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Abstract

Three-dimensional (3D) shape recognition has drawn much
research attention in the field of computer vision. The ad-
vances of deep learning encourage various deep models for
3D feature representation. For point cloud and multi-view
data, two popular 3D data modalities, different models are
proposed with remarkable performance. However the rela-
tion between point cloud and views has been rarely investi-
gated. In this paper, we introduce Point-View Relation Net-
work (PVRNet), an effective network designed to well fuse
the view features and the point cloud feature with a proposed
relation score module. More specifically, based on the rela-
tion score module, the point-single-view fusion feature is first
extracted by fusing the point cloud feature and each single
view feature with point-singe-view relation, then the point-
multi-view fusion feature is extracted by fusing the point
cloud feature and the features of different number of views
with point-multi-view relation. Finally, the point-single-view
fusion feature and point-multi-view fusion feature are further
combined together to achieve a unified representation for a
3D shape. Our proposed PVRNet has been evaluated on Mod-
elNet40 dataset for 3D shape classification and retrieval. Ex-
perimental results indicate our model can achieve significant
performance improvement compared with the state-of-the-art
models.

Introduction

With the proliferation of image and 3D vision data, 3D shape
recognition has grown into an important problem in the field
of computer vision with a wide range of applications from
AR/VR to self-driving. Several modalities are used to rep-
resent 3D shape and the recent development of deep learn-
ing enables various deep models to tackle different modali-
ties. For volumetric data, 3D convolutional neural networks
(CNN) (Maturana and Scherer 2015)(Wu et al. 2015)(Qi et
al. 2016) are generally used, but the sparse structure of volu-
metric data and the high computation cost constrain the per-
formance. For view based and point cloud based models, the
input data respectively are multiple views from cameras and
point clouds from sensors and LiDARs, which have rich in-
formation and can be easily acquired. More and more re-
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Figure 1: Illustration of the motivation of PVRNet.

search interests are concentrated on dealing with multi-view
data and point cloud data.

For view based deep models, multiple views captured by
cameras with different angles are employed to represent 3D
shape as the input. These views can be efficiently processed
with 2D CNN (Su et al. 2015) (Feng et al. 2018). However,
limited by camera angles, each view only presents partial
local structures of an entire 3D shape, and thus some view
features may not be discriminative for shape recognition. For
point cloud based deep models, the input data are irregular
point clouds obtained from 3D sensors, which well reserves
the original spatial structure by 3D coordinates. While con-
ventional CNN is not suitable for disordered data, making
extracted feature ineffective.

Considering the pros and cons of the view based models
and point cloud based models, the fusion of point cloud and
multi-view features may obtain a better representation for
3D shape. Existing work (You et al. 2018) fuses the global
view feature after view-pooling with the point cloud feature
for 3D shape recognition. However, multi-view features are
equally treated when combined with the point cloud feature.
We argue that this kind of fusion cannot fully exploit the re-
lation between multi-view features and the point cloud fea-
ture. Our point is based on the fact that each view presenting
various amount of local structures certainly brings different
effect in the feature fusion process with the point cloud fea-
ture. Generally, the views with discriminative descriptors are
more beneficial for the fused 3D shape representation than
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Figure 2: Architecture of the proposed PVRNet.

the view descriptors with poor discrimination. Therefore, it
is essential to mine the relation between the point cloud and
different views to achieve a more powerful shape descriptor.

