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Abstract

Facial prior knowledge based methods recently achieved
great success on the task of face image super-resolution (SR).
The combination of different type of facial knowledge could
be leveraged for better super-resolving face images, e.g., fa-
cial attribute information with texture and shape information.
In this paper, we present a novel deep end-to-end network
for face super resolution, named Residual Attribute Attention
Network (RAAN), which realizes the efficient feature fusion
of various types of facial information. Specifically, we con-
struct a multi-block cascaded structure network with dense
connection. Each block has three branches: Texture Predic-
tion Network (TPN), Shape Generation Network (SGN) and
Attribute Analysis Network (AAN). We divide the task of
face image reconstruction into three steps: extracting the pixel
level representation information from the input very low res-
olution (LR) image via TPN and SGN, extracting the seman-
tic level representation information by AAN from the input,
and finally combining the pixel level and semantic level in-
formation to recover the high resolution (HR) image. Exper-
iments on benchmark database illustrate that RAAN signif-
icantly outperforms state-of-the-arts for very low-resolution
face SR problem, both quantitatively and qualitatively.

1. Introduction
Face super-resolution (SR), also known as face hallucina-
tion, is the process of recovering a high-resolution (HR) face
from an input low-resolution (LR) face image. Face SR can
be used as an important means of image preprocessing and
widely used in various fields related to face images, e.g.,
face parsing (Li 2017), identity recognition (Taigman 2014;
Wang, Ye, and Yang 2018; Wang, Hu, and Yu 2016), and
face alignment (Jourabloo, Ye, and Liu 2017), where high-
frequency face details are desired.

Deep convolutional neural network (CNN) based SR
methods have achieved significant improvements over con-
ventional SR methods. Dong et al. (Dong, Loy, and He
2016) proposed SRCNN by firstly introducing CNN to im-
age SR, which has established a nonlinear mapping from LR
to HR image. Considering face hallucination is a domain-
specific super-resolution problem, the prior knowledge in
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Figure 1: Face super-resolution results by state-of-the-art
methods on scale factor 8. (a) Original HR images. (b) In-
put LR images. (c) Results of Ledig et al.′s method (SR-
ResNet) (Ledig, Theis, and Huszar 2017). (d) Results of
Tuzel et al.′s method (GLN) (Tuzel, Taguchi, and Her-
shey 2016). (e) Results of Huang et al.′s method (Wavelet-
SRNet) (Huang, He, and Sun 2017). (f) Results of Yu et
al.′s method (AEUN) (Yu, Basura, and Richard 2018). (g)
Results of our RAAN. (h) Results of our RAAN-GAN.

face images could be pivotal for face image super-resolution.
Tuzel et al. (Tuzel, Taguchi, and Hershey 2016) proposed
GLN to extract the global and local information from face
images. Yu et al. (Yu and Porikli 2016) investigated GAN
(Goodfellow, Pouget-Abadie, and Mirza 2014) to create per-
ceptually realistic HR face images. Zhu et al. (Zhu, Liu, and
Chen 2016) proposed CBN to overcome the different face
spatial configuration by dense correspondence field estima-
tion. Tai et al. (Tai, Chen, and Liu 2018) employed facial
landmarks and parsing maps to train the network. Yu et al.
(Yu, Basura, and Richard 2018) introduced a facial attribute
embedding method into face image SR problem.

Among them, the face prior information can roughly di-
vided into two levels: the pixel level representation and
the semantic level representation. Pixel level representation
refers to the information of landmark, component and tex-
ture. Semantic level representation could be regarded as face
attributes, e.g. age, gender and smile. However, most of ex-
isting methods explore only single type of face prior infor-
mation, where prior information is not fully utilized. Fig. 1
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presents the hallucinated details generated by state-of-the-
art face SR methods. Neither the pixel level representation
based methods SRResNet (Ledig, Theis, and Huszar 2017),
GLN (Tuzel, Taguchi, and Hershey 2016),Wavelet (Huang,
He, and Sun 2017) nor the semantic level representation
based method AEUN (Yu, Basura, and Richard 2018) could
learn the complex nonlinear mapping from LR to HR using
limited facial information.

