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Abstract

Humans perceive the seemingly chaotic world in a structured
and compositional way with the prerequisite of being able to
segregate conceptual entities from the complex visual scenes.
The mechanism of grouping basic visual elements of scenes
into conceptual entities is termed as perceptual grouping. In
this work, we propose a new type of spatial mixture models
with learnable priors for perceptual grouping. Different from
existing methods, the proposed method disentangles the rep-
resentation of an object into “shape” and “appearance” which
are modeled separately by the mixture weights and the condi-
tional probability distributions. More specifically, each object
in the visual scene is modeled by one mixture component,
whose mixture weights and the parameter of the conditional
probability distribution are generated by two neural networks,
respectively. The mixture weights focus on modeling spatial
dependencies (i.e., shape) and the conditional probability dis-
tributions deal with intra-object variations (i.e., appearance).
In addition, the background is separately modeled as a special
component complementary to the foreground objects. Our ex-
tensive empirical tests on two perceptual grouping datasets
demonstrate that the proposed method outperforms the state-
of-the-art methods under most experimental configurations.
The learned conceptual entities are generalizable to novel vi-
sual scenes and insensitive to the diversity of objects.

Introduction
The ability to perceive complex visual scenes in a structured
and compositional way is crucial for humans to understand
the seemingly chaotic world (Lake et al. 2017). Finding the
underlying mechanisms of grouping basic visual elements
is usually termed as the binding (Treisman 1996; Wolfe
and Cave 1999), or more specifically, the perceptual group-
ing (Grossberg, Mingolla, and Ross 1997) problem, and
has been studied extensively in the fields of neuroscience,
cognitive science and psychology. Designing more human-
like AI systems which learn compositional and disentan-
gled representations (Bengio, Courville, and Vincent 2013)
is desirable, because of their superior expressiveness and
generalization ability compared to those systems learning a
single complex representation. Complex visual scenes are
composed of numerous relatively simpler primitive entities.
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By hierarchically decomposing the observed visual scenes
(Bienenstock, Geman, and Potter 1997), the raw observa-
tions can be summarized into organized and compact knowl-
edge which is generalizable to an infinite number of novel
scenes constructed by the combinations of these primitive
entities (Biederman 1987; Hummel and Biederman 1992;
van den Hengel et al. 2015).

Inspired by the synchronization theory (Milner 1974),
various approaches have been proposed to tackle the per-
ceptual grouping problem by using neuronal synchrony as
the grouping mechanism (Wang and Terman 1995; Rao et
al. 2008; Reichert and Serre 2014). Despite of the satisfac-
tory grouping results already obtained, these methods do not
learn separate representations for individual objects in the
visual scene, which limits the expressiveness and general-
ization ability of the learned models. In order to learn disen-
tangled and compositional representations of visual scenes,
several methods which integrate spatial mixture models with
neural networks have been proposed in recent years (Gr-
eff, Srivastava, and Schmidhuber 2015; Greff et al. 2016;
Prémont-Schwarz et al. 2017; Greff, van Steenkiste, and
Schmidhuber 2017). In these approaches, different objects
are model by different mixture components, and each com-
ponent is encouraged to focus on an individual object. The
underlying intuition is that the image of visual scene can
be decomposed into the pixel-wise weighted sum of recon-
structed images of individual objects, with mixture weights
computed based on similarities between the images of scene
and objects at each pixel.

The perceptual grouping results of these recently pro-
posed spatial mixture models are gratifying. Images of in-
dividual objects can be reconstructed accurately if objects
do not overlap each other. However, there exist two po-
tential downsides: 1) pixel-wise mixture weights are com-
puted based on spatially dependent conditional probability
distributions, and 2) the background is either not explic-
itly modeled by a mixture component or considered as an
ordinary component. The first treatment leads to entangled
learning of spatial dependencies of pixels because mixture
weights shall vary accordingly as conditional probability
distributions vary among pixels. The second treatment ei-
ther complicates the determination of background pixels or
increases the modeling complexity because the background
is much harder to represent if considered as an ordinary
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component due to the diverse combinations of foreground
objects.