In this work, we propose a point-view relation neural net-
work called PVRNet, which serves as the first exploration
on the relationship between point cloud an multi-view data.
At First, a relation score module which computes the re-
lation scores between point cloud and each view is intro-
duced. And the point-single-view fusion is performed with
the point-single-view relation. Second, based on the relation
scores, point-view sets (PVSets) which containing the point
cloud and the different number of views are fused together to
form the point-multi-view fusion feature, which exploits the
point-multi-view relation. In this process, only views having
higher relation scores are included in PVSets. In such way,
more informative view features are preserved and combined
with the point cloud feature. Third, the point-single-view fu-
sion feature and the point-multi-view fusion feature are fur-
ther fused together to obtain a unified 3D shape representa-
tion. To demonstrate the effectiveness of the proposed PVR-
Net, we have performed experiments on ModelNet40 (Wu et
al. 2015), the most popular 3D shape dataset, for the tasks of
shape classification and retrieval. The experimental results
show our framework can outperform not only existing point
cloud based or view based methods but also multimodal fu-
sion methods. The evaluation results confirm that the point-
view relation based feature fusion scheme achieves a pow-
erful 3D shape representation.

The main contributions of this paper are two-fold:

(1) We introduce the first point-view relation (relevance)
based deep neural network to well fuse the multi-view data
and point cloud data. Different from existing work treating
views equally for the feature fusion, our network fuses the
two-modality features by exploiting the correlation between
point cloud and each individual view by the relevance (rela-
tion score).
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(2) We design a new relation fusion scheme for the point
cloud feature and the view features. In our fusion scheme,
two kinds of relations including point-multi-view relation
and point-singe-view relation are exploited to well fuse the
point cloud feature and the view features together to form an
integrated 3D shape representation.

The rest of our paper is organized as follows. We first
present the related work. Then we detail the proposed PVR-
Net. After that, we show the experimental results as well
as provide some insight-full analysis. In the last section, we
conclude the paper.

Related Work

In this section, we briefly review some existing related meth-
ods, which can be divided into three directions: view based
methods, point clouds based methods and multimodal meth-
ods.

View Based Methods For view based models, the input
data is a group of views taken from cameras with differ-
ent angles. Hand craft methods are explored at first. Light-
ing Field Descriptor is a typical view based 3D shape de-
scriptor, whose input is a group of ten views and is obtained
from the vertices of a dodecahedron over a hemisphere. With
the proliferation of deep learning, many deep view based
models employing deep neural networks are proposed. As
a classic model, a multi-view convolutional neural network
(MVCNN) is introduced in (Su et al. 2015), where views
are fed into a weight-shared CNN and followed by a view-
pooling operation to combine them. In GVCNN (Feng et
al. 2018), the relationships between different views are ex-
ploited by a group based module. In 3D shape retrieval task,
various models are introduced. In (Gao et al. 2012), the 3D
objects retrieval is performed by the probabilistic matching.
In (Guo et al. 2016), the complex intra-class and inter-class
variations are settled by a deep embedding network super-



vised by both classification loss and triplet loss. In (Xie et
al. 2017), a deep network with auto-encoder structure is pro-
posed for 3D feature extraction. Triplet-center loss is intro-
duced in (He et al. 2018) as a well-designed loss function
especially for retrieval. In (Dai, Xie, and Fang 2018), a bidi-
rectional long short-term memory (BiLSTM) module is em-
ployed to aggregate information across different views.

Point Clouds Based Methods For point cloud based mod-
els, the input data is a set of points sampled from the sur-
face of the 3D shape. Although point cloud preserves more
completed structure information, the irregular and unstruc-
tured data prevent the usage of conventional 2D CNN. As
a pioneer, PointNet (Qi et al. 2017a) first introduces a deep
neural network to process disordered point cloud data. To
be invariant to the permutation, spatial transform block and
a symmetric function-max pooling are applied. Following
PointNet++ is proposed in (Qi et al. 2017b) to employ Point-
Net module in local point sets and then the local features are
aggregated in a hierarchical way. In Kd-Netowrk (Klokov
and Lempitsky 2017), features are extracted and gathered by
the subdivision of points on Kd-trees. For better exploiting
local structure information, DGCNN in (Wang et al. 2018)
proposes EdgeConv operation to get edge feature between
points and their neighbors. In PointCNN (Li et al. 2018), the
x-Conv operation is proposed to extract local patch features
and a hierarchical structure containing several y-Conv lay-
ers is applied like traditional CNN models.

