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Abstract

Benefiting from the rapid development of Convolutional Neu-
ral Networks (CNNs), some salient object detection methods
have achieved remarkable results by utilizing multi-level con-
volutional features. However, the saliency training datasets is
of limited scale due to the high cost of pixel-level labeling,
which leads to a limited generalization of the trained model
on new scenarios during testing. Besides, some FCN-based
methods directly integrate multi-level features, ignoring the
fact that the noise in some features are harmful to saliency de-
tection. In this paper, we propose a novel approach that trans-
forms prior information into an embedding space to select
attentive features and filter out outliers for salient object de-
tection. Our network firstly generates a coarse prediction map
through an encorder-decorder structure. Then a Feature Em-
bedding Network (FEN) is trained to embed each pixel of the
coarse map into a metric space, which incorporates much at-
tentive features that highlight salient regions and suppress the
response of non-salient regions. Further, the embedded fea-
tures are refined through a deep-to-shallow Recursive Feature
Integration Network (RFIN) to improve the details of pre-
diction maps. Moreover, to alleviate the blurred boundaries,
we propose a Guided Filter Refinement Network (GFRN) to
jointly optimize the predicted results and the learnable guid-
ance maps. Extensive experiments on five benchmark datasets
demonstrate that our method outperforms state-of-the-art re-
sults. Our proposed method is end-to-end and achieves a real-
time speed of 38 FPS.

Introduction
Salient object detection, which aims to estimate the visual
significance of image regions, has arisen widely discussions
in recent years. It serves as a pre-processing step for many
computer vision tasks, such as image regartigating (Fang et
al. 2012), image classification (Schmid, Jurie, and Sharma
2012) and quality assessment (Zhang, Shen, and Li 2014).
However, due to many uncertain factors such as cluttered
backgrounds and complex scenarios, it still remains a diffi-
cult task.

Earlier saliency detection methods (Li et al. 2013) (Jiang
et al. 2013) generate saliency maps under the guidance of
heuristic priors(e.g. color, texture and contrast). However,
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these low-level features can hardly capture high-level se-
mantic relations of the objects and its surroundings. Thus
the low-level based methods are not robust enough to distin-
guish salient objects from cluttered background.

Recently, deep convolutional neural networks have shown
outstanding performance in many recognition tasks. Own-
ing to its hierarchical structure, CNNs can learn multi-level
features from training samples. Compared with the hand-
crafted features, the CNNs features are more semantically
rich. Therefore, the CNNs based saliency detection meth-
ods (Wang et al. 2016; Liu and Han 2016) have achieved
impressive results by leveraging high-level semantic fea-
tures to capture foreground areas. However, the CNNs based
methods still have two apparent deficiencies. On the one
hand, downsampling operations such as pooling and con-
volution dramatically reduce the resolution of initial image,
which degrade the details such as image boundary. On the
other hand, many CNNs based methods (Zhang et al. 2017a;
Wang et al. 2017b; Zhang et al. 2018a) introduce overloaded
layers to integrate multi-level features. Such excessive pro-
cesses often cause features cluttered, and thus cause the in-
correct saliency detection results.

To resolve the afore-mentioned problems, in this pa-
per, we propose a novel multi-branch model to leverage
deep embedding features (DEF) for salient object detec-
tion. The DEF network is composed of four components:
a backbone for Initial Saliency Prediction (ISP), Feature
Embedding Network (FEN), Recursive Feature Integration
Network (RFIN) and Guided Filter Refinement Network
(GFRN). ISP is a lightweight module that generates prior
saliency maps and multi-scale side output features as a pre-
processing step. FEN embeds the prior saliency maps and
the features into a metric space to weight the spatial impor-
tance of each element in feature maps. FEN can filter unre-
lated information in the side output features and thus gen-
erate better features that focus on salient regions. To rem-
edy the downsampling information loss, we propose RFIN
to integrate embedded features with residual reconstructed
features in a deep-to-shallow manner. In each level of RFIN,
a stage-wise saliency map is predicted and supervised by
the ground-truth to enhance the features robustness. The
saliency map of each stage also serves as a guidance for
the next stage. Finally, we propose GFRN to further en-
hance the boundary consistency and smoothness of the last
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Figure 1: Visual comparison with a multi-level feature based
method. From top-left to bottom-right: (a) Input image. (b)-
(c) Feature maps of our method and Amulet (Zhang et
al. 2017a). (d) Ground Truth. (e)-(f) Saliency maps of our
method and Amulet.

