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Abstract

Though deep learning systems have achieved high accuracy
in detecting diseases from medical images, few such systems
have been deployed in highly automated disease screening
settings due to lack of trust in how well these systems can
generalize to out-of-datasets. We propose to use uncertainty
estimates of the deep learning system’s prediction to know
when to accept or to disregard its prediction. We evaluate the
effectiveness of using such estimates in a real-life applica-
tion for the screening of diabetic retinopathy. We also gener-
ate visual explanation of the deep learning system to convey
the pixels in the image that influences its decision. Together,
these reveal the deep learning system’s competency and lim-
its to the human, and in turn the human can know when to
trust the deep learning system.

Introduction

Recent progress in deep learning has enabled many med-
ical imaging applications to achieve high accuracy in de-
tecting diseases such as tuberculosis, skin cancer and dia-
betic retinopathy (Ting et al. 2017; Gulshan, Peng, and oth-
ers 2016). Deep learning systems can potentially replace hu-
man to look at these medical images to reduce waiting time
and cost, expand coverage of screening program, and deliver
better outcome in public. Despite many advantages, they are
rarely deployed in highly automated situations. A major ob-
stacle to adoption of automated disease detection models is
that it is difficult for human to trust the deep learning sys-
tems.

In contrast to deep learning systems, typical diagnostic
tests are often well-understood at every step, from chemical
reactions, responses measurement, to the final interpretation.
Protocols can be established to control for variables that are
known to interfere with the test to ensure its accuracy. The
inherent complexity and “black box” nature of deep learn-
ing systems mean that it is difficult for human to grasp the
computation applied to arrive at its prediction. We are left to
guess the variables that may cause a deep learning system
to fail such as camera model and parameters, photo-taking
techniques, patient population, etc. Thus, we do not know
when a deep learning system may fail.
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From a machine learning perspective, the failure of a neu-
ral network on images arising from real-world deployment
can be attributed to overfitting. That is, the deep neural net-
work has overfitted to the training data and unable to gener-
alize to the true data distribution. To prevent overfitting, the
validation set should be close to real-world data distribution
by covering a wide range variations that may appear in the
real-world. However, without knowledge of the variations
that matter, it is hard to construct an all encompassing vali-
dation dataset. Even if the deep learning system is restricted
to a domain it is familiar with, such as a particular patient
profile and camera, there is no guarantee that there will be
no domain shift during its deployment.

Building trust is a crucial step towards the deployment of
deep learning system in automated disease detection and can
contribute to better validation methods. Diabetic retinopathy
(DR) is a medical condition of the eye that arises due to
diabetes. Deep learning systems have shown high accuracy
in predicting the severity of DR from retina fundus images
on a range of validation datesets. In this paper, we describe
how we can build user trust in a deep learning system for a
real-life application, specifically the screening of DR.

To enhance trust in the deep learning system, there should
be measures that let the user knows when the output of the
system is reliable and when it is not. We propose to use un-
certainty estimation as a measure to know when to trust the
deep learning system output. A well-calibrated deep neural
network may be uncertain about its output when it is applied
to an image that comes from a different camera, or from a
poorly taken photo, or rare phenotype of the disease that is
not well represented in training data, etc.

We apply stochastic batch normalization (Atanov et al.
2018) to obtain uncertainty estimation on a deep neural net-
work trained for detecting diabetic retinopathy. Unlike pre-
vious works that demonstrate out-of-dataset detection by ar-
tificially splitting a dataset by classes (CIFARS) or generat-
ing new images by rotation (notMINIST), we observe that
domain shift in real-world dataset is more subtle. The neural
network may still generalize properly on a subset of a new
dataset but make mistakes on another part of the dataset. We
present novel analysis of uncertainty estimation and propose
new uncertainty estimate on a real-world dataset. We show
that uncertainty estimates can be a used to inform us about
the reliability of the deep neural network on images.



We can use visual explanation for deep learning system
as a proxy to understanding the inner working of the sys-
tem. We define the qualitative criteria for visual explanation
to enhance trust and apply Integrated Gradient to generate
compelling visualization on a deep neural network trained
to detect diabetic retinopathy. Intuitively, if the visual expla-
nation of the deep learning system corresponds to how a hu-
man would explain his decision to another human, it makes
the deep learning system trustable. We also propose a novel
approach to sharpen visualization from deep neural network
using the stochasticity of the stochastic batch normalization
layers in the neural network.

Related Works

Human’s trust in a machine learning model is deeply related
to our optimisim of generalizability of a model to unseen
data. Generalization errors of machine learning models has
been well studied in machine learning literature. A model’s
generalizability is often viewed as a trade-off between bias
and variance by ways such as limiting the model’s complex-
ity (Friedman, Hastie, and Tibshirani 2001). Studies on gen-
eralization error are concerned with the error at dataset level,
i.e., its error across the entire population of inputs. However,
this work aims to quantify the generalizability of the model
to each input example by means of uncertainty estimation,
so that we can know when to trust the model.