Multimodal Methods Compared with 2D image, 3D
shape usually has more complex structure information,
which makes a single modality difficult to describe the 3D
shape completely. So the multimodal fusion is necessary
and beneficial if in an effective way(Gao et al. 2018). In
(Hegde and Zadeh 2016), FusionNet jointly employs vol-
umetric data and view data together to learn a unified fea-
ture representation. When it comes to the fusion of view
data and point cloud data, PVNet (You et al. 2018) uses
the global view feature to guide the local feature extraction
of point cloud. In the task of 3D object detection, MV3D
network (Chen et al. 2017) fuses the point cloud data from
LiDAR and view data from camera together to perform de-
tection task, which however projects the point cloud data to
bird’s eye view map and perform fusion in image level. Our
work differs greatly from them by mining the relationships
between point cloud data and multi-view data and propos-
ing the point-single-view fusion and point-multi-view fusion
based on the relation of two modalities.

Point-View Relation Network

In this section, the details of our proposed PVRNet are in-
troduced. The input of PVRNet are two modality data of a
3D shape: multi-view and point cloud data. The data acqui-
sition setting follows (You et al. 2018) to get 12 views and
1,024 points for each shape. Point cloud and multi-view data
are first individually fed to the corresponding feature extrac-
tor to get the global feature of the whole point cloud and the
view features for each view. Then, a relation score module is
proposed to learn the relevance of the point cloud and each
view. Based on the relation scores, both point-single-view
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Figure 3: Point-multi-view fusion and point-single-view fu-
sion modules. The enhanced view features are sorted by the
relation scores. Different colors denote different significance
values of relation scores. From the red to green, the relation
scores decrease from 1 to 0.

fusion and point-multi-view fusion are further exploited to
build a unified feature for 3D shape. The unified feature is
then used for the applications of shape classification and re-
trieval. The architecture of the whole framework is shown in
Fig. 2

Feature Extraction

Point cloud Let a point cloud of F'-dimension with n
points be X = {z1,...,2,} C R¥. In the general setting
of F' = 3, points are presented with 3D coordinates. We em-
ploy DGCNN (Wang et al. 2018) to extract the global feature
from point cloud. DGCNN includes a 3D spatial transform
network, several EdgeConv layers, and a max-pooling to ag-
gregate features. Note that our framework is compatible with
various models for point cloud feature extraction.

Multi-view Each 3D shape is represented by a group of
rendered views captured by a predefined camera array. Fol-
lowing MVCNN (Su et al. 2015), we feed these views to a
group of CNNs that share the same parameters. The view-
pooling is discarded so that the features of each view are
preserved.

Relation Score Module

For multimodal representation tasks, the core task is how
to effectively fuse features from multiple streams. In multi-
view branch, each view owns a part of local structures and
view features have various levels of discriminability for
shape representation. When fused with point cloud features,



all view features cannot be integrated effectively by a sim-
ple equal pooling scheme. Hence, it is essential to mine the
relation between point cloud and each view so as to find out
an effective solution for feature fusion.

Inspired by the relational reasoning network for the VQA
task (Santoro et al. 2017), we define the relation score of
point cloud and i*" view as:

RS;(P, V) = é(gé(pa Ui))’ (D

where p is the point cloud feature and V' = {vy,..., v, } de-
notes n extracted view features from a 3D shape. The func-
tion gy reasons the relations between the point cloud feature
and per-view feature and learns an effective fusion. In our
network, g uses the simple multilayer perceptrons (MLP)
and £ is the normalization function (sigmoid function is used
in our implementation). For each view, the output is a re-
lation score ranging from O to 1, which represents the sig-
nificance of the correlation between different views and the
point cloud.

