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Abstract

This paper proposes a two-stream convolution network to
extract spatial and temporal cues for video based person Re-
Identification (ReID). A temporal stream in this network is
constructed by inserting several Multi-scale 3D (M3D) con-
volution layers into a 2D CNN network. The resulting M3D
convolution network introduces a fraction of parameters into
the 2D CNN, but gains the ability of multi-scale temporal
feature learning. With this compact architecture, M3D convo-
lution network is also more efficient and easier to optimize
than existing 3D convolution networks. The temporal stream
further involves Residual Attention Layers (RAL) to refine the
temporal features. By jointly learning spatial-temporal atten-
tion masks in a residual manner, RAL identifies the discrim-
inative spatial regions and temporal cues. The other stream
in our network is implemented with a 2D CNN for spatial
feature extraction. The spatial and temporal features from two
streams are finally fused for the video based person ReID.
Evaluations on three widely used benchmarks datasets, i.e.,
MARS, PRID2011, and iLIDS-VID demonstrate the substan-
tial advantages of our method over existing 3D convolution
networks and state-of-art methods.

Introduction
Current researches on person Re-Identification (ReID) mainly
focus on two lines of tasks depending on still images and
video sequences, respectively. Recent years have witnessed
the impressive progresses in image based person ReID,
e.g., deep visual representations have significantly boosted
the ReID performance on image based ReID datasets (Li,
Zhu, and Gong 2018b; Xu et al. 2018; Liu et al. 2018b;
Su et al. 2016; 2015). Being able to explore plenty of spa-
tial and temporal cues, video based person ReID has better
potentials to address some challenges in image based per-
son ReID. Fig. 1 shows several sampled frames from person
tracklets. As shown in Fig. 1(a), solely relying on visual cues
is hard to identify those two persons wearing visually similar
clothes. However, they can be easily distinguished by gait
cues. Meanwhile, video based person ReID could also lever-
age the latest progresses in image based person ReID. The
two persons in Fig. 1(b) show similar gait cues, but can be
easily distinguished by their spatial and appearance cues. It is
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Figure 1: Illustration of video frames sampled from person
tracklets. (a) shows two persons with similar appearance but
different gaits; (b) shows two persons with similar gait but
totally different appearance.

easier to infer that, extracting and fusing spatial and temporal
cues is important for video based person ReID.

Existing studies on video based person ReID have signifi-
cantly boosted the performance on existing datasets. Those
works can be summarized into two categories, i.e., 1) ex-
tracting frame-level features and generating video feature
thorough pooling or weight learning (Liu et al. 2017a;
Zhou et al. 2017; Li et al. 2018), and 2) extracting frame-
level features then applying the Recurrent Neural Net-
works (RNN) to generate video features (Yan et al. 2016;
McLaughlin et al. 2016). Both those two categories of meth-
ods first treat each video frame independently. The feature ge-
nearted by pooling strategy are generally not affected by the
order of video frames. The RNN only builds temporal connec-
tions on high-level features, hence is not capable to capture
the temporal cues on image local details. Therefore, more
effective way of acquiring spatial-temporal feature should
still be investigated.

Recently, 3D Convolutional Neural Network (CNN) is in-
troduced to learn the spatial-temporal representation in other
video tasks like action recognition (Carreira and Zisserman
2017; Qiu, Yao, and Mei 2017; Tran et al. 2018). Through
sliding convolution kernels on both spatial and temporal di-
mensions, 3D CNN encodes both the visual appearance and
the temporal cues across consecutive frames. Promising per-
formances have been reported in many studies (Carreira and
Zisserman 2017; Tran et al. 2015; Ji et al. 2013). Because a
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single 3D convolution kernel can only cover short temporal
cues, researcher usually stack several 3D kernels together
to gain the stronger temporal cue learning ability. Although
showing better performance, stacked 3D convolutions results
in substantial growth of parameters, e.g., the widely used
C3D (Tran et al. 2015) network reaches the model size of
321MB with only 8 3D convolution layers, almost 3 times to
the 95.7MB parameters of ResNet50 (He et al. 2016). Too
many parameters not only make 3D CNNs computationally
expensive, but also leads to the difficulty in model training
and optimization. This makes 3D CNN not readily applica-
ble on video based person ReID, where the training set is
commonly small and person ID annotation is expensive.