On the other hand, many previous face SR methods
are complicated and difficult for application in real-world
scenes. For instance, URDGN (Yu and Porikli 2016) and
Attention-FH (Cao, Lin, and Shi 2017) requires that the in-
put face images need to be pre-aligned. The Structured-FH
(Yang, Liu, and Yang 2013) method and the CBN (Zhu, Liu,
and Chen 2016) method adopt multi-stage network to recon-
struction face image, rather than an end-to-end manner.

To practically resolve these problems, we propose a novel
end-to-end Residual Attribute Attention Network (RAAN)
for an easy trainable while effectively combining multi-level
prior information. In this work, we divide the pixel level
information of face images into texture feature and shape
feature information. These features are taken as the basic
features. The semantic level features are treated as a kind
of control features. These control features could be used to
guide the recombination of basic features to enhance the di-
versity of facial information.

Our RAAN is a multi-block cascaded network with dense
connection, as shown in Fig.2. For each block, we first
extract a set of coarse feature maps from the input, and
feed them into three branches: Shape Generation Network
(SGN), Texture Prediction Network (TPN) and Attribute
Analysis Network (AAN). SGN is to generate facial global
features such as shape and contours, TPN complements
other information such as textures and components, and
AAN extracts the attributes from the input image and guides
the recombination of pixel level information by channel at-
tention.

The main contributions of this work are threefold. (1)
To the best of our knowledge, this is the first face super-
resolution network which jointly utilizes facial prior infor-
mation at pixel level and semantic level. (2) We first intro-
duce the channel attention method into the face super resolu-
tion, and proposed a residual channel attention based multi-
level information fusion strategy. (3) We proposed multi-
dense connection structure to construct very deep trainable
networks. The interstage connections and original connec-
tions could help the very deep network easy to train and
avoid the problem of local convergence.

2. Related Work
Example-based SR methods achieved state-of-the-art per-
formance by learning a mapping from LR image patches
to HR image patches, e.g. dictionary learning-based meth-
ods (Lu, Yuan, and Yan 2012), local linear regression-
based methods (Timofte, De, and Van Gool 2014), ran-
dom forest-based method (Schulter, Leistner, and Bischof
2015) etc.. Recently, due to the outstanding learning ability,
deep learning-based methods have demonstrated high supe-
riority over classical example-based methods. Some works

(Dong, Loy, and He 2016; Shi, Caballero, and Huszar 2016)
have been introduce to the SR problem due to their ex-
cellent ability to learn knowledge from large scale of im-
age patches. However, Because of the shallower network
layers, theses networks have limited representation abil-
ity to fit the complicated nonlinear mapping from LR to
HR. The very deep network (Kim, Lee, and Lee 2016;
Ledig, Theis, and Huszar 2017; Tai, Yang, and Liu 2017)
have been proposed to overcome this problem. A variety
of skip connections are used in these methods, which leads
these networks easily going deeper to enhance their repre-
sentation ability. This also motivates us to employ a multi-
block dense connection cascaded structure as our main net-
work struture.

For face super-resolution, there are abundant facial prior
information which could be used into the image reconstruc-
tion process. GLN transforms the input image into global
and local feature maps by convolution and full connection.
Zhu et al. (Zhu, Liu, and Chen 2016) presented an uni-
fied framework for face super-resolution and dense corre-
spondence field estimation to recover textural details. They
achieve state-of-the-art results for very low resolution in-
puts but fail on faces with various poses and occlusions
due to the difficulty of accurate spatial prediction. Yu et al.
(Yu and Porikli 2016) used the discriminant network with
strong facial prior information to generate perceptually re-
alistic HR face images. They further proposed transforma-
tive discriminative autoencoder to super-resolve unaligned,
noisy and tiny LR face images (Yu and Porikli 2017). Cao et
al. (Cao, Lin, and Shi 2017) proposed an attention-aware
face hallucination framework, which resorts to deep re-
inforcement learning for sequentially discovering attended
patches and then performs the facial part enhancement by
fully exploiting the global image interdependency. Huang et
al. (Huang, He, and Sun 2017) proposed an Wavelet-based
CNN method, which learns to predict the LR’s correspond-
ing series of HR’s wavelet coefficients, and utilizes them to
reconstructing HR images. Chen et al. (Tai, Chen, and Liu
2018) introduced facial landmarks and parsing maps to train
the network by multi-supervision. Yu et al. (Yu, Basura, and
Richard 2018) proposed an attribute embedding based cod-
ing and decoding network, which first encodes LR images
with facial attributes and then super-resolves the encoded
features to hallucinate LR face images.

