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Abstract
RGB image classification has achieved significant perfor-
mance improvement with the resurge of deep convolutional
neural networks. However, mono-modal deep models for
RGB image still have several limitations when applied to
RGB-D scene recognition. 1) Images for scene classification
usually contain more than one typical object with flexible
spatial distribution, so the object-level local features should
also be considered in addition to global scene representation.
2) Multi-modal features in RGB-D scene classification are
still under-utilized. Simply combining these modal-specific
features suffers from the semantic gaps between different
modalities. 3) Most existing methods neglect the complex
relationships among multiple modality features. Consider-
ing these limitations, this paper proposes an adaptive cross-
modal (ACM) feature learning framework based on graph
convolutional neural networks for RGB-D scene recognition.
In order to make better use of the modal-specific cues, this
approach mines the intra-modality relationships among the
selected local features from one modality. To leverage the
multi-modal knowledge more effectively, the proposed ap-
proach models the inter-modality relationships between two
modalities through the cross-modal graph (CMG). We eval-
uate the proposed method on two public RGB-D scene clas-
sification datasets: SUN-RGBD and NYUD V2, and the pro-
posed method achieves state-of-the-art performance.

Image classification has been researched for years, and ex-
cellent performance has been obtained with the development
of deep learning methods. With the advent of large scale
image dataset ImageNet (Russakovsky et al. 2015) and ad-
vanced graphics processing unit (GPU), more and more ex-
cellent deep learning architectures have been proposed, such
as VGG (Simonyan and Zisserman 2014), ResNet (He et al.
2016) and DenseNet (Huang et al. 2017). Image classifica-
tion is one of the basic tasks in computer vision research,
and the main difficulty is how to learn effective image repre-
sentations. As the learned image features can be applied to
other high-level image analysis tasks, other computer vision
research such as scene classification can benefit from the im-
provement of image recognition (Wang et al. 2018b). How-
ever, there is significant difference between scene classifi-
cation and general image classification. For general image
classification, the category of each image is highly related
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Figure 1: The difference between image classification and
scene classification task. Images for scene classification are
usually not object-centric.

to the object in the image, as shown in Fig. 1. However, the
category of the scene image is related to several typical ob-
jects and the spatial layout of the scene. Object-centric im-
age usually contains one object, so the difference between
images mostly relies on the objects. However, in order to
classify a scene from another, we need recognize all the key
objects in the scene and consider the relationships between
them. Thus deep learning methods for common image clas-
sification are not suitable for scene classification. Consider-
ing this, to learn more robust and effective scene image rep-
resentation, we propose to extract local object-level features
and model their relationships for scene classification.

Recently, depth sensors have been widely used in our
daily life such as Microsoft Kinect. As RGB-D image can
provide additional robust geometric cues which is not sen-
sitive to illumination variability, more and more research
focuses on the RGB-D image scene classification. Conven-
tional RGB images only provide the appearance texture in-
formation and have difficulty in understanding the spatial
layouts of complex scenes without the depth information.
With the extra geometric information in RGB-D images, the
performance of scene recognition can be improved promis-
ingly. Although the depth information provided by RGB-D
images can help to extract more discriminative features, how
to make the extracted depth cues complementary to the RGB
information is still a hard problem.

Exacting complementary information from RGB and
depth modality effectively is a typical multi-modal feature
learning problem. The method of Wang et al. (2015b) pro-
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poses to minimize the distance of the RGB embedding with
the depth representation using a correlation term on the loss
function. However, merely enforcing the RGB and depth
features to be correlated will make the model ignore the
modal-specific information. Thus this method can not learn
the modal complementary cues well. To get rid of this prob-
lem, the method proposed in Li et al. (2018) constructs
a fusion network for learning both distinctive and correl-
ative information between two modalities. However, these
methods neglect the relationships between the RGB fea-
tures and depth features. The approach of Song, Chen, and
Jiang (2017) proposes a framework to represent scene im-
ages with object-to-object representation for mining the re-
lations and object co-occurrences in the scene. Neverthe-
less, it is a two-stage scene classification framework, so the
scene classification accuracy is dominated by the object de-
tection performance. Moreover, the computational complex-
ity is also increased. To make better use of the complemen-
tary cues of the multiple modalities, this work designs the
cross-modal graph (CMG) and exploits graph convolution to
model the relationships between the RGB and depth modal
features.