This work aims to explore the rich temporal cues for per-
son ReID through applying 3D convolution, while mitigating
the shortcomings in existing 3D CNN models. A Multi-scale
3D (M3D) convolution layer is proposed as a more efficient
and compact alternatives to traditional 3D CNN layer. M3D
layer is implemented using several parallel temporal convo-
lution kernels with different temporal ranges. Several M3D
layers are inserted into a 2D CNN architecture. The resulting
M3D convolution network (M3D CNN) introduces marginal
parameters to the 2D CNN, but gains the multi-scale tempo-
ral cues modeling ability. Compared with existing 3D CNNs,
M3D CNN is more compact and easier to train. To further
refine the learned temporal cues by M3D convolution layer, a
Residual Attention Layer (RAL) is proposed to jointly learn
spatial and temporal attention masks. With RAL, more impor-
tant spatial and temporal cues can be kept and the noises can
be depressed, enabling M3D CNN to extract discriminative
temporal feature.

We further introduce a 2D CNN to learn and extract the
spatial and appearance features from video sequences. This
2D CNN and the M3D CNN compose a two-stream CNN ar-
chitecture, where the extracted spatial and temporal features
are fused for video based person ReID. Extensive experi-
ments demonstrate that our method outperforms a wide range
of state-of-art methods on three widely used benchmarks
datasets, i.e., MARS (Zheng et al. 2016), PRID2011 (Hirzer
et al. 2011) and iLIDS-VID (Wang and Zhao 2014). Moreover,
we achieve a reasonable trade-off between ReID accuracy
and model size. Introducing only about 4MB parameter over-
head to the 2D CNN, M3D CNN boosts the mAP of 2D
CNN from 0.625 to 0.699 on MARS. The 3D CNN model
I3D (Carreira and Zisserman 2017) achieves mAP of 0.628
with 186MB parameters. Compared with I3D, M3D performs
better and saves about 86MB of parameters, thus could be a
better temporal feature learning model for video based person
ReID.

The contribution of this work can be summarized into two
aspects. 1) we propose a M3D convolution layer as a more
compact and efficient alternative to 3D CNN layer. M3D layer
makes multi-scale temporal feature learning with a compact
neural network possible. To our best knowledge, this is the
first attempt of introduce 3D convolution in person ReID.
2) we further propose the RAL to learn spatial-temporal
attention masks, and use a 2D CNN to extract complementary
spatial and appearance features. Those components further
boost the video based person ReID performance.
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Figure 2: Some widely used convolution layer in video tasks,
(a) 2D residual block; (b) I3D, which inflates 2D kernels to
the 3D version; (c-e) three versions of P3D, which factorizes
the 3D kernels into separate spatial and temporal ones.

Related work
Existing person ReID works can be summarized into image
based person ReID and video based person ReID, respec-
tively. Most image based person ReID works focus on two
approaches: 1) learning discriminative image features (Wang
and Zhao 2014; Su et al. 2017; Wei et al. 2017) and 2)
learning discriminative distance metrics for feature match-
ing (Pedagadi et al. 2013; Xiong et al. 2014). Impressive
progresses have been made on image person ReID in recent
years.

Many works regard video based person ReID as an exten-
sion of the image based one. For instance, 3D-SIFT (Scov-
anner, Ali, and Shah 2007) and HOG3D (Klaser, Marszałek,
and Schmid ), design hand-crafted methods to extract spa-
tiotemporal cues, but present limited robustness when com-
pared with deep features (Zheng et al. 2016). Some other
works first extract image features from still frames, then
accumulate frame features as video features. A previous
work (Zheng et al. 2016) applies pooling for video fea-
ture generation. (McLaughlin et al. 2016) apply RNN to
model temporal cues cross frames. (Li et al. 2018) utilize part
cues and learn a weighting strategy to fuse the features ex-
tract from still frames. Unsupervised learning is also widely
applied in video person ReID (Li, Zhu, and Gong 2018a;
Ye, Lan, and Yuen 2018; Wu et al. 2018). Most of those
works extract frame features independently and ignore the
temporal cues among adjacent frames.