In this paper, we propose a new type of spatial mix-
ture models which places a learnable deep prior of spatial
dependencies on mixture weights and considers modeling
the background as a special component complementary to
the foreground objects. The basic idea is that, in the pro-
posed model, the mixture weights should focus on modeling
the spatial dependencies (i.e., shapes) of the objects while
the conditional probability distributions deal with variations
(i.e., appearance) within objects. Instead of modeling mix-
ture weights as coefficients with the only constraint that the
sum of them equals one at each pixel, they are computed
based on the outputs of a neural network with some hidden
states as inputs. The inherent structure and learned parame-
ters of the network act like priors of spatial dependencies
and regularize the model to correctly estimate the shapes
of objects in the visual scenes. By constructing the mixture
weights in an innovative manner inspired by the truncated
stick-breaking process, foreground objects and the back-
ground which is harder to represent are modeled differently.
Because the background is considered as a special compo-
nent whose mixture weights are implicitly determined by es-
timations of less varying foreground objects, the proposed
method can thus achieve better compositionality and gener-
alizes better to novel visual scenes.

We evaluate our method on two perceptual grouping
datasets, in which images are composed of simple shapes
or handwritten images, under different experimental config-
urations. Extensive empirical results suggest that represent-
ing the complex regions of background pixels in a compo-
sitional manner is crucial to high-quality grouping results.
Compared with two state-of-the-art perceptual grouping al-
gorithms, the proposed method not only achieves compara-
ble or higher grouping accuracies, but also better estimates
the images of individual objects from the image of visual
scene. By disentangling the representation of an object into
“shape” and “appearance” which are modeled separately by
the mixture weights and the conditional probability distri-
butions, the proposed method can better learn the spatial
dependencies of pixels. The learned conceptual entities are
generalizable to novel visual scenes and insensitive to the
diversity of objects.

Preliminaries
Perceptual Grouping
Perceptual grouping is a type of binding problem that stud-
ies how brains arrange elements of visual scenes into con-
ceptual entities like objects or patterns. Based on the induc-
tive biases that are either innate or learned from experiences,
humans tend to segregate, for example, the upper-left cor-
ner image in Figure 1a into three white hollow shapes and
one black background although these shapes are connected
and partially overlapped. The underlying mechanisms have
been studied extensively for years. Gestalt psychologists
suggested that humans perceive meaningful contents from
the sensory information based on inborn mental laws, and
summarized their theories into several rule-based principles

of perception (e.g. proximity, similarity, continuity, closure,
and common fate) which is often known as Gestalt laws of
grouping (Goldstein and Brockmole 2016). The principle of
common fate differs from others in that it requires tempo-
ral information and is only applicable when relative motions
exist. In this work, we only consider utilization of spatial
information and focus on building models which follow the
principles of proximity, similarity, continuity, and closure by
learning prior knowledge of spatial dependencies from data
in an unsupervised setting.

Spatial Mixture Model
In spatial mixture models, pixels are assumed to be gener-
ated independently from the mixture. Correlations between
pixels can be achieved by assuming conditional probabil-
ity distributions, or mixture weights, or both of them to be
spatially dependent. Let Xm be the mth pixel of image X ,
and Zm be the latent variable specifying the mixture com-
ponent of Xm. θk,m = {θck,m,θwk,m} represents parameters
for generatingXm in the kth component. For the sake of no-
tational simplicity, we let pm,k = P (Xm|Zm=k;θck,m) and
πm,k = P (Zm= k;θw:,m) = θwk,m. The log probability of
observing imageX is given by

logP (X;θ) =
∑
m

log
∑
k

pm,kπm,k

Computing the maximum likelihood estimate (MLE) of
θ directly is difficult due to the existence of unobserved
component assignments. Approximated estimates can be ob-
tained iteratively by applying the Expectation-Maximization
(EM) algorithm. Let γ(t)m,k denote the posterior probability at

the tth iteration P (Zm=k|Xm;θ
(t)
k,m), which is computed by

γ
(t)
m,k =

p
(t)
m,kπ

(t)
m,k∑

k′ p
(t)
m,k′π

(t)
m,k′

(1)

Parameters are updated using θ(t+1)=argmaxθ Q(θ;θ(t)),
where Q(θ;θ(t)) is the Q-function defined as

Q(θ;θ(t)) =
∑
m

∑
k

γ
(t)
m,k(log pm,k + log πm,k) (2)

Neural Expectation Maximization
Neural Expectation Maximization (N-EM) (Greff, van
Steenkiste, and Schmidhuber 2017) is a state-of-the-art spa-
tial mixture model for solving the perceptual grouping prob-
lem. In N-EM, both conditional probability distributions and
mixture weights are modeled as spatially dependent. Param-
eters θck,m=fφ(sk)m are generated by a neural network fφ
with some hidden states sk as inputs, and mixture weights
πm,k are computed based on θc:,m.