Considering these problems depicted above, this pa-
per proposes a new RGB-D scene classification frame-
work based on cross-modal graph convolutional neural net-
works. This framework exploits a two-stream CNN for
modal-specific features extracting. Then cross-modal fea-
tures are learned by the cross-modal graph convolutional
neural networks (GCNs). Additionally, global RGB-specific
and depth-specific scene features are also concatenated with
the learned cross-modal representations for the final RGB-D
scene classification. The contributions of this work can be
summarized as follows.

• To embed the intra-modality object relations into the deep
features, we propose a graph based CNN framework to
mine the relations between local image features at differ-
ent locations.

• To better learn the complementary features between the
two modalities, the cross-modal graph GCNs is intro-
duced to mine the inter-modality relations of RGB and
depth modality considering the spectral and spatial as-
pects simultaneously.

• To learn more robust and discriminative representations
for scene images, we fuse two kinds of global modal-
specific features with the learned local cross-modal fea-
tures together. Multi-task learning is used to simultane-
ously minimize three softmax loss functions.

Related Work
We review the related works in this section from three as-
pects: RGB-D scene classification methods, RGB-D multi-
modal feature learning methods and neural networks on
graphs.

RGB-D Scene Classification
Considerable efforts have been paid to scene classification
research, and significant performance improvements have

been obtained with the advent of large scale scene clas-
sification datasets and deep learning methods. Before the
surge of deep convolutional neural networks (CNNs), hand-
crafted feature extraction is the mainstream method. Gupta
et al. (2015) detect contours on depth images and extract lo-
cal features from the segmentation outputs for scene classi-
fication. Bag of Words (BoW) features with spatial informa-
tion is proposed by (Lazebnik, Schmid, and Ponce 2006) for
scene classification task. The work in (Banica and Sminchis-
escu 2015) extracts local image features with second oder
pooling for scene segmentation and classification.

As CNNs have achieved remarkable success in large scale
image classification task (Krizhevsky, Sutskever, and Hin-
ton 2012), more and more recent scene recognition methods
are based on CNNs. However, the dataset scale of RGB-
D images is still not comparable to mono-modal RGB im-
age datasets. Thus most deep learning based RGB-D scene
classification methods rely on transferring pre-trained model
weights on large scene dataset to relative small dataset. The
work of Zhou et al. (2014) finds that better performance can
be achieved by training models on large scene dataset such
as Places dataset (Zhou et al. 2017) than directly using mod-
els pre-trained on the object-centric dataset (ImageNet). To
learn better CNN features, a multi-scale CNN framework is
introduced in Gong et al. (2014), which aggregates multiple
scale features via vector of locally aggregated descriptors
(VLAD).

More recently, many methods try to employ the semantic
parts, i.e., features of objects or object parts in scene images
as higher level representations for scene images. Dixit et
al. (2015) propose to encode the scene images by combining
features extracted from different locations and scales. A two-
step learning framework is employed in (Song, Herranz, and
Jiang (2017), and the first step is weakly-supervised train-
ing on depth image patches. However, these image patches
for feature encoding may contain noises, which affect the
performance. Other methods employ object detection to ex-
tract higher-level semantic features. Wang et al. (2016) pro-
pose to encode the features of detected object proposals via
fisher vector to learn component aware representations. The
work of Song, Chen, and Jiang (2017) further models the
object co-occurrences of scene images to gain better spa-
tial layout information via object-to-object representation.
However, these two-stage pipeline methods rely on the per-
formance of object detection task. The error accumulation
and computational complexity are problems remaining to be
resolved.

RGB-D Multi-Modal Feature Learning
RGB-D scene classification is a typical multi-modal feature
learning task. To fuse multiple modality features, consider-
able methods have been investigated (Wang et al. 2018a).
Couprie et al. (2013) combine RGB and depth images by
constructing the RGBD Laplacian pyramid, which fuses the
two modalities at the image level. Other methods like Song,
Lichtenberg, and Xiao (2015), employ two-stream CNN ar-
chitecture and fuse the two modality features by concate-
nating two streams into one fully connected layer. Song,
Jiang, and Herranz (2017) combine three stream features
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Figure 2: The whole network architecture of the proposed framework. The two-stream CNNs are exploited for feature learning.
Global modal-specific features and local cross-modal features are concatenated together for scene classification.