The relation scores have two purposes: 1) enhance the
view features in a residual way and 2) decide which view
feature will be included in point-multi-view fusion. For fea-
ture enhancement, the view features that have a stronger cor-
relation with the point cloud feature will be assigned a larger
significance. We use the relation score RS (P, V') to enhance
the view features by a residual connection:

v, =v; % (1 + RS;(P,V)) 2)

where v; * RS;(P,V) is to refine the feature by relation
score and is then added to origin view feature v; to gener-
ate the enhanced feature v;. After that, the enhanced view
feature, point cloud feature, and relation scores are sent into
the point-single-view fusion module and point-multi-view
fusion module to get a integrated feature. The point-single-
view fusion and point-multi-view fusion are illustrated in
Fig. 3

Point-Single-View Fusion
Each view has its own local feature, so it is reasonable to em-
ploy the fusion between the point cloud and different views.
Consider a point-view set (PVSet) S,, = {p,v],...,v,},
where n denotes the number of views in this set and p de-
notes the corresponding point cloud feature. According to
the number of views in PV Sets, point-single-view fusion and
point-multi-view fusion are performed. Point-single-view
fusion module takes n PVSets containing point cloud and
each view as input and aggregates the pairwise relations.
When the PVSet only includes single view i , S1; =
{p, v;}. The pairwise set fusion function can be defined as:

SF; = hy(p,v;), 3)

where the subscript ¢ denotes that the fusion is about a point-
single-view set with the i*” view. We use multilayer percep-
trons (MLP) as function h. For point-single-view set, only
one set can not provide enough information. We therefore
aggregate n set relations covering all views with a simple
max-pooling operation. The final output of this block can be
described as below:

SFusion = SF = Maxpooling{SFy,...,SE,}, 4
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Point-Multi-View Fusion

We further explore the fusion between point cloud and mul-
tiple views. Under this circumstance, point cloud is com-
bined with several views to form PVSets. Relation scores
here decide which view features are included in the sets.
The view features are sorted according to the values of
the relation scores. Then the view features with higher re-
lation scores are selected to combine point cloud feature
to form PVSets. A set with k£ views can be denoted as
S = {p,v},...,v}}, where the top-k views that have the
highest relation scores are included. The fusion function can
be extended from the point-single-view fusion above:

MFy, = hy(p, vy, ..., ). (5)

With total K PVSets, different point-multi-view combina-
tions are accumulated together:

K
. 1
MFuswn:}];MFk. (6)

After that, the fusion features of two levels are aggregated
together by a concatenation operation to generate the final
point-view relation feature:

(7

where SFusion denotes point-single-view fusion feature
and M Fusion denotes point-multi-view fusion feature.
Then the final feature is followed by MLPs and softmax
function to produce the classification result.

Fusion = Concat(SFusion, M Fusion),

Implementation and Training Strategy

In our PVRNet framework, point cloud feature and view fea-
ture extraction can be produced by any view based and point
cloud based models. In our implementation, the 12 view fea-
tures are extracted by 12 AlexNets that share the same pa-
rameters like (Su et al. 2015). No view-pooling is performed
to preserve the feature of each view. PVRNet is trained in
an end-to-end fashion. The view feature extraction model
and point cloud feature extraction model is initialized by
the pre-trained MVCNN model and DGCNN model. And
an alternative optimization strategy is adopted to update our
framework. In first 10 epochs, the feature extraction model is
fixed and we only fine-tune the other part (including relation
score module, point-single-view fusion module and point-
multi-view fusion module). After the first 10 epochs, the all
parameters are updated together to get better performance.
The intuition of this strategy is that the feature extraction
part is well-initialized but the relation module and fusion
modules are relatively weak in the beginning, and this strat-
egy is more stable for the fusion.