Because of the non-linearity of neural networks, the opti-
mal hidden state s∗k that maximizesQ(θ;θ(t)) does not have
a closed-form solution. Two types of generalized EM algo-
rithms were proposed to solve this problem. One is to utilize
the gradient descent to optimize sk iteratively

s
(t+1)
k = s

(t)
k + η

∑
m

γ
(t)
m,k

∂ log pm,k
∂θck,m

∂θck,m
∂sk

∣∣∣∣
sk=s

(t)
k

(3)
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Another is to mimic the process of gradient descent by a
recurrent neural network (RNN). The neural network fφ is
trained by the backpropagation through time (BPTT) algo-
rithm (Robinson and Fallside 1987; Werbos 1988).

The loss function of each image is given by

L =−
∑
m

∑
k

γm,k(log pm,k + log πm,k)

+ λ
∑
m

∑
k

(1− γm,k)DKL(pprior||pm,k) (4)

This loss function consists of two parts. The first part is the
negative Q-function which measures the reconstruction er-
rors. The second part is the weighted sum of the Kullback-
Leibler (KL) divergences between the conditional probabil-
ities pm,k and a distribution pprior predefined by the prior
knowledge of the image (e.g. the background intensities).
pm,k is encouraged to be close to the distribution of back-
ground when the kth component is unconfident that the mth
pixel should be assigned to it (γm,k is small).

Spatial Mixture Model with
Learnable Deep Priors

Except the implicit restriction that the mixture weights at
each pixel should sum up to 1 (

∑
k πm,k=1,∀m), N-EM

does not place any constraint on πm,k. Mixture weights are
assumed to be spatially dependent in N-EM, and the opti-
mal weights π∗

m,k that maximizes the Q-function is given
by π∗

m,k = γm,k/
∑
k′γm,k′ = γm,k. The ability to dis-

tinguish objects with similar intensities relies on spatially
dependent conditional probabilities with parameters gener-
ated by a neural network. One downside of this approach is
the assumption of spatial dependencies for both conditional
probabilities and mixture weights, which leads to entan-
gled learning of correlations between pixels. This assump-
tion also does not fit well with the principle of similarity
(elements composing the same object should resemble each
other) in the Gestalt laws of grouping. Moreover, the back-
ground is not explicitly modeled by a mixture component.

To better follow the principle of similarity and model the
background pixels, we integrate neural networks and the EM
algorithm in a different way. Instead of modeling correla-
tions between pixels by generating spatially dependent pa-
rameters of conditional probabilities pm,k with a neural net-
work fφ and obtaining the mixture weights πm,k based on
the posterior inference results, we apply the neural network
fφ to compute spatially dependent mixture weights πm,k and
an additional network gψ to model spatially independent pa-
rameters of pm,k. In a sense, the neural network fφ acts like
learnable priors of spatial dependencies in our method. Mix-
ture weights are regularized by both the intrinsic structure
and learnable parameters of the neural network. In the fol-
lowing, we first introduce our approach in a general way and
then make a concrete example for clarity.

Truncated Stick-Breaking Mixture Weights
The spatially dependent mixture weights πm,k are computed
based on outputs of a neural network fφ and are constrained

by the structure and parameters of the network. LetK be the
number of components, sk the hidden state vector of the kth
component, and σ(·) the sigmoid function. ck,m is defined
as σ(fφ(sk)m). The computation of πm,k which shares a
similar form to the truncated stick-breaking process gives

πm,k =

{
ck,m

∏
k′<k (1− ck′,m), k < K∏

k′<K (1− ck′,m), k = K
(5)

(5) differs from the truncated stick-breaking process in that
the length of stick ck,m is computed by a neural network in-
stead of sampled from the beta distribution. Only the first
K − 1 components are assigned with hidden state vectors
which describe the shapes of foreground objects. Complex-
shaped background regions are estimated based on the pre-
dicted shapes of these foreground objects.