including RGB modality branch and two depth branches
by element-wise summation. Different from previous work,
Wang et al. (2015b), Zhu, Weibel, and Lu (2016) and Li et
al. (2018) consider the relationships between two modalities.
The work of Wang et al. (2015a) enhances the modalities
consistency by enforcing the network to learn common fea-
tures between RGB and depth images. The method in Li et
al. (2018) aims to learn the correlative embeddings between
the RGB and depth data by exploiting Canonical Correlation
Analysis (CCA). However, different from these methods, the
proposed method in this paper not only model the relation-
ships of the intra-modalities and inter-modalities features to-
gether via graph convolution. As different modality contains
unique features, we aim to learn the combination of the com-
plementary cues from two modalities.

Graph Convolutional Neural Networks
Graph convolution is the generalization of traditional CNNs
for non-structured data, such as the social networks, gen data
and so on. As graph structure is a natural way for repre-
senting many kinds of signals, it is becoming a hotspot re-
search area. The work of Bruna et al. (2013) exploits spec-
tral networks on graph for image classification, and Deffer-
rard, Bresson, and Vandergheynst (2016) defined localized
graph filters, which also decreases the computational com-
plexity. Recent GCNs on graph structure data can be divided
into two categories: spectral GCNs and spatial GCNs. Spec-
tral GCNs mainly focus on spectral analysis, which define
the convolution as linear transformation on the coefficients
of Fourier basis, i.e., the eigenvectors of the Laplacian ma-
trix. Spatial GCNs is more conceivable, as it provides local-
ized filters similar to traditional CNNs. But spatial GCNs is
harder to match local neighborhoods for each graph node,
so it needs specific definition of neighborhoods (receptive
field) and graph normalization. In this paper, as we mainly
focus on mining the relationships of graph nodes, we opt to
employ the spectral domain GCNs. Nevertheless, spatial in-
formation is also important for scene classification, inspired

by the work of Yan, Xiong, and Lin (2018), we also take the
spatial cues into consideration.

Methodology
The motivation of this work is that we human recognize
scene categories mainly considering two aspects: 1) the
global scene layout; 2) the key objects or object parts and
their relationships. Inspired by this, in this work, we pro-
pose to learn the global modal-specific features and local
object or object-parts level features simultaneously. Then
the cross-modal graph is constructed to learn the relation-
ships between the local multi-modal features by the GCNs.
The whole framework is presented in Fig. 2. The RGB data
and HHA encoded (Gupta et al. 2014) depth data are in-
put to two stream CNNs for feature learning. As the final
feature maps of each modality contain high-level semantic
features, we adaptively select fixed number of feature vec-
tors on high response locations for two modalities to con-
struct the cross-modal graph. Meanwhile, each modality fea-
ture maps are connected to a modal-specific fully connected
layer for global modal-specific feature learning. After the
graph convolutions on the cross-modal graph, the learned
cross-modal features and global modal-specific features are
concatenated together for the final scene classification task.
We will present the proposed method through the following
three sections.

Single Modality Graph Construction
Observation reveals that the key objects or object parts are
crucial for scene image representation. Considering this, we
aim to encode the scene image with some important local
component features. By selecting features of key objects
and excluding the noise, the obtained image encoding can
improve the classification accuracy. If we denote the input
RGB data as xrgb and the depth (HHA encoded) data as xd.
The weights of the two-stream CNNs can be represented by
fWrgb

and fWd
. Then the final feature maps of two modali-
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ties is formulated as

Frgb = fWrgb
(xrgb),

Fd = fWd
(xd),

(1)

where Frgb and Fd are the final feature maps of RGB and
depth modality through the two-stream CNNs. Then we con-
struct the graph for each modality with these semantic fea-
tures. We denote the graph of RGB and depth as Grgb and
Gd respectively. For the sake of simplicity, we introduce the
graph construction for the RGB modality, which is similar
to the depth modality.

The graph of RGB modality can be represented as
Grgb = (V,E,A), where V denotes the nodes of the graph.
The nodes of the graph are selected from Frgb.E denotes the
edges of the graph, and the adjacency matrix of the graph is
A. The tensor shape of Frgb is (N,C,H,W ), where N is
the batch size, C is the number of channels and H,W are
the height and width of the feature maps respectively. In the
scene images, only a small number of region proposals (key
objects or object parts) contribute to the most discriminative
features for scene classification. Thus we propose to adap-
tively selectK highest response feature vectors for the graph
nodes V .