saliency maps predicted by RFIN. GFRN transforms the
original RGB image into a guidance map to refine bound-
aries of the salient objects. As is shown in Figure 1, com-
pared with an existing method Amulet (Zhang et al. 2017a)
based on multi-level features integration, our method can
generate more precise saliency map in the guidance of ro-
bust feature maps.

In summary, each component in our algorithm plays a
role in enhance the accuracy for salient object detection. Our
main contributions are as follows:

• Motivated by the aforementioned drawbacks of directly
integrating multi-level features, we suggest to boost
salient object detection results in a new point, i.e., embed-
ding prior predictions into a metric space to filter outliers
and generate attentive features to precisely localize salient
objects.

• We propose a Recursive Feature Integration Network
(RFIN) which progressively refines the embedding fea-
tures by integrating them with multi-level features in a
deep-to-shallow sequence.

• The proposed method achieves state-of-the-art results on
five large-scale benchmark datasets. It also achieves a
real-time speed of 38 FPS using one 1080 Ti GPU.

Related Work
Over the past decades, a large set of saliency detection meth-
ods have been developed. Saliency detection methods can
be roughly divided into two categories: methods based on
hand-crafted features and deep learning based methods.

Methods Based on Hand-crafted Features
Earlier saliency detection methods mainly focused on ex-
ploiting hand-crafted features, which can be categorized as
local and global schemes. Local methods measure local-
contrast to evaluate saliency. In (Schölkopf, Platt, and Hof-
mann 2006), the equilibrium distribution over map locations
are treated as activation and saliency values. In contrast,
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Figure 2: The structure of Feature Embedding Network.

global methods considering both color statistics and holis-
tic contrast of the whole image. In (Liu et al. 2011), condi-
tional random field is learned to effectively combine local
and global features for saliency detection. (Jiang et al. 2013)
propose a method to map the regional feature vector to a
saliency score using Random Forest regressor. (Cheng et al.
2011) utilize color-discriminative features and global con-
trast to obtain optimal saliency maps.

Deep Learning Based Methods
Recently, deep convolutional neural networks (CNNs)
have delivered superior performance in many recognition
tasks (Krizhevsky, Sutskever, and Hinton 2012; He et al.
2016). In earlier research (Wang et al. 2015; Li and Yu 2015;
Zhao et al. 2015), image patches are the basic processing
unit for saliency prediction. Although these algorithms per-
form superior than hand-crafted feature based methods, they
are relatively sparse in spatial and time-consuming due to
the fully connected layers. To resolve this problem, sev-
eral attempts based on fully convolutional networks (FCNs)
are proposed. (Liu and Han 2016) propose a deep hierar-
chical network that progressively refine saliency maps by
integrating local context information. (Wang et al. 2016)
take predicted saliency maps as input to recurrently refine
the generated saliency maps by rectify its previous errors.
In (Hou et al. 2017), short connections are proposed to con-
vert high-level features into shallower layers, which locate
salient regions and refine the sparse details simultaneously.
(Zhang et al. 2017a) integrate and combine multi-level fea-
ture maps to simultaneously incorporate coarse semantics
and fine details. (Wang et al. 2017b) propose a stage-wise
refinement model with a pyramid pooling to extract global
context information and local details for salient object de-
tection. (Zhang et al. 2018b) firstly denote that some fea-
tures are redundant for salient object detection. An attention
guided network is proposed to selectively integrates multi-
level contextual information and alleviate distraction of clut-
tered features. Different from the above feature integration
based methods, we propose a multi-branch deep embedding
feature network which can simultaneously map coarse pre-
diction map into a metric space and incorporate multiple side
output features recursively to exploits both global and local
information.