Applying the softmax function to the outputs of neural
networks is another viable way of modeling probabilities.
The main consideration of choosing (5) over the softmax
function is compositionality. The purpose of applying the
mixture model is to decompose the complex visual scene
into simpler components. Generally speaking, objects in the
visual scene are relatively easy to represent. The background
pixels, however, are almost as hard to model as the visual
scene due to the diverse combinations of foreground objects.
The softmax function treats each component equally, and
K − 1 simple and 1 complex hidden state vectors are re-
quired to generate the mixture weights for K components.
When using (5), onlyK−1 hidden state vectors are needed.
The complex mixture weights of the background component
is determined by these simple states vectors.

Conditional Probabilities
The conditional probabilities pm,k are assumed to be spa-
tially independent in the proposed method. Let θck be the pa-
rameters of conditional probabilities pm,k. If no constraint
is added to θck, the optimal solution that maximizes the Q-
function can be obtained by setting the derivative of (2) with
respect to θck to zero. To lower the complexity of backprop-
agation and stabilize the training of neural networks, values
of θck are not updated using the closed-form solution. All θck
with k < K are outputs of a neural network gψ with hidden
states sk as inputs. Parameters θcK for the background com-
ponent are modeled as learnable variables that are optimized
by gradient descent in the M-step of the EM algorithm.

Optimization of Mixture Model Parameters
Hidden state vectors sk can be updated by either gradient
descent with a learnable learning rate or an RNN which im-
itate the behavior of gradient descent. For the sake of no-
tational simplicity, outputs of the neural networks fφ(sk)m
and gψ(sk) are denoted by fk,m and gk, respectively. If us-
ing gradient descent as the update rule, hidden states sk with
1 ≤ k < K are updated by

s
(t+1)
k = s

(t)
k + ηs

∑
m

(
γ
(t)
m,k

∂ log pm,k
∂gk

∂gk
∂sk

+
∑
k′≥k

γ
(t)
m,k′

∂ log πm,k′

∂fk,m

∂fk,m
∂sk

)∣∣∣∣
sk=s

(t)
k

(6)
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If applying an RNN to learn the procedure of gra-
dient descent, inputs to the RNN are features extracted
from the concatenation of

∑
m γ

(t)
m,k(∂ log pm,k/∂gk) and

all
∑
k′≥k γ

(t)
m,k′(∂ log πm,k′/∂fk,m) with 1 ≤ m ≤ M by

an encoder network.
The update rule for the parameters θcK is given by

θcK
(t+1)

= θcK
(t)

+ηθ
∑
m

γ
(t)
m,K

∂ log pm,K
∂θcK

∣∣∣∣
θc
K=θc

K
(t)

(7)

Learning of Neural Networks
Neural networks fφ and gψ are trained by BPTT algorithm.
The loss function is chosen as

L =−
∑
m

∑
k

γm,k(log pm,k + log πm,k)

+ λ
∑
m

DKL(pprior||pm,K) (8)

As with the loss function (4) used in N-EM, (8) also consists
of the Q-function term and a regularization term. This reg-
ularization acts like a simplified version of the inductive bi-
ases required for human to solve the figure-ground organiza-
tion problem (distinguishing a figure from the background).
In N-EM, prior information of the background pprior is used
to regularize the conditional probability distributions of all
mixture components. In our method, the conditional distri-
bution of the background component pm,K is encouraged to
be similar to pprior, so that the network can better focus on
modeling the foreground objects.

Example: Gaussian Conditional Distribution
The conditional probability distribution of a pixel given its
component assignment is usually assumed to be Gaussian
for real-valued images, and Bernoulli for binary images. We
consider only Gaussian distribution in this section (detailed
procedures for each image in an epoch are described in Al-
gorithm 1). Formulas for other types of probability distribu-
tions can be derived with little modification. Only the means
of the Gaussian distributions are learnable parameters, and
the variances are assumed to be constant and set to α−1 with
α being a hyperparameter tuned by cross-validation. Except
for the last component, the means of the Gaussian distribu-
tions are computed by the neural network gψ . For the Kth
component, it is modeled as a parameter µK that is learned
by gradient descent. Let xm be the intensity of themth pixel.
The conditional probability pm,k is computed by

pm,k =

{G(xm; gψ(sk), α
−1), k < K

G(xm;µK , α
−1), k = K

(9)