To select K highest response feature vectors from Frgb.
We first sum the feature maps Frgb along the channel axis
as:

Fre =

C∑
i=1

Frgb(N, i,H,W ). (2)

Then the response map Fre is reshaped to (N,H ∗W ). As
two-dimension image contains natural spatial order, and this
order is important to the spatial layout of the scene. Thus we
keep this order for the K selected features. This procedure
can be described by the following algorithm:

Algorithm 1 Algorithm for selecting K feature vectors.
Input: The reshaped response map Fre;
Output: The indexes of K selected feature vectors indsel;

1: Sort the N response maps Fre with descending order,
and select the first K indexes to indF :

2: for i = 0→ N do
3: index = sort(Fre(i));
4: indF (i) = index(1 : K);
5: end for
6: Sort the N indexes indF with ascending order to keep

the original image spatial order;
7: for i = 0→ N do
8: indsel(i) = sort(indF (i));
9: end for

10: return indsel;

The graph nodes V = {vi|i = 1, ...,K} are assigned with
the selected features from K different locations of Frgb.
Through algorithm 1 we can get the index of selected
features. The graph nodes assignment can be formulated
as V = {vi = Frgb(N,C, i)|i = indsel(1), ..., indsel(K)},
where Frgb is reshaped to (N,C,H ∗W ), and the shape of
graph nodes V is (N,K,C).
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Figure 3: The selected important features for single-
modality (RGB) graph constructing. It is a similar process
for depth(HHA) graph construction.

As illustrated in Fig. 3, K = 16 nodes are used to con-
struct the graph. To aggregate the local selected features
progressively, the constructed graph is with one center node
No.10 and three sub-center nodes No.3, No.6, and No.13.
Every sub-center node is connected to its nearest four nodes,
and the three sub-center nodes are connected to the global
center node. Then the single modality graph is constructed
for intra modality feature relationships learning.

Cross-Modal Graph Convolution
After the graph construction of the RGB Grgb and the depth
modality Gd, we further introduce the construction of the
cross-modal graph G. As the cross-modal graph is the com-
bination of two graphs, the vertexes of V is defined as:

V = Vrgb ∪ Vd. (3)

Thus the shape of V is (N,C, 2K). As presented in Fig. 4,
the yellow circles are the selected nodes of RGB and depth
(HHA) for the same scene. We can see that the selected
nodes for the two modalities are clearly different, which sup-
ports the assumption that features from different modalities
provide specific cues for scene classification. To model the
relationships between the two modalities, we connect the
RGB graph nodes with the depth (HHA) graph nodes. As the
center nodes and sub-center nodes aggregate the information
of their adjacent nodes, connecting these high degree center
nodes is efficient for different modalities information propa-
gation. Considering this, we connect the RGB sub-centers
node 3, node 6, and node 13 to the corresponding depth
(HHA) sub-center nodes. The global center node of RGB
(node 10) is also connected to the depth center node. We de-
fine the adjacency matrix of RGB modality as Argb and the
depth adjacency matrix as Ad. The final adjacency matrix of
the cross-modal graph should also include the cross-modal
connections Acm. Thus the final adjacency matrix is:

A = Argb +Ad +Acm, (4)

where A ∈ R(2K×2K). Based on this definition, the cross-
modal graph is constructed. Inspired by the work of Yan,
Xiong, and Lin (2018), we design our algorithm with spec-
tral graph convolution and consider the spatial factor simul-
taneously.
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Spectral graph convolution
The spectral graph convolution is operated in the Fourier do-
main. Given the cross-modal graph G = (V,E,A), where
V is the vertexes (multi-modal feature vectors), E rep-
resents edges of the graph and A is the adjacency ma-
trix of the cross-modal graph. V is the graph nodes and
|V | = k. An essential operator for spectral graph anal-
ysis is the Laplacian matrix L, which is defined by
L = D −A, where D ∈ Rk×k is the degree matrix, and
Dii =