Attention has been introduced by many recent works as
a method to enhance the ability of feature extraction. Hu et
al. (Hu, Shen, and Sun 2017) focuses on channels and pro-
posed Squeeze-and-Excitation block, which adaptively re-
calibrates channel-wise feature responses by modeling the
interdependencies between channels. Wang et al. (Wang,
Jiang, and Qian 2017) proposed residual attention network
with a trunk-and-mask attention mechanism to obtain signif-
icant performance improvement. Attention is actually a re-
combination of the information flow in the network. Its pur-
pose is to increase the proportion of information-rich regions
and restrain redundant information to improve the nonlinear
mapping ability of the network. However, existing attention
vectors are used only as the importance of feature maps, but
lack further definitions. In this work, We redefine the chan-
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Figure 2: Pipeline of our proposed RAAN model.

nel attention with the facial attributes, and introduce it to the
task of face image SR. Experimental results proved the sig-
nificance of our attribute attention.

3. Residual Attribute Attention Network
The pipeline of our proposed RAAN model is shown in Fig.
2. Let x denote the LR input image and y as the recov-
ered high-resolution image. We first extract the feature maps
from the input LR image, and regard them as the basic fea-
tures as follows,

F0 = C1(x), (1)
where C1 denotes the mapping from a LR image x to basic
feature maps F0 implemented by some convolution layers.
Then, F0 is fed into the network of multiple stacked residual
attribute attention blocks. For each block, we have

Fn = Rn(Fn−1;Fn−1, Fn−2, ..., F0), (2)
where Fn is the output of the nth Residual Attribute At-
tention Block (RAAB), Rn is the block function and N is
the number of RAAB. The input of each block can be di-
vided into two parts: Fn−1, which is the direct signal input
between adjacent blocks, and Fn−1, Fn−2, ..., F0 which are
the output of previous blocks and are transmitted to current
block by Interstage Connection. To the best of our knowl-
edge, our multiple RAAB achieves the largest depth so far
and provides very large receptive field size. So we treat its
output as final residual features, and directly acquire HR
face image by C2 as follows,

y = C2(FN ) + x. (3)

Given a training set {x(i), âtt
(i)
, ŷ(i)}Mi=1, M is the num-

ber of training images, ŷ(i) is the ground-truth HR image

corresponding to the LR image x(i), and âtt
(i)

is the corre-
sponding ground-truth attribute information. The loss func-
tion of our RAAN is

LG(θ) =
1

M

M∑
i=1

{
∥∥ŷ(i) − y(i)∥∥+ λ

N∑
n=1

∥∥∥âtt(i)(n) − att
(i)

(n)

∥∥∥},
(4)

where θ denotes the parameters, λ is the trade-off between
the attribute prior information and the prediction loss, y(i)

and att(i)(n) are the recovered HR image and the estimated
prior attributes for the ith image at the nth RAAB block.

3.1 Details on RAAB
For each set of basic image features Fn, we fed it into the
Residual Attribute Attention Block for more accurate facial
feature information. In this part, we present the details of our
RAAB, as shown in Fig. 3. It contains one feature extraction
block and three branches. Different type of information are
fused at the end of the block.

Feature Extraction Block Considering different sensitiv-
ities of three branches to each type of information, we first
pre-extract the features from the input feature maps by a
Feature Extract Block (FEB), aiming to obtain the desired
features easier for next three branches. The architecture of
the FEB is shown in the Fig. 3, which consists of four 3× 3
convolution layers:

Fn,P = P (Fn), (5)

where P () and Fn,P is the function and output of the FEB
respectively.