Substituting (9) and (5) into (6), the gradient descent up-
date rule for hidden states becomes

s
(t+1)
k = s

(t)
k + ηs

∑
m

(
αγ

(t)
m,k(xm − g

(t)
k )

∂gk
∂sk

+
(
γ
(t)
m,k −

∑
k′≥k

γ
(t)
m,k′σ(f

(t)
k,m)

)∂fk,m
∂sk

)∣∣∣∣
sk=s

(t)
k

(10)

Algorithm 1 Proposed Method (Gaussian Distribution)

// Initialization:
Draw s(0)k randomly from N (0, σ2

initI); µ
(0)
K ← µprior;

for t← 0 to T − 1 do
// E-Step:
f
(t)
k,m ← fφ(s

(t)
k )m; g

(t)
k ← gψ(s

(t)
k );

Compute p(t)m,k, π(t)
m,k and γ(t)m,k using (9), (5) and (1);

// M-Step:
if using gradient descent then

Update s(t+1)
k using (10);

else
u← α

∑
m γ

(t)
m,k(xm − g

(t)
k );

vm ← γ
(t)
m,k −

∑
k′≥k γ

(t)
m,k′σ(f

(t)
k,m);

rin ← enc([u, v1, v2, . . . , vM ]);
s
(t+1)
k ← RNN(rin, s

(t)
k );

end if
Update µ(t+1)

K using (11);
// Loss:
Compute L(t) using (8);

end for
// Neural Networks and Learning Rates:
Compute the weighted sum of losses Lsum ←

∑
t wtL

(t);
Update φ, ψ, ηs and ηθ based on Lsum;

If updating sk with an RNN, the encoder network enc

transforms the concatenation of α
∑
m γ

(t)
m,k(xm − g

(t)
k ) and

γ
(t)
m,k−

∑
k′≥k γ

(t)
m,k′σ(f

(t)
k,m), 1 ≤ m ≤M to features rin as

the inputs to the RNN.
Substituting (9) into (7) and replacing θcK with µK , the

learnable parameter for the last component is updated by

µ
(t+1)
K = µ

(t)
K + ηθα

∑
m

γ
(t)
m,K(xm − µ(t)

K ) (11)

Related Work
Several approaches have been proposed to solve the per-
ceptual grouping problem and related tasks in recent years.
Tagger (Greff et al. 2016) combines the iterative amortized
grouping (TAG) mechanism and the Ladder Network (Ras-
mus et al. 2015) to learn perceptual grouping in an unsuper-
vised manner. It utilizes multiple copies of the same neural
network to model different groups in the visual scene and it-
eratively refine the reconstruction result. RTagger (Prémont-
Schwarz et al. 2017) replaces the Ladder Network with the
Recurrent Ladder Network and extends Tagger to sequen-
tial data. Neural Expectation Maximization (N-EM) (Greff,
van Steenkiste, and Schmidhuber 2017) tackles the prob-
lem based on the Expectation-Maximization (EM) frame-
work (Dempster, Laird, and Rubin 1977), and achieves com-
parable performance to Tagger with much fewer parameters.
Relational Neural Expectation Maximization (R-NEM) (van
Steenkiste et al. 2018) integrates N-EM with a type of Mes-
sage Passing Neural Network (Gilmer et al. 2017) to learn
common-sense physical reasoning based on the composi-
tional object-representations extracted by N-EM.
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Our method is mostly related to N-EM. Same as N-EM,
the update rules for the distributed representations of objects
in the visual scene are derived from the EM algorithm. Dif-
ferent from N-EM, the foreground objects and background
are modeled separately in our method, and spatial dependen-
cies of pixels are modeled completely by mixture weights.

