 3 days. It is known
that customers that are late for their payments are more
likely to submit fraudulent claims.

7 Summary and Conclusions
We have successfully applied a recently proposed scalable
T-pattern algorithm (Arora, Fung, and Tunuguntla 2017) to
two relevant problems in the insurance industry. The patterns
discovered not only provide a way to automatically extract
features that can be used in a later stage for classification
purposes, but also provide rules that can be easily interpreted
by humans. We have also introduced the proposed T-Pattern
algorithm to the A.I. community as a tool to consider when
the task is to discover and understand patterns that occur in
temporal data. Furthermore, as mentioned before, this algo-
rithm is the only available choice (as far as we know) that
considers both order and time between events, while being
able to scale to address the demand of many present-day
business problems.

In recent years, there have been significant advances re-
lated to the use of deep learning architectures for model-
ing temporal data. Specifically, recurrent neural networks
(RNN) and long short term memory networks (LSTMs)
are designed to learn temporal dependencies. Such methods
work very well for a large variety of prediction problems,
and are now used widely. However, there are two limitations
of such approaches: (i) they need large amounts of labeled
data to work and they can be difficult to train due to the
enormous amount of parameters to be learned (this is typi-
cally the case with deep learning architectures in general),
(ii) they use black-box models that produce excellent accu-
racy but the results from such models are difficult to under-
stand and interpret by humans. Our proposed T-pattern ap-
proach provides interpretable results for temporal data.

References
Arora, N.; Fung, G.; and Tunuguntla, S. 2017. T-patterns in busi-
ness. Unpublished Manuscript. Available at SSRN: https://ssrn.
com/abstract=3066839 or http://dx.doi.org/10.2139/ssrn.3066839.
Batal, I.; Cooper, G. F.; Fradkin, D.; Harrison, J.; Moerchen, F.;
and Hauskrecht, M. 2016. An efficient pattern mining approach
for event detection in multivariate temporal data. Knowledge and
Information Systems 46(1):115–150.
Borrie, A.; Jonsson, G. K.; and Magnusson, M. S. 2002. Temporal
pattern analysis and its applicability in sport: an explanation and
exemplar data. Journal of sports sciences 20(10):845–852.
Casarrubea, M.; Jonsson, G.; Faulisi, F.; Sorbera, F.; Di Giovanni,
G.; Benigno, A.; Crescimanno, G.; and Magnusson, M. 2015. T-
pattern analysis for the study of temporal structure of animal and
human behavior: a comprehensive review. Journal of Neuroscience
Methods 239:34–46.
Fawcett, T. 2006. An introduction to roc analysis. Pattern Recogn.
Lett. 27(8):861–874.
Hahsler, M.; Chelluboina, S.; Hornik, K.; and Buchta, C. 2011. The
arules r-package ecosystem: Analyzing interesting patterns from
large transaction datasets. Journal of Machine Learning Research
12:1977–1981.
Hahsler, M.; Buchta, C.; Gruen, B.; and Hornik, K. 2018. arules:
Mining Association Rules and Frequent Itemsets. R package ver-
sion 1.6-1.
Hahsler, M.; Gruen, B.; and Hornik, K. 2005. arules – A computa-
tional environment for mining association rules and frequent item
sets. Journal of Statistical Software 14(15):1–25.
Kullback, S., and Leibler, R. A. 1951. On information and suffi-
ciency. The annals of mathematical statistics 22(1):79–86.
Magnusson, M. S. 2000. Discovering hidden time patterns in be-
havior: T-patterns and their detection. Behavior Research Methods
32(1):93–110.
Mannila, H.; Toivonen, H.; and Inkeri Verkamo, A. 1997. Dis-
covery of frequent episodes in event sequences. Data Mining and
Knowledge Discovery 1(3):259–289.
Mooney, C. H., and Roddick, J. F. 2013. Sequential pattern min-
ing – approaches and algorithms. ACM Comput. Surv. 45(2):19:1–
19:39.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion,
B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot,
M.; and Duchesnay, E. 2011. Scikit-learn: Machine Learning in
Python . Journal of Machine Learning Research 12:2825–2830.
R Core Team. 2018. R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing, Vienna,
Austria.
Roddick, J. F., and Spiliopoulou, M. 2002. A survey of tempo-
ral knowledge discovery paradigms and methods. IEEE Trans. on
Knowl. and Data Eng. 14(4):750–767.
Zaki, M. J. 2000. Sequences mining in categorical domains: In-
corporating constraints. In 9th ACM International Conference on
Information and Knowledge Management.
Zaki, M. J. 2001. SPADE: An efficient algorithm for mining fre-
quent sequences. Machine Learning Journal 42(1/2):31–60. spe-
cial issue on Unsupervised Learning.

9580