SGN and TPN The pixel level information of face image
could be divided into shape and texture information. Consid-
ering the shape information is better preserved compared to
the texture when reducing the resolution from high to low,
we propose the SGN structure to generate the shape infor-
mation, which consists of an encoder and a decoder. The
encoder continuously down-samples the image to remove
the texture information. The decoder then recovers the shape
features to the same size as the input image. In addition, we
establish many skip connections between the encoder and
the decoder. Our structure of shape generation network is
shown in Fig. 3. For the pre-extract features Fn,P , we have

Fn,P,S = S2(S1(Fn,P )), (6)

where S1() and S2() are the encoding and decoding model
respectively, and Fn,P,S is shape features of the input image.
In terms of the texture information, we propose TPN to sup-
plement the texture features in the network. It is well known
that the receptive field of the network has a remarkable ef-
fect on the ability of nonlinear mapping. A larger receptivity
field can make the network more sensitive for the details of
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Figure 3: Structure of Residual Attribute Attention Block (RAAB).
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Figure 4: Detail Structure of Attribute Attention Network (AAN).

the input signal, and facilitate the extraction of texture in-
formation. Thus our TPN starts with a 3 × 3 convolution
layer, and followed by two dilated blocks, and then another
3 × 3 convolution layer is used to reconstruct the texture
graphs. The dilated convolution can effectively increase the
mapping range of each pixel between adjacent network lay-
ers, and improve the receptivity field of each layer of the
network. For each dilated block, we have three dilated con-
volution layers with dilate coefficient 2, 3 and 2 respectively.
Our model of TPN could be formulated as

Fn,P,T = T3(D2(T2(D1(T1(Fn,P ))))), (7)

where T1, T2, T3 are three 3× 3 convolution layers, D1 and
D2 represent two dilated blocks, and Fn,P,T is the texture
features of the input image. SGN and TPN are employed to
extract pixel level information. Then, we make further en-
hancements to these pixel information as introduced in the

following subsection.

Attribute Attention Network Compared with natural im-
ages, face images have more prior information and can
be used to facilitate image reconstruction, such as face at-
tributes. Previous works (Tuzel, Taguchi, and Hershey 2016;
Ledig, Theis, and Huszar 2017; Huang, He, and Sun 2017)
only take LR images as inputs and then super-resolve them
by convolutional layers, or only introduce the single type of
prior information to the network (Yu, Basura, and Richard
2018; Tai, Chen, and Liu 2018). These works have not taken
the correlation among diverse prior information into ac-
count.

In this part, We introduce the attribute information of se-
mantic level representation on the basic of pixel level fea-
tures. We use the attributes to define the distribution of face
pixel level information by the means of channel attention.
Considering the information passing through SGN and TPN
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is inevitably lost because of their different tendencies for
feature extraction, the input of AAN is consistent with SGN
and TPN. We first acquire the high-level features of the in-
put image by an encoder which stacks multiple convolution
layers. As shown in Fig. 4, for the set of high-level repre-
sentation information, we selected one of the sections as the
attribute information, and it will be supervised during the
training of the network. Then, this set of high-level features
is fed into the two full connection blocks for the channel
attention. The outputs of two full connection blocks are cor-
responding to the shape feature and the texture feature re-
spectively. AAN could be formulated as,

An,a = At(Fn,P ), (8)

Rn,a,t = Ft(An,a), (9)

Rn,a,s = Fs(An,a), (10)

where At() is the function of attribute encoder, An,a is the
representation level information with facial attributes, Ft()
and Fs() are two full connection blocks, and which output
Rn,a,t and Rn,a,s are the residual attribute attention of the
texture and shape features. Those are then multiplied to the
output of TPN and SGN, for further enhancing the pixel
level information (Hong, Yu, and Wan 2015).

Multi-dense connection structure We proposed a multi-
dense connection structure, which can be divide it into in-
terstage connection and original connection. The commonly
used dense connection back propagates the gradient of the
network more easily during the training process (Szegedy,
Vanhoucke, and Ioffe 2016; Huang, Liu, and Weinberger
2017). However, in this work, very low resolution face im-
ages might map to many high resolution face candidates dur-
ing the process of making them high resolution. Because the
network lacks the ability to distinguish the features, it only
trains in the direction of decreasing the loss gradient quickly.
So, the classical dense connection would make the network
more prone to local convergence and to get a low perfor-
mace face image. To avoid this phenomenon, we proposed
the multi-dense connection. At first, the interstage connec-
tion could make the network gradient more easily back prop-
agation, and extend the range of perception for each block
of feature maps. Then, the original connection improves the
network utilization of input image information by enhancing
the original information between the adjacent blocks of the
network, and avoids the phenomenon of local convergence.