∑
j Aij . Then we can get the normalized Laplacian

matrix by L = Ik −D−
1
2AD−

1
2 ∈ Rk×k, where Ik is the

identity matrix. The normalized Laplacian L is a symmet-
ric positive semidefinite matrix, so its spectral decompo-
sition can be represented as L = UΛUT . U is comprised
of orthonormal eigenvectors U = [u1, ..., uk] ∈ Rk×k and
Λ = diag([λ1, ..., λk]) is the combination of eigenvalues
λ ∈ Rk. Then the spectral convolution can be defined in the
Fourier domain as:

y = σ(Ugθ(Λ)UTx), (5)

where x,y are convolution input and output, gθ is the con-
volution filter and σ is the activation function. However, this
spectral convolution has high computational complexity for
large scale graph. Thus Hammond, Vandergheynst, and Gri-
bonval (2011) propose to approximate the gθ(Λ) by mth or-
der Chebyshev polynomials Tm(x) as:

gθ(Λ) ≈
K∑
m=0

θmTm(Λ̃),

Λ̃ =
2

max(λ)
Λ− Ik.

(6)

Kipf and Welling (2016) further limit the m to 1, and ap-
proximate the max eigen value to 2, i.e., max(λ) = 2. Then
the simplified GCN can be expressed as:

Y = (D + Ik)−
1
2 (A+ I)(D + Ik)−

1
2XΘ. (7)

For graph convolution on the cross-modal graph G, the
input X ∈ Rk×C is the set of selected feature vectors with
spatial order and the output Y ∈ Rk×F is the learned fea-
tures. Then the weights Θ ∈ RC×F can be implemented by
2D convolution with the kernel size of 1× 1 and output
channels F . The normalized adjacency matrix A plus the
self-connection is expressed by: Lnorm = (D + Ik)−

1
2 (A+

I)(D + Ik)−
1
2 . Thus GCN can be implemented by perform-

ing traditional 2D convolution on the input selected feature
vectors and then multiplies Lnorm.

As described above, we divide the nodes on the cross-
modal graph into three types: the global center node, sub-
center nodes and other nodes. We assume that the center
nodes, sub-center nodes and other nodes are not equal im-
portant in the relationships modeling. Motivated by this, we
partition all the nodes into three subsets and then the graph
convolution in consideration of spatial factor can be defined
as:

Y =

3∑
j=1

Lnormj
XΘj , (8)
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Figure 4: The cross-modal graph construction. Single
modality graphs are constructed first by assigning selected
features to graph nodes, then center and sub-center nodes
are connected for two modalities.

where Lnorm∈Rk×k is split into three matrices for the three
groups of nodes connections. The first group contains the
global center nodes, i.e., node 10 of two modalities, and their
adjacency matrix is Lnorm1

. The second group consists of
the sub-center nodes, and the adjacency matrix is Lnorm2

.
The last split group is the collection of sub-center nodes and
their neighboring nodes, whose adjacency matrix is Lnorm3

.
Θj ∈ RC×F represents one of the three sets of weights for
graph convolution.

Each Θj is implemented with the common convolution
layer. Concretely, in this work we employ a 1× 1 convolu-
tion layer with 256 channels, and then ReLU is applied as
the activation function. Moreover, batch normalization and
dropout with the keep probability of 0.5 are also utilized.

Global and Local Feature Fusion
Beyond mining the relationships of the selected local cross-
modal features, we also consider the global modal-specific
features for the final scene image representation, as illus-
trated in Fig. 2. Two global modal-specific fully connected
(FC) layers are employed for the learning of global represen-
tations of RGB and depth modality respectively. We connect
the RGB modality FC layer to the final feature maps Frgb,
and a classification softmax lossLsoftmaxrgb

is exploited for
training. Similarly, the depth modality FC layer is connected
to the Fd and another softmax loss Lsoftmaxd

is used for
training. Meanwhile, the two learned global features Hrgb

and Hd are concatenated together with the cross-modal fea-
tures Hcm learned by GCNs on cross-modal graph.

H = concat(Hrgb, Hd, Hcm). (9)

Then the final concatenated features are input to an-
other fully connected layer and softmax layer with loss
Lsoftmaxcm

for scene classification. So the final loss L of
this framework can be presented as:

L = λ1Lsoftmaxrgb
+λ2Lsoftmaxd

+λ3Lsoftmaxcm
, (10)
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Figure 5: The visualization of selected important features for
RGB modality. With more and more training iterations, the
locations of selected features converge on objects or object
parts.