Unlike state-of-the-art deep neural networks that are
trained using maximum-likelihood regime, Bayesian prob-
abilistic models are able to capture uncertainty over its pa-
rameters and thus give better uncertainty estimates of its pre-
dictions. However, Bayesian inference on deep neural net-
works is intractable due to its nonlinearity. Various meth-
ods for practical approximate inference of Bayesian neural
network have been proposed (Louizos and Welling 2017;
Hernandez-Lobato et al. 2016). While these methods are
principled, they have not been applied to computer vision
tasks such as ImageNet (Deng et al. 2009) or on medical
images.

Due to training difficulties and computational cost asso-
ciated with Bayesian neural networks compared to recent
non-Bayesian deep neural networks, another line of research
estimates predictive uncertainty using non-Bayesian deep
neural network. Some works interpret existing components
of deep neural network as Bayesian probabilistic models to
obtain uncertainty estimation without little modification to
the training procedure and network architecture. (Gal and
Ghahramani 2016) established the equivalence between neu-
ral network with dropout (Srivastava et al. 2014) applied be-
fore every weight layers and an approximation probabilistic
deep Gaussian Process (Damianou and Lawrence 2013).

Another work (Atanov et al. 2018) interpret the mean and
variance of mini-batch statistics used in batch normaliza-
tion (Ioffe and Szegedy 2015) as random variables since
they depend on stochastic shuffling of training examples into
mini-batches during training. Thus, the neural network with
batch normalization layers can be viewed as a probabilis-
tic model during training. During inference, the stochastic-
ity due to dropout units and batch normalization layers is
removed by averaging the predictions and normalizing with
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long term means and variances respectively. For both works,
uncertainty estimations are obtained by Monte-Carlo eval-
uation of the network with the same randomness as during
training.

Ensemble of deep neural network and adversarial train-
ing has been proposed to get predictive uncertainty estima-
tion (Lakshminarayanan, Pritzel, and Blundell 2017). En-
sembles have been used to boost predictive accuracy and
produce well-calibrated models. The authors proposed to
use scoring rules to evaluate their models for calibration and
showed that their models are less confident on out-of-dataset
inputs.

Feature visualization methods have been proposed to help
human interpret the inner working of deep neural network.
Feature attributions point to parts of the input that influ-
enced the neural network’s output. Feature attributions may
be achieve by tracking the difference in the neural network
output when the input image is perturbed (Zeiler and Fer-
gus 2014). Another approach to feature attributions is to
backpropagate the prediction scores through the network to
the input. However, it is hard to evaluate the strength of
each method without an objective metric. Recent works have
focused on establishing desirable properties (Sundararajan,
Taly, and Yan 2017) of attribution methods and analysing
the failure cases.

Uncertainty Estimation

It is difficult to predict all variables that may adversely per-
formance of deep learning systems and control for them. A
basic quality control step is to exclude images of poor qual-
ity. We can train a deep neural network to predict and ex-
clude images of poor quality e.g., retina fundus images that
are too dark or have cataract that can interfere with disease
detection. This is implemented in deep learning systems for
referable DR (Ting et al. 2017; Krause et al. 2018).

As deep learning systems are data-driven, another ap-
proach may be to standardise the data acquisition, such as
using the same camera model, ensure same camera param-
eters, taking the same view of retina fundus, and using the
system for the same population it was trained on, etc. How-
ever, this may reduce the applicability of such systems, and
it may be impractical to replicate exactly how the data arise.
Even if we can control the data, there may be variables such
as occurrence of rare phenotypes that the deep learning sys-
tem have not seen before in its training and validation data.
Deep neural networks are also known to be susceptible to
adversarial attacks where imperceptible image perturbation
can arbitrarily change its output. Hence, we cannot be sure
whether there are more variables that can affect the system.

We propose to use uncertainty estimation for deep learn-
ing system’s predictions to inform us when to trust the pre-
dictions. The deep learning system should give high confi-
dence predictions when the predictions are likely to be cor-
rect and low confidence when the system is unsure.

However, it is not straightforward to evaluate uncertainty
estimations because there is no ground truth for uncertainty
of a prediction. For classification problems, metrics such as
average classification does not take into account the uncer-
tainty of the predictions. Proper scoring rules (Gneiting and



Raftery 2007) can be used to evaluate the quality of predic-
tive uncertainty. Many common loss functions used in neu-
ral network such as softmax cross entropy are proper scoring
rules (Lakshminarayanan, Pritzel, and Blundell 2017).