Some works explore both spatial and temporal cues in
video tasks like action recognition through two ways. The
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first one apply two-stream network to learn the spatial and
temporal features, respectively, then fuse those features (Si-
monyan and Zisserman 2014; Feichtenhofer, Pinz, and Zis-
serman 2016; Feichtenhofer, Pinz, and Wildes 2017). Most of
those work use still image and stacked optical flow as inputs
for the two streams, respectively. The second strategy utilizes
3D CNNs to jointly explore spatiotemporal cues (Tran et al.
2015; Carreira and Zisserman 2017; Qiu, Yao, and Mei 2017;
Liu et al. 2018a). Fig. 2(b-e) show 4 types of commonly used
3D CNN layer. As shown by the above works, extra temporal
cues boost the performance of video tasks. However, optical
flow is sensitive to the spatial misalignment between adjacent
frames, which commonly exist in person ReID datasets. 3D
CNNs need to stack a certain number of 3D CNN kernels to
capture the long-term temporal cues. This introduces a large
number of parameters and increases the difficult of 3D CNN
optimization.

Our method also fuses the spatial and temporal features
extracted from a two stream network. Different from previous
works using stacked optical flow as input, our method directly
extracts temporal feature from video sequence, hence would
be more robust to the misalignment error between adjacent
frames. Compared with traditional 3D CNN, our proposed
M3D CNN presents better temporal cue learning ability with
a more compact architecture. Those differences highlight our
contribution to video based person ReID.

Two-stream M3D Convolution Network
Problem Formulation
Person ReID aims to identify a specific person from a large
scale database, which can be implemented as a retrieval task.
Given a query video sequence Q = (s1, s2, ...sT ), where
T is the sequence length and st is the t-th frame at time t.
Video based person ReID can be tackled by ranking gallery
sequences based on the video representation f , and a distance
metric D computed between Q and each gallery sequence.
In the returned rank list, sequences containing the identical
person with query Q are expected to appear on top of the
list. Therefore, learning discriminative video representation
f and designing the distance metric D are two critical steps
for video based person ReID.

This work focuses on designing a discriminative video
representation. As illustrated in Fig. 1, both the spatial and
temporal cues embedded in video sequences could be impor-
tant for identifying a specific person. Because the spatial and
temporal cues are complementary with each other, we extract
them with two modules. The video representation fst can be
formulated as

fst = [fs, ft] (1)

where fs and ft denote the spatial and temporal features,
respectively, and [, ] denotes feature concatenation.

Existing image based person ReID works have proposed
many successful methods for spatial feature extraction. As
a mainstream method, 2D CNN is commonly adopted by
those works. We hence refer to existing works and utilize 2D
CNN to extract the sequence spatial feature fs. Specifically,
this is finished by first extracting spatial representation from
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Figure 3: Illustration of Two-Stream M3D network.

each individual video frame, then aggregating frame features
through average pooling, i.e.,

fs =
1

T

T∑
t=1

F2d(s
t) (2)

where F2d refers to 2D CNN used to extract frame feature.
As discussed in the above sections, more effective ways

of acquiring temporal feature should be investigated. For
the temporal representation ft, we propose a Multi-scale 3D
(M3D) convolution network to learn the multi-scale temporal
cues,

ft = FM3D(Q), (3)

where FM3D denotes the M3D network. It directly learns the
temporal feature from video sequences.

The 2D CNN and M3D network compose a two stream
neural network illustrated in Fig. 3. The following sections
describe our design of the M3D network, which is imple-
mented as the temporal stream in Fig. 3.

M3D Convolution Network
As illustrated in Fig. 3, the main differences between M3D
network and 2D CNN are the presences of M3D and RAL.
Those two layers enables M3D network to process video
sequences and learn extra temporal cues. Before introducing
M3D and RAL, we first briefly review 3D convolution.

3D Convolution A video clip can be represented as a 4D
tensor with the size of C×T×H×W , where C, T , H , and W
denote the number of color channels, temporal length, height
and width of each frame, respectively. A 3D convolution
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Figure 4: Illustration of M3D layer build in residual block
with three temporal kernels, i.e., n = 3.

kernel can be formulated as a 3D tensor with size of t ×
h × w (the channel dimension is omitted for simplicity),
where t is the temporal depth of kernel, while h and w are
the spatial sizes. The 3D convolution encodes the spatial-
temporal cues through sliding along both the spatial and
temporal dimensions of the video clip.