Figure 6: The visualization of selected important features for
depth (HHA) modality. With more and more training itera-
tions, the locations of selected features are different from the
RGB selected features.

where λ1, λ2 and λ3 are the balancing weights for the three
loss components, and they are set to 1 in this work.

What is worth mentioning is that in the test phase, merely
the final concatenated features are used to output the final
classification result, as shown in Fig. 2.

Experiments
The proposed method is evaluated on two public RGB-D
scene classification datasets: SUN RGB-D (Song, Lichten-
berg, and Xiao 2015) and NYU Depth Dataset version 2
(Nathan Silberman and Fergus 2012). In this section, we
will introduce the datasets and the parameters setup in de-
tail. Moreover, we compare the proposed approach to other
state-of-the-art methods and analyze the experiment results
comprehensively.

Datasets
For RGB-D scene classification, there are mainly two pop-
ular datasets, one is the SUN RGB-D, and another is the
NYU Depth Dataset version 2 (NYUD v2). The much larger

dataset SUN RGB-D contains 10,355 RGB images with cor-
responding depth images captured from different camera
sensors. To be correspondence with previous work, we only
keep categories with more than 80 images. As with the ex-
perimental settings in Song, Lichtenberg, and Xiao (2015),
there are 19 categories kept and 4,845 images for training,
4,659 images for testing.

NYUD v2 consists of 27 indoor categories and 1449 im-
ages in total, but many of the categories can not be pre-
sented well by these merely 1449 images. Thus Nathan Sil-
berman and Fergus (2012) reorganized these 27 categories
into 10 categories including 9 common indoor scene types
and one “others” category. To compare our method with cur-
rent state-of-the-art methods, we follow the dataset split set-
tings in Gupta, Arbelaez, and Malik (2013). There are 795
images for training and 654 for testing.

Parameters Setup
The proposed method is implemented with the Pytorch
(Paszke et al. 2017) deep learning framework. The HHA en-
codings are computed with the released code from Gupta
et al. (2014). For data augmentation, we resize the image
pairs to 256× 256 and random crop 224× 224 as the in-
put to the network. To compare with previous methods, we
adopt AlexNet (Krizhevsky, Sutskever, and Hinton 2012) as
the back-bone network. Pre-trained models on Places scene
classification dataset is used to initialize the network. For
training parameters, the Adam (Kingma and Ba 2014) op-
timizer is employed with initial learning rate 0.0001. The
batch size for both datasets are set to 64 with shuffle.

Results and Comparisons
The results and analysis are presented for the two datasets in
this section respectively.

SUN RGB-D dataset The comparing state-of-the-art
methods on SUN RGB-D dataset including 6 methods.
Song, Lichtenberg, and Xiao (2015) release the SUN RGB-
D benchmark and use Places-CNN (Zhou et al. 2014) with
RGB and HHA encoding as input for scene classification.
Liao et al. (2016) employ a multi-task learning framework
which combining scene classification and semantic segmen-
tation tasks together. Zhu, Weibel, and Lu (2016) take the
intra-class and inter-class correlations of image pairs for
scene classification. Wang et al. (2016) propose component
aware feature fusion framework by exploiting the region
proposal component features. Similarly, Song, Chen, and
Jiang (2017) further take the object-to-object relations into
consideration. Li et al. (2018) present a discriminative fusion
networks with structured loss. We use average precision over
all scene classes for both datasets as evaluation metric.

From the results in Table 1, our approach achieves best
accuracy 55.1% compared to other methods. Although the
performance gain is not large compared to Li et al. (2018),
our method do not employ the metric learning based train-
ing loss used in Li et al. (2018) and our method has no
object detection stage as in Song, Chen, and Jiang (2017).
Thus the proposed method has great potential for better per-
formance. Additionally, we do ablation study for the pro-
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Table 1: Comparison Results on SUN RGB-D Dataset
Methods Accuracy(%)