To preserve the accuracy of the deep neural network for
detecting DR, we want to keep the network architecture and
training regime as close as possible to the best models that
we have. Thus, we use stochastic batch normalization lay-
ers (Atanov et al. 2018) for uncertainty estimation. Stochas-
tic batch normalization can be applied to existing trained
neural network. We iterate through the training examples to
collect means and variances of mini-batches statistics. At in-
ference time, we use these statistics to simulate sampling a
random mini-batch. Due to our choice of network architec-
ture (Residual network, (He et al. 2016)), dropout unit is not
a default component. Hence, we did not use Monte-Carlo
dropout to obtain uncertainty estimations.

In our experiments, we show that prediction error are cor-
related with high estimated uncertainty. We also show that
uncertainty estimates can be used to exclude a small number
of high uncertainty predictions to improve performance on
the rest of the dataset.

Visual Explanations

Visual explanation, either via features visualization that look
at features of the network, or features attributions that look
at what the network sees in an image, are attempts to project
the concepts detected by deep neural network to a visual rep-
resentation that human can understand. It may be impossible
to fully grasp the computations undertaken by deep neural
networks. Hence, model interpretability is often a misnomer
because the visualization may not represent the inner work-
ing of the deep neural networks. Despite the incompatibility
between what a human can understand and what the network
actually understands, trust can still be derived by seeing that
the deep neural network picks out visual cues that human
typically picks to justify its decision.

For a visual explanation to enhance trust, it has to be spe-
cific and relevant. It should only highlight the parts of image
that is most relevant to how human justify its decision. For
example, in visual explanation of DR detection, the visual
explanation should only highlight the lesions in the image
but not the vessels.

Sharp visualization is necessary for the visual explana-
tion to pinpoint pixels of interest (specificity). Inspired by
SmoothGrad (Smilkov et al. 2017), we propose stochastic
batch norm-SmoothGrad. The key idea is to sample images
similar to the target image (by adding Gaussian noise to each
pixel) and take the average of the visualization generated. In-
stead of sampling similar input images, we use the stochas-
ticity in stochastic batch normalization to sample activations
within the deep neural network.

Experiments

We trained our deep neural network classifier on retinal im-
ages of patients with diabetes who participated in the Sin-
gapore national DR screening program (SiDRP) between
2010 and 2013 (SiDRP) and test it on both retina images

9518

Dataset Model | Brierloss | F1 score
. SBN | 00113 | 0.492
SIDRP14-15 | gy 0.0104 | 0.538
Kaselo SBN 0.104 | 0.667
&8 BN 0.110 | 0.643

Table 1: Brier loss and F1 scores of models.

collected from the same program between 2014 and 2015.
We also test the deep neural network on test set of Kaggle
DR dataset. Kaggle DR dataset can be considered ~out-of-
dataset” because it comprises of mainly Caucasian patients
while SiDRP consists of mainly patients of Chinese, Malay,
Indian ethnicity. Each image belongs to one of the five lev-
els of DR severity: level 0 No DR, level 1 Mild DR, level 2
Moderate DR, level 3 Severe DR, level 4 Proliferative DR.

We trained a Residual Network with 50 layers to give four
binary outputs: Mild DR or worse, Moderate DR or worse,
Severe DR or worse, and Proliferative DR. The neural net-
work weights are initialized with a pre-trained ImageNet
model. In our experiments, we use the output for Moderate
DR or worse unless otherwise stated.

For each image in the test set, we obtain 4 rotations at
multiples of 90 degrees of the image For stochastic batch
normalization (SBN) network, we ran the neural network
3 times for each rotation, for a total of 12 runs per image.
For each inference, we sample a new mean and variance
at normalize the activations at every stochastic batch nor-
malization layers. From these runs, we obtain the mean and
standard deviation. We estimate the uncertainty of the neural
network output by the standard deviation and the entropy of
the mean predictive distribution. We also perform inference
on the same neural network using batch normalization (BN).

Performance of Models

We establish the performance of the models on each dataset.
We report F1 score and Brier loss, which is a proper scor-
ing function that measures the probability calibration of a
model. Performance measures for SBN are obtained using
the means of 12 runs.

Table 1 shows the results. We observe that the Brier loss
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Figure 1: Entropy CDF on SiDRP14-15 and Kaggle.
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Figure 2: Entropy CDF on SiDRP partition by correctness.
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Figure 3: Entropy CDF on Kaggle partition by correctness.
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Figure 4: Entropy CDF on SiDRP14-15 by DR levels.

on SiDRP14-15 is much lower than Kaggle because of its
similarity to the training dataset.

Uncertainty of Datasets

Previous works on uncertainty estimation use true out-of-
dataset evaluation by training the network on 5 of the 10 CI-
FARI10 classes and evaluate on the other 5 classes or evalu-
ating network trained on MNIST on nonMNIST data. How-
ever, the difference between examples in datasets that arise
from real-world applications is usually less drastic.