Experiments
Datasets Our method is evaluated on two datasets derived
from a set of publicly released perceptual grouping datasets
provided by (Greff, Srivastava, and Schmidhuber 2015;
Greff et al. 2016; Greff, van Steenkiste, and Schmidhuber
2017). We refer to these two datasets as the Multi-Shapes
dataset and the Multi-MNIST dataset. The Multi-Shapes
dataset consists of 4 subsets, which differs from each other
in either the image size (20×20 or 28×28) or the number
of objects in each image (2, 3 or 4). Each subset contains
70,000 binary images with simple shapes located at random
positions. The Multi-MNIST dataset is composed of 3 sub-
sets with different degrees of object variations. In each sub-
set, there are 70,000 grayscale 48×48 images which con-
tain 2 handwritten digits. Images in both Multi-Shapes and
Multi-MNIST datasets may contain overlapped objects.

Comparison Methods The proposed method is compared
with two state-of-the-art perceptual grouping algorithms,
namely, N-EM (Greff, van Steenkiste, and Schmidhuber
2017) and Tagger (Greff et al. 2016). To assess the effective-
ness of computing mixture weights using (5), we substitute
it with the softmax function and evaluate this modification
(refered as softmax method) on the Multi-Shapes dataset.
Neural networks are trained with the Adam optimization al-
gorithm (Kingma and Ba 2015) for all approaches. To make
a fair comparison, we do not specially design the neural net-
works fφ and gψ for the proposed method. The structure of
fφ which generates mixture weights in our method is iden-
tical to the network fφ in N-EM. The extra gψ for com-
puting conditional probabilities is simply a one-layer fully-
connected neural network, in which the number of parame-
ters is equal to the dimension of hidden states and negligible
compared to the total number of network parameters.

Evaluation Metrics We use two metrics to evaluate the
grouping results. The first is Adjusted Mutual Information
(AMI), which measures the accuracy of mixture assign-
ments. To be consistent with previous work (Greff, Srivas-
tava, and Schmidhuber 2015; Greff et al. 2016; Greff, van
Steenkiste, and Schmidhuber 2017), AMI scores are not
computed in the background and overlapping regions. The
second is Mean Squared Error (MSE), which computes the
smallest mean squared differences between the estimated
images of individual objects and the ground truth images
over all possible permutations (formulated as the assignment
problem and solved efficiently by the Hungarian method).
MSE scores are evaluated at all pixels.

Perceptual Grouping Performance Comparisons
Performances of Tagger, N-EM and the proposed method are
compared on two subsets of the Multi-Shapes dataset which

differ from each other in image size (20×20 and 28×28).
Images in both subsets contain 3 objects. Because objects
in both subsets are of the same size, 20×20 images which
consist of less pixels are more likely to contain overlapped
objects, and performing perceptual grouping on them is not
necessarily easier. For Tagger, parameters of mixture models
are updated via a 3-layer Ladder Network. For N-EM and
the proposed method, the encoder and decoder networks are
convolutional neural networks (CNNs) with 2 convolutional,
2 fully-connected and 3 layer normalization (Ba, Kiros, and
Hinton 2016) layers. The qualitative results are presented in
Figure 1, and the AMI/MSE scores are presented as follows.

Size 20× 20 Size 28× 28
Tagger 0.933 / 0.71e-2 0.820 / 1.49e-2
N-EM 0.824 / 1.59e-2 0.897 / 0.82e-2

Proposed 0.920 / 0.40e-2 0.941 / 0.28e-2

On the subset consisting of 20 × 20 images, Tagger
achieves the highest grouping accuracy (AMI) and the pro-
posed method best estimates the images of individual ob-
jects (MSE). The AMI score of the proposed method is
slightly lower than Tagger. On the other subset, The pro-
posed method achieves both the best AMI and MSE scores.

According to Figure 1a (Tagger), the learned knowledge
of correlations between pixels are entangled. Both condi-
tional probability distributions (row 2; cols 2–5, 7–10) and
mixture weights (row 3; cols 2–5, 7–10) contain partial and
imperfect information of shape and appearance. It is caused
by modeling both conditional probability distributions and
mixture weights to be spatially dependent. Another observa-
tion is that objects are mainly distinguished based on condi-
tional distributions, and the mixture weights assist the seg-
regation when ambiguity exists. Although the mixture com-
ponent assignments are predicted accurately for foreground
objects (row3; cols 1, 6), the background pixels are not well
inferred based on posterior probabilities γ (row2; cols 1, 6).
The possible reason is that the diverse combinations of fore-
ground objects prevent background pixels from being mod-
eled well using non-combinational representations.