3.2 RAAN-GAN
GAN-based methods achieve good visual effect for image
synthesis (Ledig, Theis, and Huszar 2017). Because of its
prominent features (such as symmetry of contour, similar-
ity of components), we propose to incorporate GAN into
our framework. The key idea is to use a discriminant net-
work to distinguish the super-resolved images and the real
high-resolution images, and also to train the SR network to
deceive the discriminator.

Our discriminant network consists of eight convolution
layers and two full connection layers. The objective function
of the adversarial network D is expressed as

LD(G,D) = E[logD(ŷ, x)]

+E[log(1−D(G(x), x))],
(11)

where E is the expectation of the log probability distribu-
tion and D is the generative model. The loss function of our
generative model could be formulated

argmin
G

max
D

LG(θ) + γLD(G,D) (12)

where γ is the trade-off between the discriminant loss and
the aforementioned RAAN loss.

4. Experimental Results and Analysis
We conduct extensive experiments on celebA dataset (Liu,
Luo, and Wang 2015). We use the first 18000 images for
training, and the following 100 images for testing. We
coarsely crop the training images according to their face re-
gions and resize to 128 × 128 without any pre-alignment
operation. Here we use color images for training as SR-
GAN does (Ledig, Theis, and Huszar 2017). The input low-
resolution images are firstly resized by bicubic interpolation
to the same size as the output high-resolution images. We
implement our moel using the pytorch environment. Adam
with an initial learning rate of 3 × 10−4 are used in our
model. The batch size is set to 16. We empirically set λ = 1
and γ = 0.01. Training a basic RAAN on celebA dataset
generally takes 5 hours with one Titan X Pascal GPU.

4.1 Comparisons with State-of-the-Art Methods
We compare our proposed RAAN and RAAN-GAN with
state-of-the-art SR methods, including generic SR meth-
ods like SRResNet (Ledig, Theis, and Huszar 2017), VDSR
(Kim, Lee, and Lee 2016) and SRCNN (Dong, Loy, and He
2016); and facial SR methods like GLN (Tuzel, Taguchi, and
Hershey 2016), Wavelet-SRNet (Huang, He, and Sun 2017)
and FSRNet (Tai, Chen, and Liu 2018). Aiming at fair com-
parison, we train all models (except the FSRNet) with the
same training set. For FSRNet, We use the trained model
provided by the authors to directly generate results. FSRNet
choose first 18000 images for training, and rotate images by
90◦, 180◦, 270◦ and flip them horizontally, which training
dataset is bigger than ours.

we compare RAAN with the state-of-the-arts quantita-
tively. Tab. 1 summarizes quantitative results on the Celeba
datasets. Our RAAN significantly outperforms state-of-the-
arts in both PSNR and SSIM. Qualitative comparisons of
RAAN/RAAN-GAN with prior works are illustrated in Fig.
5. We follow the same experimental setting on handling oc-
clued face as Wavelet-SRNet (Huang, He, and Sun 2017)
and directly import the 16 × 16 test examples for super-
resolving 128 × 128 HR images. Benefiting from the facial
attribute attentions, our method produces relatively sharper
edges and shapes, while other methods may give more blurry
results. Moreover, RAAN-GAN further recovers sharper fa-
cial textures than RAAN.
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Figure 5: Face super-resolution examples by state-of-the-art methods on scale 8. (a) Original HR images. (b) Input LR images.
(c) Results of Ledig et al.′s method (SRResNet) (Ledig, Theis, and Huszar 2017). (d) Results of Tuzel et al.′s method (GLN)
(Tuzel, Taguchi, and Hershey 2016). (e) Results of Huang et al.′s method (Wavelet-SRNet) (Huang, He, and Sun 2017). (f)
Results of Tai et al.′s method (FSRNet) (Tai, Chen, and Liu 2018). (g) Results of our RAAN. (h) Results of our RAAN-GAN.