Experiments

In this section, the experiment results of PVRNet on the
tasks of classification and retrieval are presented. The analy-
sis of results and comparison with the state-of-the-art meth-
ods including both point cloud methods, multi-view meth-
ods, and multimodal methods are also provided. In addition,
the ablation study of the proposed point-view relation fusion



Method Data Representation. Classification Retrieval
Number of Views (Overall Accuracy) (mAP)
(1) 3D ShapeNets (Wu et al. 2015) Volumetric 77.3% 49.2%
(2) VoxNet (Maturana and Scherer 2015) Volumetric 83.0% -
(3) VRN (Brock et al. 2016) Volumetric 91.3% -
(4) MVCNN-MultiRes (Qi et al. 2016) Volumetric 91.4% -
(5) LFED (Chen et al. 2003) 10 Views 75.5% 40.9%
(6) MVCNN (AlexNet) (Su et al. 2015) 12 Views 89.9% 80.2%
(7) MVCNN (GoogleNet) 12 Views 92.2% 83.0%
(8) GVCNN (GoogLeNet) (Feng et al. 2018) 8 Views 93.1% 84.5%
(9) GVCNN (GooglLeNet) 12 Views 92.6% 85.7%
(10) MVCNN with TCL (He et al. 2018) 12 Views - 88.0%
(11) PointNet (Qi et al. 2017a) Point Cloud 89.2% -
(12) PointNet++ (Qi et al. 2017b) Point Cloud 90.7% -
(13) KD-Network (Klokov and Lempitsky 2017) Point Cloud 91.8% -
(14) SO-Net (Li, Chen, and Lee 2018) Point Cloud 90.9% -
(15) DGCNN (Wang et al. 2018) Point Cloud 92.2% 81.6%
(16) FusionNet (Hegde and Zadeh 2016) Volumetric and 20/60 Views 90.8% -
(17) PVNet (You et al. 2018) Point Cloud and 12 Views 93.2% 89.5%
(18) PVRNet (AlexNet) Point Cloud and 12 Views 93.6% 90.5%

Table 1: Classification and retrieval results on the ModelNet40 dataset. In experiments, our proposed framework PVRNet
is compared with state-of-the-art models that use different representations of 3D shapes. MVCNN (GoogLeNet) means that
GoogLeNet is employed as base architecture for weight-shared CNN in MVCNN. PVRNet (AlexNet) indicates using AlexNet
as base structure in our view feature extraction and our PVNet framework can get superior performance over other models.

module is also investigated. At last, we explore the effect of
different number of views and points toward the classifica-
tion performance.
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Figure 4: The precision-recall curves of our PVRNet and
other compared methods in the task of shape retrieval. In
MVCNN and GVCNN models, GoogLeNet is employed as
the base network. The metric denotes the low-rank Maha-
lanobis metric learning is used. Our PVRNet, with no spe-
cific metric and retrieval loss employed, still get superior
performance over others.
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3D Shape Recognition and Retrieval

To demonstrate the performance of the proposed PVRNet on
3D shape recognition and retrieval, comprehensive experi-
ments are conducted on the dataset of Princeton ModelNet
(Wu et al. 2015). ModelNet contains 127,912 3D CAD mod-
els from 662 categories. ModelNet40, a more commonly
used subset containing 12,311 3D CAD models from 40
popular categories, is applied in our experiments. Our train-
ing and test split setting follows (Wu et al. 2015). Individu-
ally, point cloud data are sampled from the surface of each
CAD model as (Qi et al. 2017a) and view data are captured
by camera as the setting in (Su et al. 2015).

In experiments, various methods based on different
modalities are compared with PVRNet. Volumetric based
methods such as 3D ShapeNets(Wu et al. 2015), Vox-
elNet(Maturana and Scherer 2015), VRN(Brock et al.
2016), and MVCNN-MultiRes(Qi et al. 2016) are com-
pared. Multi-view based methods consist of hand-craft de-
scriptor LFD(Chen et al. 2003), deep learning models
MVCNN(Su et al. 2015), and GVCNN(Feng et al. 2018).
PointNet(Qi et al. 2017a), PoineNet++(Qi et al. 2017b), Kd-
Network(Klokov and Lempitsky 2017), DGCNN(Wang et
al. 2018) and SO-Net(Li, Chen, and Lee 2018) are included
in the point cloud based methods. For multimodal methods,
FusionNet(Hegde and Zadeh 2016) and PVNet(You et al.
2018) are compared.