In Figure 1b (N-EM), the colors of background pixels in
the 2nd row are gray (red+green+blue) because the posterior
probabilities γ are almost identical for all mixture compo-
nents. Same as Tagger, background pixels cannot be well de-
termined via inferences of posterior probabilities in N-EM.
This is caused by a side effect of solving the entangled learn-
ing of spatial dependencies by freezing the mixture weights
during the procedures of expectation maximization. Because
correlations between pixels are modeled mainly by condi-
tional probability distributions, component assignments are
ambiguous in regions where the means of the distributions
(rows 3–5) are similar.

As demonstrated in Figure 1c (proposed method), ob-
jects are well segregated based on the learned knowledge of
spatial dependencies even if objects are heavily overlapped
(cols 2, 6). Although the reconstructed images of individual
objects are not completely correct, by regularizing the mix-
ture weights with the deep priors learned from data, the pre-
dicted results follow the principles of proximity, similarity,
continuity, and closure in the Gestalt laws of grouping.
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Figure 1: Component assignments and reconstructed images
of individual objects evaluated on the Multi-Shapes dataset.

Effectiveness of Modeling Background Separately

Besides the observation from Figure 1a that modeling the
background as an ordinary component results in imperfect
separation of foreground and background based on posterior
probabilities, we also assess the effectiveness of modeling

F N
N-EM Proposed

AMI MSE AMI MSE

B
er

no
ul

li

16 16 0.876 0.95e-2 0.856 1.28e-2
32 16 0.897 0.82e-2 0.868 1.23e-2
32 32 0.816 1.32e-2 0.926 0.43e-2
64 32 0.814 1.34e-2 0.920 0.40e-2
64 64 0.749 1.70e-2 0.941 0.28e-2

G
au

ss
ia

n

16 16 0.687 2.35e-2 0.915 0.68e-2
32 16 0.676 2.34e-2 0.911 0.63e-2
32 32 0.566 2.87e-2 0.914 0.51e-2
64 32 0.503 3.06e-2 0.935 0.30e-2
64 64 0.353 3.77e-2 0.939 0.29e-2

Table 1: Comparisons of AMI and MSE scores under differ-
ent choices of conditional probability distributions. F andN
are respective dimensions of RNN inputs and hidden states.

the background separately by evaluating the performances
of the softmax method on the second subset (size 28×28)
used in the previous experiment. The best AMI and MSE
scores achieved are 0.875 and 1.10×10−2, which are signifi-
cantly worse than the results of the proposed method (0.941
and 0.28×10−2). The burden of representing the complex
background with a single hidden state vector prevents the
model to focus on spatial dependencies of foreground pix-
els. The qualitative results of the softmax method is shown
in Figure 1d. The estimated images of individual objects are
not visually plausible although the results of posterior infer-
ences (row 2) are satisfactory.

Generalizability and Sensitivity Analyses
Generalizability of Compositional Representations To
illustrate the generalizability of the learned compositional
representations, the proposed method are evaluated on three
subsets of the Multi-Shapes dataset that differ in the number
of objects in images. Results of N-EM are also presented.
Models of both methods are trained only on the second sub-
set. The AMI/MSE scores are shown below.

N-EM Proposed
2 Objects 0.906 / 0.98e-2 0.961 / 0.11e-2

3 Objects (Train) 0.897 / 0.82e-2 0.941 / 0.28e-2
4 Objects 0.838 / 1.44e-2 0.901 / 0.69e-2

For both approaches, the learned representations of concep-
tual entities generalize well to visual scenes containing more
or less objects. The accuracies of estimated mixture compo-
nent assignment are slightly higher when the task is simpler,
and moderately lower when dealing with more challenging
visual scenes. The MSE score of N-EM becomes slightly
worse on the simpler task.