Scale Bicubic SRCNN VDSR SRResNet GLN Wavelet-SRNet FSRNet RAAN
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×4 28.07/0.8097 29.55/0.8456 30.36/0.8632 30.48/0.0.8674 30.60/0.8685 29.97/0.8612 - 31.22/0.8804
×8 24.06/0.6535 24.98/0.6924 26.17/0.7410 26.48/0.7529 25.94/0.7371 26.16/0.7460 26.82/0.7601 27.03/0.7740

Table 1: Benchmark super-resolution, with PSNR/SSIMs for scale 8. The red and blue text indicates the best/second best
performance.
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26.8
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27

27.1

BasicNet v1 BasicNet v2 BasicNet v3 RAAN

图表标题

Without attributes With attributes

Figure 6: Ablation study on effects of different attribute at-
tentions.

4.2 Model Analysis
We conduct ablation study on the effects of attribute atten-
tion, and clearly show how the performance improves with
different kinds of feature attention. In this test, we estimate
the facial attributes through the attribute analysis network
instead of using the ground truth conducted. Same as the
tests conducted in Fig. 6, we conduct 7 experiments to esti-
mate the different kinds of features. Specifically, by remov-
ing the attribute analysis network from our basic RAAN, the
remaining parts constitute the first network, named ‘Basic-
Net v1’, which has a dual network structure. The second net-

work named ‘BasicNet v2’, and The third network named
‘BasicNet v3’, them based on the ‘BasicNet v1’ have the at-
tribute analysis network but just connected to the SGN and
TPN respectively.

Fig. 6 shows the results of different network structures. It
can be seen that: 1.Compared to the first networks, the super-
vision on facial attribute further improves the performance,
which indicates the estimated facial priors indeed have pos-
itive effects on face super-resolution. 2. The enhancement
of facial texture information, could more obvious promote
the performance of face image super-resolution than the fa-
cial shape information. 3. The model using both attentions
achieves the best performance, which indicates richer facial
information brings more improvement.

Then, we also focus on the different kinds of skip con-
nections, and conduct 4 experiments. As shown in Fig. 8,
‘Basic’ is our network but without skip connection, ‘IC’ and
‘OC’ corresponding to the Interstage Connection (IC) and
Original Connection (OC). It can be find that OC could pro-
mote the performance of network but IC not. The combina-
tion of IC and OC (RAAN) could get better performance.

4.3 Subjective Visual Evaluation
In this section, we compaired our RAAN and RAAN-GAN
with the state-of-the-art GAN based methods like URDGN,
TDAE, AEUN and FSRGAN. Except the FSRGAN, we also
train these models with the same training set. As shown in
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7: Visual evaluation on scale 8. (a) Original HR images. (b) Input LR images. (c) Results of Yu et al.′smethod (URDGN)
(Yu and Porikli 2016). (d) Results of Yu et al.′s method (TDAE) (Yu and Porikli 2017). (e) Results of Yu et al.′s method
(AEUN) (Yu, Basura, and Richard 2018). (f) Results of Tai et al.′s method (FSRGAN) (Tai, Chen, and Liu 2018). (g) Results
of our RAAN. (h) Results of our RAAN-GAN.
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27

27.02
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Figure 8: Ablation study on effects of skip connection.

Fig. 7, Our RAAN-GAN achieves better visual effects than
the state-of-the-arts, especiall the texture of hair and face.
The structure of URDGN is relatively simple, the effect of
model mapping is slightly inadequate. AEUN can be seen as
an improvement by introduction the face attribute informa-
tion to TADE, thus the individual components of face im-
age will be generated more clearly. FSRGAN can generate
face images with clear contour by their Prior Estimation Net-
work, but slight shortage of texture generation.

Conclusion
In this paper, a novel deep end-to-end trainable Residual
Attribute Attention Network (RAAN) is proposed for face
super-resolution. The key contribute of RAAN is the method
of residual attribute attention. We divide the information of
face image into the shape features and texture features. And

according to the attribute information which learned from
the input LR face image, achieving the recombination of
these two kinds of information by channel attention. Exten-
sive benchmark experiments show that RAAN significantly
outperforms state-of-the-arts. In addition, we also proposed
a multi-dense connection method, It could make the very
deep network easy training and avoid the problem of local
convergence.
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