Figure 1 shows the entropy CDF on SiDRP and Kaggle
datasets. On an empirical CDF plot, the closer to the bottom
and to the right means there are more predictions with higher
entropy, and thus the classifier is more uncertain. Both deep
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Figure 5: Entropy CDF on Kaggle by DR levels.
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Figure 6: F1 scores on SiDRP14-15 as higher uncertainty
predictions are included.
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Figure 7: F1 scores on Kaggle as higher uncertainty predic-
tions are included.

neural networks with BN and SBN are more confident on
SiDRP than on Kaggle. This is expected as Kaggle is con-
sidered out of dataset”. Between SBN and BN predictions,
SBN is slightly more confident than BN on SiDRP, but BN
is more confident than SBN on Kaggle. This suggests that
BN is over-confident on Kaggle compared to SBN.

Uncertainty by Prediction Correctness

To further evaluate uncertainty estimations, we partition
each dataset into a set of correct predictions, and another
set of incorrect predictions. We expect correct predictions to



Retina image with lesions highlighted  Average of SBN integrated gradient

BN integrated gradient

Figure 8: Visual explanation using integrated gradient.

have higher confidence (lower uncertainty) while incorrect
predictions should have lower confidence.

Indeed, this is the case for both SiDRP14-15 and Kaggle
dataset as shown in Figures 2 and 3 respectively. The curves
for incorrect predictions are lower and to right than the cor-
rect predictions. The difference between the curves of SBN
and SB follows that of the overall dataset, i.e. SBN is more
certain than BN on SiDRP14-15 and less certain on Kaggle.

Uncertainty by DR Level

While we only look at the decision of Moderate DR or
worse, the ground truth DR level should affect the uncer-
tainty estimations. We expect the uncertainty of predictions
to be higher for ground truth DR levels near the decision
boundary (DR level 1, 2) than DR levels further away (DR
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level 0, 3, 4).

Figures 4 and 5 show the entropy CDF by DR levels for
the SiDRP14-15 and Kaggle dataset respectively. We ob-
serve that our uncertainty estimations are consistent with
finer-grain ground truth even though it is not explicitly mod-
eled by the output.

F1 Scores by Excluding High Uncertainty

In a highly automated disease screening setting, we may use
uncertainty estimates to flag predictions where the deep neu-
ral network is uncertain for human attention. In this experi-
ment, we sort the predictions by uncertainty as measured by
standard deviation of probability output for SBN model and
entropy for both BN and SBN models. We want to look at
the F1 score of subset of predictions with low uncertainty.



Figures 6 and 7 plot the F1 score on predictions starting
from the 80 percent least uncertain predictions to 100 per-
cent (full test set). For both SIDRP114-15 and all measures
of uncertainty, the exclusion of high uncertain predictions
can significantly improve compared to random exclusion.

The curves of F1 scores for SIDRP14-15 drop sharply
near the right end of x axis. Hence, by excluding a small
percentage of high uncertain predictions, the F1 score can
be improved. Entropy of SBN is a better measure of un-
certainty for exclusion as it maintains higher F1 score than
standard deviation of SBN. The curve for entropy of BN is
higher than SBN because of higher F1 score for BN. For
the Kaggle test set, the SBN model has better F1 score, but
the curves for entropy and standard deviation of SBN give
similar results.

Visual Explanation

For the visual explanation to be specific, the visualization
should be at the same resolution as the input image. We use
Integrated Gradient (Sundararajan, Taly, and Yan 2017) that
satisfies our criteria to generate visualization of the neural
network. We smooth the visualization to focus on important
features using average for five attributions on the same im-
age using stochastic batch normalization. This achieved an
effect similar to SmoothGrad to give sharper visualizations.

In Figure 8 where regions containing lesions in the origi-
nal retina image are highlighted, we see that integrated gra-
dient of BN highlights more of the vessels resulting in a vi-
sualization that is less specific compared to visualizations
from the average of the SBN integrated gradient.

Conclusion

We have shown that uncertainty estimation can be help-
ful in enhancing trust in the deep learning systems, as a
step towards deploying a deep learning system for the real-
life screening of diabetic retinopathy. Predictions that the
deep learning system is unsure of can be flagged for hu-
man attention. By excluding high uncertainty predictions,
we show that accuracy can be improved. We proposed to use
stochastic batch normalization to obtain uncertainty estima-
tions and showed that its probabilities outputs are better cal-
ibrated than regular batch normalization on an external val-
idation dataset. Stochastic batch normalization may be used
to sharpen visual explanation, thus making it easier to con-
vey human-interpretable concepts behind the decision of the
deep learning system. Using uncertainty estimations, human
may know when to trust the deep learning system and why
it is trustable through visual explanation.
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