Feature Embedding
Embedding Features has been used in saliency detection and
semantic segmentation. (Li et al. 2015a) embeds low-level
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features into high-level features, which leverages the advan-
tage of CNNs to simultaneously capture semantic informa-
tion in high-level features as well as spatial and contrast in-
formation in low-level features. In (Liu et al. 2018), a fully
convolutional network is trained to learn the feature embed-
ding space for each superpixel. The learned feature embed-
ding corresponds to a similarity measure between two ad-
jacent superpixels. In (Zeng et al. 2018), an image-specific
classifier is learned from the attributes of training data to
classify the pixels of each image.

Different from the above embedding methods, our deep
feature embedding network transforms both the prior pre-
dictions and multi-level features into a metric space. With
the help of the prior information about the salient regions,
the generated attentive features can effectively hightlight the
salient regions and suppress the backgrounds.

Proposed Method
We describe the proposed method in this section. To begin
with, we describe the components of our proposed DEF ar-
chitecture in the first subsection. Then we explain the de-
tailed training schemes of our algorithms in the last subsec-
tion.

Architecture
The main architecture of our proposed algorithm is shown
in Figure 3. It is a multi-branch network consisting of four
components: Initial Saliency Network (ISN), Deep Feature
Embedding Network (FEN), Recursive Feature Integration

Network (RFIN) and Guided Filter Refinement Network
(GFRN). ISN provides the initial saliency predictions and
multi-scale side output features. FEN embeds the predic-
tions and features of ISN into a metric space to weight the
spatial importance of each element in feature maps. RFIN
integrates embedded features with residual reconstructed
features and predicts a series of stage-wise saliency maps
in deep-to-shallow manner. GFRN takes original RGB im-
age and the last saliency map produced by RFIN as inputs.
The RGB image is transformed into a guidance map to refine
boundaries of the salient objects.

Initial Saliency Network We format our Initial Saliency
Network on the basis of fully convolutional network. We
choose ResNet101 (He et al. 2016) as our backbone due to
its fast convergence characteristic and astonishing results in
image classification task. ResNet101 is composed of five ba-
sic blocks with different output dimensions: conv1, res2,
res3, res4, and res5. The output spatial of basic blocks are
decreased by a stride of 2. To obtain larger feature maps,
we set the stride of the last block to 1. For computation effi-
ciency, we choose the output of last two blocks as side output
layers, denoted as Side4 and Side5. To reduce dimensions,
we pass them through two convolution layers with 256 ker-
nels. The initial prediction map are produced by feeding the
two feature maps into a convolution layer with 1 kernels and
upsampled to 64× 64.

Feature Embedding Network After obtaining the initial
prediction maps and multi-level feature maps, we use the
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Figure 4: Overall architecture of Residual Feature Reshape
Module.

Feature Embedding Network (FEN) to map the features and
initial prediction maps into a metric space. FEN is composed
of paralleled Feature Reshape Modules (FRM) and Embed-
ding Learning Module (ELM), As is shown in Figure 2. To
begin with, we utilize Feature Reshape Modules to integrate
multi-level feature maps. Features of different spatial resolu-
tions are resized into the same scale through pooling or up-
sampling operations. Then we use a convolutional layer with
64 kernels to reduce dimensions. Let Sidel denotes feature
maps of level l (l = 1, 2, ..., 5). All feature maps are resized
to the same spatial size of 64 × 64. The integrated feature
maps are generated by

F = Cat5l=1(Conv(Sidel))), (1)

in whichConv andCat denotes convolution and concatena-
tion operation respectively. The resulting integrated feature
map is of the shape 64×64×320, where 64×64 represents
spatial size and 320 represents number of channels.