State-of-the-art

(Song, Lichtenberg, and Xiao 2015) 39.0 %
(Liao et al. 2016) 41.3%

(Zhu, Weibel, and Lu 2016) 41.5%
(Wang et al. 2016) 48.1%

(Song, Chen, and Jiang 2017) 54.0%
(Li et al. 2018) 54.6%

Proposed Cross-Modal Graph (16 nodes) 55.1%

Table 2: Ablation Study on SUN RGB-D Dataset

Methods Accuracy(%)
RGB 42.7%

Depth(HHA) 38.3%
RGB Graph 45.7%

RGB-D(HHA) 48.2%
RGB-D(HHA) Graph (16 nodes) 55.1%

posed method as shown in Table 2. The performance of
exploiting the single modality (RGB or depth) features is
limited. As we can see from the results, the single modal-
ity graph modeling on RGB images named “RGB Graph”
method improves 3.0% accuracy compared to the original
“RGB” methods. By simply concatenating final layer fea-
tures of RGB and HHA (RGB-D(HHA) method), the perfor-
mance of scene classification can have a large improvement.
At last, our cross-modal graph modeling on RGB-D images
improves the baseline method “RGB-D(HHA)” by 6.9%.

NYUD v2 dataset We compare 5 state-of-the-art methods
on NYUD v2 dataset. Some of the methods have been in-
troduced in the comparison experiments on SUN RGB-D
dataset. Gupta et al. (2015) propose to exploit both generic
and class-specific features to encode the appearance and ge-
ometry of objects and used to classify scenes. Song, Her-
ranz, and Jiang (2017) propose to learn depth features by
combining local weakly supervised training from patches.

As shown in Table 3, the proposed method obtains state-
of-the-art performance (mean class accuracy 67.2 %) on
NYUD v2 dataset, outperforming existing methods. To bet-
ter show what the proposed framework has learned, we vi-
sualize the locations of the selected feature vectors map-
ping to the RGB images and HHA images in Fig. 5 and
Fig. 6. As shown in the Figures, the initial selected fea-
tures are distributed randomly, but after a few iterations ob-
jects and object parts related locations are selected for graph
convolution. Notably, there are clear differences in the fi-

Table 3: Comparison Results on NYUD v2 Dataset
Methods Accuracy(%)

State-of-the-art

(Gupta et al. 2015) 45.4 %
(Wang et al. 2016) 63.9%

(Li et al. 2018) 65.4%
(Song, Herranz, and Jiang 2017) 65.8%

(Song, Chen, and Jiang 2017) 66.9%
Proposed Cross-Modal Ggraph (16 nodes) 67.2%

Table 4: Ablation Study on NYUD v2 Dataset

Methods Accuracy(%)
RGB 53.2%

Depth(HHA) 51.1%
RGB Graph 55.4%

RGB-D(HHA) 61.1%
RGB-D(HHA) Graph (9 nodes) 66.1%
RGB-D(HHA) Graph (16 nodes) 67.2%
RGB-D(HHA) Graph (25 nodes) 67.4%

nal selected features for the corresponding RGB and depth
(HHA) image pairs, which indicates that the features learned
from two modalities are complementary for scene classifica-
tion. Moreover, we also do ablation study for the proposed
method, and the results are presented in Table 4. Similar to
the results on SUN RGB-D dataset, the proposed approach
enhances the baseline method “RGB-D(HHA)”, which con-
catenates last layer features by 6.1% with K = 16. To eval-
uate the effect of parameterK, we also conduct experiments
with K = 9 and K = 25 for comparison. As shown in Tab.
4, K = 9 performs worse than K = 16 by 1.1%. However,
K = 16 and K = 25 achieve nearly the same performance,
but K = 25 takes more computation cost. The reason of
this phenomenon may be that 16 nodes are enough for de-
scribing the scene image. As for the computation cost, the
average runtime of the feedforward is 0.0032 second with
AlexNet and K = 16 on the Nvidia Titan X Pascal GPU.

Conclusion

In this paper, we introduce an adaptive cross-modal learning
framework for RGB-D scene classification based on graph
convolutional neural networks. This method adaptively se-
lects important local features for each modality and con-
structs the cross-modal graph. Then graph convolution is ex-
ploited for local cross-modal feature relationships learning.
Moreover, two global fully connected layers are employed
for global modal-specific feature learning. Finally, the two
global features and the learned cross-modal features are con-
catenated together for final scene classification. The experi-
mental results on SUN RGB-D dataset and NYUD v2 have
shown that the effectiveness of the proposed method.
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