The experimental comparison is shown in Tab. 1. PVRNet
achieves the best performance with the classification accu-
racy of 93.6% and retrieval mAP of 90.5%. Compared with



Mean Class Overall

LGS Acc. Acc.
Point Cloud Model 90.2% 92.2%
Multi-View Model 87.6% 89.9%
Late Fusion 90.81% 92.62%
SFusion 90.93% 92.84%
S+M Fusion(1+2view) 91.35% 92.99%
S+M Fusion(1+2+3view) 91.43% 93.47%
S+M Fusion(1+2+3+4view) 91.64% 93.61%

Table 2: Ablation experiments of our framework on the clas-
sification task.

view based models, our proposed PVRNet with AlexNet
has an improvement of 1.4% and 7.5% over the classic
MVCNN (use GoogleNet as backbone) on the classifica-
tion and retrieval tasks, respectively. PVRNet also outper-
forms the state-of-the-art GVCNN with the improvement of
0.5% and 4.8% on the classification and retrieval tasks, re-
spectively. Compared with state-of-the-art point cloud based
models, PVRNet outperforms DGCNN by 1.4% and 8.9% in
terms of classification and retrieval accuracy, respectively.
For multimodal methods, the performance of PVRNet also
outperforms others.

For retrieval task, we take the 256-dimensional feature
before the last fully-connected layer as the shape repre-
sentation. For MVCNN and GVCNN, a low-rank Maha-
lanobis metric learning (Su et al. 2015) is applied to boost
the retrieval performance. As in (He et al. 2018), triplet-
center loss is used as the loss function. Trained with gen-
eral softmax loss and without low-rank Mahalanobis met-
ric, PVRNet can achieve the state-of-the-art retrieval perfor-
mance with 90.5% mAP, which indicates the capability of
the fused feature for 3D shape representation. Fig. 4 presents
the precision-recall curve of our model. It is shown that
our PVRNet, without specific metric learning and retrieval
loss, can still significantly outperforms the point cloud based
model and view based methods that have triplet-center loss
and metric learning.

Ablation Analysis

In this section, we go deep into PVRNet to investigate the ef-
fectiveness of our point-view relation fusion method. There
are two popular fusion methods, early fusion and late fusion,
for multimodal fusion task. For the problem of the fusion of
point cloud and multi-view in this paper, early fusion is not
available because of the different dimension number of two
representations as well as the disordered property of point
cloud. However, as for late fusion, the global feature from
point cloud model and global view feature after the step
of view-pooling can be directly concatenated together for
shape representation. But various views have different rela-
tionships with point cloud. Some views are more informative
for combining with point cloud feature. So in our PVRNet,
the relations between point cloud and views are described by
relation scores, which then guide point-view fusion to build
a unified representation for 3D shape.
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Models Number of Mean Class Overall
Views Acc Acc

4 82.5% 84.6%

8 87.2% 89.0%

MVCNN 10 o7 4% S0 a0
12 87.6% 89.99%

4 88.1% 90.3%

8 90.2% 92.1%

GVCNN 10 90.4% oo
12 90.7% 92.6%

4 89.5% 91.5%

8 91.4% 93.2%

PVRNet 10 o130 o2 20y
12 91.6% 93.6%

Table 3: The comparison of different number of input views.
1,024 points and 12 views are feed to train models and we
respectively employ 4, 8, 10, 12 views as our test data that
are captured by cameras with 90°, 45°, 36°, 30° interval.
Top: The result of MVCNN; Middle: The result of GVCNN;
Bottom: The result of our PVRNet.