Denote xm as a pixel of image X in position m. Given an
initial saliency map S1, we first obtain a reverse saliency
map S0 by S0 = 1 - S1 that highlights background area.
Then, each pixel of saliency and reverse saliency maps is
mapped into a 320-dimensional vector by

ϕmk = µ(smk;ψ), k = 0, 1, (2)

where smk is the value of Sk in position m. ϕm1 and ϕm0

are the embedding vector of the pixel in position m of
saliency map and the reverse saliency map, respectively. µ
and ψ represents embedding operation and its parameter.

Given an image I , we obtain the attentive features of the
pixel in position m according to:

V (Im) = |Dis(ϕm1, fm)−Dis(ϕm0, fm)|, (3)

where fm denotes vector of integrated feature maps in posi-
tion m. Dis(·, ·) denotes Euclidean distance.

Recursive Feature Integration Network The Feature
Embedding Network effectively embeds saliency maps into
metric space to generate attentive features. Though we can
directly apply a softmax layer to obtain relatively precise
prediction saliency maps, some detailed areas are still ig-
nored. Therefore, we propose a Recursive Feature Integra-
tion Network to supplement detailed information.

Input
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G Mean Filter
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Figure 5: Computation process of Guided Filter Refinement
Network. GFRN takes original image and saliency map gen-
erated by last step as inputs, generating refined saliency map
with sharp boundary.−→ represents forward stream and 99K
represents back propagation.

As is shown in Figure 3, Recursive Feature Integration
Network takes embedded feature maps Em and multi-scale
features as input. To begin with, Residual Feature Reshape
Module (RFRM) is proposed to reconstruct side-output fea-
tures to facilitate it for further integration (depicted in Fig-
ure 4). Assume that the spatial size of input features is
(RH×W×C), we utilize two paralleled convolution layers to
reshape features and learn complementary information for
integration. In each step, RFIN learns to supplement details
of embedded feature maps and rectify prediction results of
the last step. The stage-wise saliency predictions of step i
can be produced by:

Pi =

{
Wi ∗ Cat((Em+RFRl),Pi−1) + b, i = 2, 3, 4

Wi ∗ (Em+RFRl) + b, i = 1

(4)

where * and Wi represents convolution operation and its
parameters to generate prediction maps. RFRl represents
the feature maps generated by RFIN at level l. b is the bias
parameter. In Equation 4, The stagewise prediction results in
level i(i = 2, 3, 4) is obtained by integrating corresponding
RFIN features and i− 1 prediction maps.

Guided Filter Refinement Network The RFIN can gen-
erate finer results by recursively integrate embedded maps
and multi-level features. However, due to the down-
sampling operation of base network, there still exists a gap
between prediction results and ground truth, especially on
object boundaries. To further refine details and make the
boundary clear of salient objects, we adopt a Guided Filter
Refinement Network (GFRN) (Wu et al. 2018) to overcome
the bondage of the base network.

The computation process of GFRN is shown in Figure 5.
The original RGB image and the saliency map generated by
RFIN are the input of GFRN. Given a pair of inputs, convo-
lutional layers are first added as a transformation function to
change the dimension of input image, which serves as a flex-
ible and trainable guidance map. After that, GFRN computes
A and b by minimizing the reconstruction error between G
and S with mean filter and linear model. Output saliency
map (O) is computed by an linear transformation taking A,
b and G as inputs:

O = A ∗G+ b (5)
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Figure 6: Visual comparison of several components. From
left to right: (a)Image, (b)Ground Truth, (c)Baseline,
(d)FEN, (e)RFIN(stage-4), (f)GFRN.

r and ε represents radius of mean filter and the regularization
term respectively.