3D convolution kernel only captures the short-term tem-
poral cues, e.g., the 3D kernels in Fig. 2 (b-e) capture the
temporal relations across 3 frames. To model longer-term
temporal cues, multiple 3D convolution kernels have to be
concatenated as a deep network. A deep 3D CNN involves
a large amount of parameters. Moreover, 3D CNNs can not
leverage the 2D images in ImageNet (Deng et al. 2009) for
model pre-training, making it further difficult to be optimized.
The following parts show how our M3D layer mitigates those
shortcomings in 3D convolution.

Multi-scale 3D Convolution Shortcomings of 3D CNN
motivate us to design a compact convolution kernel that cap-
tures longer-term temporal cues. Inspired by dilated convolu-
tion (Yu and Koltun 2015), we propose to capture temporal
cues through parallel dilated convolutions on the temporal
dimension.

A M3D layer contains a spatial convolution kernel and
n parallel temporal kernels with different temporal ranges.
Given an input feature map x ∈ R C×T×H×W , we define
the output of M3D layer as:

y = S(x) +
n∑

i=1

T (i)(S(x)) (4)

where S is the spatial convolution and T (i) is the temporal
convolution with dilation rate i. The computation of S fol-
lows the ones in 2D convolution. We define the computation
of T (i) as

y = T (i)(x), yt,h,w =

1∑
a=−1

xt+a×i,h,w ×W(i), (5)

where W(i) denotes the i-th temporal kernel.
Fig. 4 illustrates the detailed structure of M3D layer with

n = 3 in residual block. As shown in Fig. 4, n controls the
receptive field size in time dimension. If we set n = 1, the
M3D layer equals to P3D-C (Qiu, Yao, and Mei 2017), i.e.,
factorizing the 3D convolutional kernels into a spatial kernel

and a temporal kernel. To limit the receptive field size no
larger than the temporal dimension of input signal, given an
input feature map with temporal dimension of T , we compute
the number of temporal kernels n as,

n = bT − 1

2
c (6)

where bc means rounded down operation.
As shown in Fig. 4, with n = 3, M3D layer has a larger

temporal receptive field than 3D convolution, e.g., covering
7 time dimensions. Another advantage of M3D layer is the
learning of rich long and short temporal cues through intro-
ducing multiple temporal kernels. Moreover, any 2D CNN
layer can become a M3D layer by inserting temporal kernels
through a residual connection as shown in Fig. 4. This struc-
ture allows M3D layer can be initialized with well-trained
2D CNN layers. For example, M3D layer can be initialized
by setting weights of temporal kernels to 0, which equals to
a 2D CNN layer. Initialized on a good 2D CNN model, M3D
CNN would be easier to be optimized.

Residual Attention Layer In a long video sequence, dif-
ferent frames may present different visual qualities. Temporal
cues extracted on some consecutive frames could be more
important or robust than the others. Therefore, it is not rea-
sonable to treat different spatial and temporal cues equally.
We hence propose attention selection mechanisms to refine
spatial and temporal cues learned by M3D layer.

We propose a Residual Attention Layer (RAL) to learn
the spatial-temporal attention masks. Given an input tensor
x ∈ R C×T×H×W , the RAL computes a saliency attention
mask M ∈ R C×T×H×W of the same size as x. Traditional
attention masks are commonly multiplied on feature map to
emphasize important local regions. As shown in (Li, Zhu, and
Gong 2018b), solely emphasizing local regions and discard-
ing the global cues may degrade the ReID performance (Li,
Zhu, and Gong 2018b). To chase a more effective attention
mechanism, we design the attention model with a residual
manner, i.e.,

y =
1

2
x+M · x, (7)

where x and y donate the input and output 4D signals, respec-
tively. M is the 4D attention mask which has been normalized
to (0, 1) by sigmoid function. As shown in Eq. 7, RAL is
implemented as a residual convolution layer, where the ini-
tial input x is kept, meanwhile the meaningful cues in x are
emphasized by the learned mask M .