Sensitivity to Choice of Conditional Distributions We
assess the influences of different choices of conditional
probability distributions on the second subset (3 objects)
used in the previous experiment. Detailed performances of
N-EM and the proposed method are shown in Table 1. If in-
tensities of binary images are modeled by Gaussian distribu-
tions, the grouping results of N-EM deteriorate drastically.
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F N
N-EM Proposed

AMI MSE AMI MSE

#1

32 16 0.780 1.17e-2 0.748 1.89e-2
32 32 0.573 1.54e-2 0.765 1.64e-2
64 32 0.521 1.54e-2 0.787 1.35e-2
64 64 0.391 1.79e-2 0.790 1.30e-2

#2

32 16 0.317 2.86e-2 0.719 2.07e-2
32 32 0.254 2.75e-2 0.704 2.04e-2
64 32 0.194 2.71e-2 0.719 1.61e-2
64 64 0.152 2.73e-2 0.676 1.63e-2

#3

32 16 0.335 2.93e-2 0.715 2.16e-2
32 32 0.223 3.15e-2 0.702 2.07e-2
64 32 0.185 2.94e-2 0.705 1.69e-2
64 64 0.158 2.84e-2 0.683 1.62e-2

Table 2: AMI and MSE scores evaluated on different sub-
sets of the Multi-MNIST dataset. F and N are respective
dimensions of RNN inputs and hidden states.

The proposed method, on the other hand, are less sensitive
to the form of conditional distributions.

Sensitivity to Diversity of Objects The Multi-MNIST
dataset is much more challenging than the Multi-Shapes
dataset for the larger image size (48× 48 versus 20× 20
or 28×28), as well as higher degrees of both inter-object
variations (the number of unique objects) and intra-object
variations (intensities of pixels belonging to the same ob-
ject). There are 3 subsets in this dataset. Subsets 1, 2 and
3 are constructed using 20, 500 and 70,000 unique digits,
respectively. Different from the first two subsets, the digits
composing images in the test set of subset 3 do not exist
in the training and validation set. We evaluate the perfor-
mances of N-EM and the proposed method on these subsets,
and compare the sensitivities to object diversities of the two
approaches. Experimental results are presented in Table 2.

When the diversity of objects is small, N-EM and the
proposed method perform similarly well. N-EM achieves
slightly higher AMI score and the proposed method attains
lower MSE score. As the variations of objects increase, the
performance of the proposed method drops moderately, and
the grouping results of N-EM decline significantly. On sub-
sets 2 and 3, both methods achieve the highest AMI scores
when dimensions of RNN inputs and hidden states are small,
and the best MSE scores when these dimensions are slighly
larger. The possible reason is that the higher dimensions al-
low models to focus on more details and help reconstruct
sharper individual digits. The large diversities of objects, on
the other hand, misguide models to represent parts of dif-
ferent objects in the same mixture component and lower the
grouping accuracies as the capacities of models increase.

Figure 2 demonstrates the predicted component assign-
ments and reconstructed images of individual objects pro-
duced by both methods. On subset 1, the results generated
by N-EM are slightly more visually plausible. Except for
the occluded regions, details of each object are accurately
reconstructed. This is because N-EM allows the conditional
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Figure 2: Component assignments and reconstructed images
of individual objects evaluated on the Multi-MNIST dataset.

probabilities distributions to vary within each object, which
helps better reconstruct the intra-object variations of each
digit. Both methods can accurately segregate objects from
some complex visual scenes like the last two images in Fig-
ure 2a and 2b. On subsets 2 and 3, the estimated images of
individual objects generated by N-EM are also sharper than
the proposed method. However, each component contains
pixels of multiple objects. The proposed method models the
spatial dependencies of pixels with prior knowledge of mix-
ture weights, and utilizes the principle of similarity implied
by the spatially independent conditional distributions to as-
sist the learning of correlations between pixels. Empirical
results suggest that this scheme is less sensitive to the diver-
sities of objects in the visual scenes.

Conclusion
In this paper, we have proposed a type of novel spatial mix-
ture models which place learnable deep priors on the mix-
ture weights for tackling the perceptual grouping problem.
By modeling the background as a special component in
a compositional manner and decomposing the descriptions
of conceptual entities into shapes and appearances that are
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separately represented, the proposed method better learns
spatial dependencies than existing methods for perceptual
grouping. We have demonstrated that the proposed method
is insensitive to diversities of objects, and the learned com-
positional representations of individual entities generalize
well to visual scenes constructed by novel combinations of
these entities. Further research in this direction could be
integrating hierarchical spatial mixture models with neural
networks and solving higher-level tasks like relational infer-
ences based on the learned compositional representations.
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