Training Schemes
Our proposed multi-branch model is trained end-to-end. In-
put images are resized to 256 × 256 to match the size re-
quirements of base network. During training, initial saliency
maps generated by Initial Saliency Network are inaccurate,
which effect the performance of our algorithm. To get rid
of this deficiency, during training we randomly disarray the
pixel of ground truth with a certain probability and serves it
as input to the Feature Embedding Network (FEN). To train
the model, we minimize the cross-entropy loss between each
stage-wise prediction of RFIN and the ground-truth, as well
as the cross-entropy loss between the final output and the
groud-truth.

Experiments
To verify the effectiveness of our proposed algorithm,
we conduct experiments on five public datasets (ECSSD,
PASCAL-S, DUT-OMRON, DUTS and HKU-IS). We eval-
uate the proposed algorithm using precision-recall curves
(PR-curves), mean F-measure, mean absolute error (MAE).
In addition, we briefly explain the implementation details of
our method and evaluate the performance of our method by
comparing with other state-of-the-arts algorithms.

Implementation details
We implement our approach in Python with the Pytorch tool-
box. We run our approach on a PC with a 3.7GHz CPU,
32GB RAM and a GTX 1080 Ti GPU (with 11G memory).

We train our model using DUTS training dataset (Wang et
al. 2017b). To avoid over-fitting, we augment the training set
by 4 times through horizontal flipping and vertical flipping.
We use SGD to optimize our network with the momentum
parameter of 0.9 and the weight decay of 0.001. We set the
base learning rate to 1e-7 and iteration number to 30K. It
takes around 7 hours to train our model with a mini-batch
of 10. When testing, the proposed algorithm takes around
0.026 second (38FPS) to process an image with 256 × 256
resolution.

Datasets and Evaluation Metrics
To evaluate the performance of our proposed methods, we
adopt five benchmark datasets as follows.

ECSSD (Yan et al. 2013) is composed of 1000 images
with multiple objects of different scales. This dataset con-
tains many semantically meaningful and complex structures
contends.

PASCAL-S (Li et al. 2014) is derived from PASCAL
VOC2010 segmentation dataset (Everingham 2008) and
contains 850 natural images.

HKU-IS (Li and Yu 2015) includes 4447 images with
fined pixel-wise annotations. Images of this dataset are well
chosen to include multiple disconnected salient objects or
objects touching the image boundary.

DUTS (Wang et al. 2017a) is a large dataset which is
composed of 10553 training images and 5019 test images
with accurate pixel-wise annotations. All training images are
picked out from the ImageNet DET training/val sets, while
test images are picked out from the ImageNet DET test set
and the SUN dataset.

DUT-OMRON (Yang et al. 2013) has a total of 5168
high-quality images. These images are chosen from more
than 140,000 natural images, each of which contains one
or more salient objects and relatively complex backgrounds.
Thus this dataset is more difficult and challenging, and pro-
vides more space of improvement for related research in
saliency detection.

Evaluation Metrics. We evaluate the performance of
different salient object detection algorithms through three
main metrics, including the precision-recall curves (PR
curves), F-measure, mean absolute error(MAE). PR curves
can be computed by binarizing the saliency map with a
threshold in [0, 255] and then comparing the binary maps
with the ground truth. To be specific, precision represents the
percentage of salient pixels being correctly detected, while
recall corresponds to the ratio between properly detected
salient pixels and salient pixels in ground truth. In many
occasions, both precision and recall are important measure
metrics. Therefore F-measure, which is calculated by preci-
sion and recall, is used as an overall performance measure,

Fβ =
(1 + β2)× Precision×Recall
β2 × Precision+Recall

. (6)

We set β2 to 0.3 to emphasize the precision. And MAE score
can be calculated by average pixel-wise absolute difference
between the binary ground truth and the saliency map:

T =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)−G(x, y)|, (7)

where W and H denote width and height of an image,
S(x, y) is the saliency value of the pixel at (x, y).