Directly learning M can be expensive because it may con-
tain a large number of parameters. As shown in Fig. 5, we
learn M by factorising it into three low-dimensional attention
masks to decrease the number of parameters, i.e.,

M = Sigmoid(Sm × Cm × Tm) (8)

where Sm ∈ R 1×1×H×W , Cm ∈ R C×1×1×1 and Tm ∈
R 1×T×1×1 represent the spatial, channel and temporal at-
tention masks, respectively. To learns the three masks, RAL
introduces three branches, whose outputs are finally multi-
plied as M .

Spatial Attention Mask Learning: Spacial attention
branch consists of a global temporal pooling layer and
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Figure 5: Illustration of Residual Attention Layer (RAL).
RAL consists of three branches to apply spacial, temporal,
and channel attentions. The ReLU and Batch Normalisation
(BN) layer are applied after each convolution layer.

two convolution layers to compute Sm. Giving an input
x ∈ R C×T×H×W , we define global temporal pooling as

xs =
1

T

T∑
t=1

x1:C,t,1:H,1:W . (9)

The global temporal pooling layer is designed to aggregate
the information across different time dimensions. It also de-
creases the number of subsequent convolution parameters.
We hence compute the spatial attention mask based on xs.

A previous work (Li, Zhu, and Gong 2018b) directly av-
erages feature maps across different channels as the spatial
attention map. To model the difference across channels, we
utilize a convolution layer convs1 to generate a one-channel at-
tention map. An 1× 1 convolution layer is further introduced
to learn a scale parameter for further fusion. The computation
of Sm can be denoted as

Sm = convs2(ReLU(convs1(xs))). (10)

Channel Attention Mask Learning: The channel atten-
tion branch also contains 1 pooling layer and two 1 × 1
convolution layers. The first global pooling operation is im-
posed on spatial and temporal dimensions to aggregate the
spatial and temporal cues, i.e.,

xc =
1

T ×H ×W

T∑
t=1

H∑
h=1

W∑
w=1

x1:C,t,h,w. (11)

We then follow the Squeeze-and-Excitation (SE) (Hu, Shen,
and Sun 2017) and design the channel branch with bottleneck
manner:

Cm = convc2(ReLU(convc1(xc))), (12)

where the output channels of convc1 is set as c
r , r represents

the bottleneck reduction rate. And the output channels of
convc2 is set as c. The SE design reduces the parameters of
two convolution layers from (c2 + c2) to 1

r (c
2 + c2), where

the r is set as 16 in our experiment.

Temporal Attention Mask Learning: The temporal at-
tention branch has the same architecture as the channel at-
tention branch. It first aggregates the spacial and channel
dimensions through global pooling. Then the attention mask
can be obtained through two convolution layers.

The outputs from three branches are combined as the fi-
nal attention mask M , which is further normalized to [0, 1]
through sigmoid function. Through initializing all convolu-
tion layers as zero, we can get M = 1

2 . Finally M is imposed
to the input feature map with a residual manner as Eq. 7.

With the designed M3D layer and RAL, we build M3D
convolution network based on ResNet50 as illustrated in
Fig 3. More details of our network structure can be found in
the following sections.

Experiment
Dataset
We use three video ReID datasets as our evaluation protocols,
including PRID-2011 (Hirzer et al. 2011), iLIDS-VID (Wang
and Zhao 2014) and MARS (Zheng et al. 2016).

PRID-2011 consists of 400 sequences of 200 pedestrians
from two cameras. Each sequence has a length between 5
and 675 frames. Following the implementation in previous
works (Wang and Zhao 2014; Li et al. 2018), we randomly
split this dataset into train/test identities. This procedure is
repeated 10 times for computing averaged accuracies.

iLIDS-VID consists of 600 sequences of 300 pedestrians
from two non-overlapping cameras. Each sequence has a
variable length between 23 and 192 frames. We also follow
the implementation in (Wang and Zhao 2014; Li et al. 2018),
randomly split this dataset into train/test identities 10 times.

MARS consists of 1261 pedestrians and 20,715 sequences
under 6 cameras. Each pedestrian is captured by at least 2
cameras. This dataset provides fixed training and testing sets,
which contain 630 and 631 pedestrians, respectively.