To well study the effectiveness of PVRNet, we eval-
uate the performance of different combinations of our
model’s components. And the influence of different num-
ber of PVsets is investigated. The detailed experimental
results are shown in Tab. 2. In the table, ”Point Cloud
Model” denotes the point cloud feature extraction model
used in PVRNet. "Multi-View Model” denotes the multi-
view feature extraction model we use where MVCNN with
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) is em-
ployed. “Late Fusion” denotes the result of direct late fu-
sion of two global features. ”SFusion” denotes only Point-
single-view fusion block is employed. ”’S+M Fusion(1+...+
n view)” denotes employing both point-single-view fusion
and point-multi-view fusion with n sets, where each set in-
cludes point cloud and n views. PVRNet outperforms not
only the baseline multi-view and point cloud methods by a
large margin but also the late fusion method by about 1%
in overall accuracy and 0.8% in mean class accuracy. And
it can be seen that our point-single-view fusion and point-
multi-view fusion are both beneficial to the performance.
With more meaningful views included in point-multi-view
fusion block, the performance of our network progressively
improves from 92.84% to 93.61%, which validates the ef-
fectiveness of our point-multi-view fusion.

To better explain the effect of our PVRNet, we further vi-
sualize the views sorted by relation scores in Fig.5. It can
be found that the views having higher relation scores are
usually more informative, which are beneficial to be com-
bined with point cloud. So our relation score module can
effectively capture the correlations between point cloud and
views and help to build and powerful feature for shape rep-
resentation.
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put points. Left: Overall accuracy of PVRNet and DGCNN.
Right: Mean class accuracy of PVRNet and DGCNN.

Influence of Missing Data

In this section, we evaluate the robustness of PVRNet to-
ward missing data. In real world, it often happens that we
can only get part of data as input. At that time, we also ex-
pect the network to give satisfactory performance under this
situation. It can demonstrate the generalization ability and
robustness of our method.

At first, we investigate the influence of missing views.
PVRNet is trained with 12 views and 1024 points. In the
testing, we keep the number of points fixed as 1,024 but vary
the number of views. 4, 8 10, 12 views are successively se-
lected as input. The comparison of PVRNet and MVCNN
and GVCNN is shown in Tab. 3. Note that MVCNN and
GVCNN are also trained with 12 views. It indicates that
with the reduced views, PVRNet can still keep a high per-
formance of more than 91% accuracy. And with 4 views,
compared with the performance drop of 5.3% of MVCNN
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and 2.3%, PVRNet only drops 2.1%.

Then we explore the influence of missing points. In the
testing, the number of views is fixed at 12 and the num-
ber of points varies from 128 to 1,024. 128, 256, 384, 512,
640, 768, 896, and 1,024 points are respectively selected
in the experiment. PVRNet is compared with state-of-the-
art point cloud based model DGCNN. From the Fig. 6, we
can find that point missing greatly degrades the performance
of DGCNN. When 256 views are used, the performance of
DGCNN drops to about 50%, while PVRNet can still keep a
satisfactory performance of around 80%. The relatively sta-
ble result benefits from the complement of corresponding
view information which can help to compensate for the in-
fluence of missing points.

The detailed experimental results demonstrate that our
PVRNet is robust to the problem of data missing. That is due
to the multimodal compensation of our framework. Point
cloud feature and view feature are complementary to each
other in the fusion process.

Conclusions

In this paper, we propose a point-view relation neural net-
work called PVRNet for 3D shape recognition and retrieval.
PVRNet is a novel multimodal fusion network which takes
full advantage of the relationship between point cloud and
views. In our framework, we fuse the view features and the
point cloud feature in two branches. One branch uses the re-
lation between the point cloud and each single view to gener-
ated a fusion feature called point-single-view fusion feature.
The other branch exploits the relations between the point
cloud and multiple sets of views, each of which has different
number of most relevant views. Then, we further fuse the fu-
sion features from these two branches to obtain a unified 3D



shape representation. The effectiveness of our framework is
evaluated by comprehensive experiments on ModelNet40 on
the tasks of classification and retrieval. Ablation results and
visualization results indicate that the proposed point-view
relation based feature fusion scheme has significant contri-
bution to the proposed framework.
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