Comparison with State-of-the-arts
We compare our algorithm with other 14 state-of-the-
art ones, including 12 deep learning based algorithms
(BPN (Wang et al. 2018), SRM (Wang et al. 2017b),
Amulet (Zhang et al. 2017a), UCF (Zhang et al. 2017b),
DHS (Liu and Han 2016), NLDF (Luo et al. 2017),
RFCN (Wang et al. 2016), DS (Li et al. 2015b), DLC (Li and
Yu 2016), ELD (Lee, Tai, and Kim 2016), LEGS (Wang et
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Figure 7: Precision-Recall curves of our method and other state-of-art methods on five benchmark datasets.

Table 1: The mean F-measure (larger is better) and MAE (smaller is better) of different saliency detection methods on five
saliency detection datasets. The best three results are shown in bold, italic, and underlined. Our method ranks first on most of
these datasets and metrics.

Method ECSSD PASCAL-S HKU-IS DUT-OMRON DUTS-TE
Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

Ours 0.915 0.036 0.826 0.070 0.907 0.033 0.769 0.062 0.821 0.045
BPN (Wang et al. 2018) 0.903 0.045 0.816 0.074 0.882 0.038 0.708 0.063 0.763 0.052

SRM (Wang et al. 2017b) 0.892 0.056 0.821 0.085 0.874 0.046 0.707 0.069 0.757 0.059
Amulet (Zhang et al. 2017a) 0.867 0.059 0.763 0.100 0.839 0.052 0.648 0.098 0.676 0.085
UCF (Zhang et al. 2017b) 0.841 0.080 0.701 0.127 0.808 0.074 0.613 0.132 0.629 0.117
DHS (Liu and Han 2016) 0.871 0.063 0.773 0.095 0.852 0.054 - - 0.724 0.067
NLDF (Luo et al. 2017) 0.878 0.063 0.814 0.099 0.873 0.048 0.683 0.079 0.743 0.065

RFCN (Wang et al. 2016) 0.834 0.109 0.751 0.133 0.835 0.089 0.627 0.111 0.712 0.067
DS (Li et al. 2015b) 0.826 0.124 0.659 0.176 0.785 0.078 0.603 0.120 0.632 0.091

DCL (Li and Yu 2015) 0.805 0.108 0.709 0.146 - - 0.644 0.092 0.673 0.101
ELD (Lee, Tai, and Kim 2016) 0.810 0.082 0.718 0.123 0.769 0.074 0.611 0.092 0.628 0.093

LEGS (Wang et al. 2015) 0.785 0.118 0.699 0.158 0.723 0.119 0.591 0.133 0.585 0.138
MDF (Li et al. 2015b) 0.807 0.105 0.709 0.146 0.801 0.089 0.644 0.092 0.673 0.094

DRFI (Jiang et al. 2013) 0.733 0.164 0.618 0.206 0.722 0.144 0.550 0.139 0.541 0.175
BSCA (Qin et al. 2015) 0.705 0.185 0.601 0.223 0.654 0.175 0.509 0.190 0.499 0.197

al. 2015), MDF (Li and Yu 2015)) and two conventional al-
gorithms (DRFI (Jiang et al. 2013), BSCA(Qin et al. 2015)).
For fair comparison, we compute other saliency maps with
their original implementation details or use them provided
by the authors.

Quantitative Evaluation We compare the proposed
method with the others in terms of PR curves, F-measure
scores and MAE scores. Figure 7 shows the proposed ap-
proach performs favorably against all the other methods.
MAE scores and F-measure scores are given in Table 1. As
we can see, our approach generates the best score across all
datasets, which means that our method have a good perceive
of salient region and can generate accurate saliency maps
close to the ground truth masks.

Visual Comparison Figure 8 shows the visual compar-
isons of our approach and other methods. In the shown ex-
amples, we accurately segment the salient objects against
multiple interference, including rare pattern (row 1), low
contrast (row 2&row 5), high-level semantic information
(row 4) and complex background (row 6). From these com-
parisons, we can see that our method can generate more ac-
curate saliency maps with purity backgrounds.

Ablation Studies
The proposed framework is composed of four components,
including ISN, FEN, RFIN and GFRN. To show the effec-
tiveness of each component, we take a series experiments

on ECSSD and DUTS-TE datasets as follows. We take F-
measure and MAE scores as evaluating indicators.

Effectiveness of Each Components We set the results of
ISN as our baseline version. To demonstrate the effective-
ness of Feature Embedding Network, we add a 1 dimen-
sion convolution layer to predict saliency maps based on
the embedding features, denoted as FEN. The result of FEN
shown in row 3 of Table 2 demonstrates that deep embedding
features can effectively enhance the localization and detec-
tion capability of the saliency detector. As is shown in Fig-
ure 3, Recursive Feature Integration Network (RFIN) totally
generates 4 stage-wise saliency predictions in one pass. We
analyze the effectiveness of Recursive Feature Integration
by comparison these stage-wise results. For notation sim-
plicity, we denote L(L = 1, 2, 3, 4) stage results as RFIN
(stage-L). Comparison results are shown in rows 4-7 of Ta-
ble 2. Through recursively feature integration, our algorithm
can produce more and more accurate results, which demon-
strate that by recursively integrate the side-output features
and stage-wise predictions, RFIN can effectively reduce the
error of last stage.The 8 row of Table 2 indicates that Guided
Filter Refinement Network can still increase the F-measure
score by 1%. Visual comparison of several components are
shown in Figure 6

Different Backbones To demonstrate that our proposed
method is flexible and can easily adapted to other frame-
work, we extend experiments by replacing Resnet-101
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Figure 8: Visual comparison of our method and other methods. It is clear that our methods generates more accurate saliency
maps than others.

Table 2: Quantitative comparison of different architectures.
Baseline denotes the Initial Saliency Prediction. “FEN” in
row 3 represents the direct prediction results of Feature Em-
bedding Network. 4-7 rows represent the results of differ-
ent stage-wise saliency predictions, which monotonically
increase. “GFRN”, denotes the prediction results of Gated
Feature Refinement Network, which is our final version.
The last three rows are comparisons between different back-
bones.

Network Structure
ECSSD DUTS-TE

Fβ MAE Fβ MAE

Baseline 0.821 0.055 0.721 0.076
FEN 0.874 0.046 0.763 0.067

RFIN(stage-1) 0.885 0.044 0.785 0.061
RFIN(stage-2) 0.887 0.043 0.788 0.060
RFIN(stage-3) 0.892 0.041 0.794 0.055
RFIN(stage-4) 0.905 0.037 0.813 0.046

GFRN 0.915 0.036 0.821 0.045
DRFN-V 0.889 0.043 0.774 0.056
GRFN-D 0.891 0.041 0.792 0.053

with two other networks as backbone, i.e. VGG-16 and
DenseNet-161. For VGG-16 version, we take 5 feature maps
to constitute multi-level features in our work, which are
conv1-2, conv2-2, conv3-3, conv4-3 and conv5-3, respec-
tively. For DenseNet-161 version, we extract features in the
last layer of each denseblock, we denote them as dense1,
dense2, dense3 and dense4. We keep other settings un-
changed to control variable. The results of both versions are
shown in Table 2. From comparing the results of last three
rows, we can observe that the proposed method works well
for different backbones.

Conclusion
In this paper, we propose a novel deep embedding feature
network for salient object detection. Different from existing
methods which directly fused multi-level features to gener-
ate the prediction maps, we put forward an embedding learn-
ing architecture to embed initial saliency map into feature
vectors and recursively narrow the gap between stage-wise
predictions and ground truth. A Convolutional Guided Fil-
ter is also utilized to strengthen overall performance. Exten-
sive evaluations demonstrate that our approach achieves the
state-of-the-art results. Except for the salient object detec-
tion, our DEF possesses the potential of dealing with other
low-level vision tasks.
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