Implementation Details
We employ ResNet50 (He et al. 2016) as a simple 2D CNN
baseline. All the 3D CNN models tested in this paper are
build based on ResNet50 by replacing the 2D convolution
layers with corresponding 3D convolution layers. M3D CNN
is constructed based on ResNet50 by replacing portions of
its 2D convolution layers with M3D layer. 3 RAL are further
inserted to learn attention masks as illustrated in Fig. 3. We
totally replace 4 residual blocks at the beginning of each
stage in ResNet50.

Our model is trained and fine-tuned with PyTorch. Stochas-
tic Gradient Descent (SGD) is used to optimize our model.
Input images are resized to 256× 128. The mean value is
subtracted from each (B, G, and R) channel. For 2D CNN
baseline training, each batch contains 128 images. The initial
learning rate is set as 0.001, and is reduced ten times after
10 epoches. The training is finished after 20 epoches. For
3D model training, we sample T adjacent frames from each
video sequences as network input in each training epoch,
and totally train the 3D models for 400 epoches. For length
T = 8, we set the batch size as 24. The batch size is set as
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Table 1: Comparison between M3D convolution layer and
convolution layers on MARS.

Method Input mAP r1 Speed ParamsFrames
2D CNN 1 62.54 76.43 796 frame/s 95.7MB

I3D 8 62.84 76.62 81.0 clip/s 186.3MB16 61.58 75.11 38.7 clip/s

P3D-A 8 60.69 75.08 90.1 clip/s 110.9MB16 60.52 75.69 46.9 clip/s

P3D-B 8 67.03 79.06 93.9 clip/s 110.9MB16 65.07 77.63 48.7 clip/s

P3D-C 8 67.06 79.08 87.6 clip/s 110.9MB16 65.17 79.44 45.4 clip/s

M3D 8 69.90 81.01 98.3 clip/s 99.9MB16 66.23 80.13 49.1 clip/s

12 for T = 16. The initial learning rate is set as 0.01, and is
reduced ten times after 300 epoches.

During testing, we use 2D CNN to extract feature from
each still frame, then fuse frame features into spatial feature
through average pooling. For 3D CNN models, we sample
T adjacent frames from original sequences as input. For
a sequence of length L, we can get bLT c sampled inputs
and corresponding features, respectively, where bc refers to
rounded down operation. The sequence-level feature is finally
acquired by averaging those features. All of our experiments
are implemented with GTX TITAN X GPU, Intel i7 CPU,
and 128GB memory.

Evaluation on Individual Components
1) M3D Convolution Layer To verify the effectiveness of
M3D convolution layer, we build a M3D CNN based on
ResNet50, following the structure of temporal stream illus-
trated in Fig 3. To show the performance gains of M3D layers,
RAL is not inserted in this experiment. We also compare sev-
eral widely used temporal feature extraction methods.

I3D (Carreira and Zisserman 2017) inflates 2D kernels
into 3D versions to acquire the temporal cues learning ability.
Fig 2 (a-b) show the inflation process. 2D kernels are typically
square, therefore they are inflated cubically, e.g., N ×N to
N ×N ×N , which introduces a large mount of parameters
to I3D.

P3D (Qiu, Yao, and Mei 2017) factorizes the 3D kernels
into separate spatial and temporal ones, e.g., factorize a N ×
N × N kernel to a 1 × N × N spatial kernel and a N ×
1 × 1 temporal kernel to reduce the amount of parameters.
Fig. 2(c-e) shows 3 ways of factorizations, which are named
as P3D-A, P3D-B and P3D-C, respectively. The factorization
substantially decreases the parameters in 3D CNNs, while
still need to stack many temporal kernels to capture long-term
temporal cues.

We apply ResNet50 as the 2D CNN baseline. All of the
3D CNNs are implemented based on ResNet50, by replace
2D convolution layers with corresponding 3D versions. The
comparison results are shown in Table 1.

I3D shows promising performance on video action recog-
nition tasks (Carreira and Zisserman 2017). However, it

Table 2: The performance of M3D CNN on three datasets by
inserting RAL and fusing of spatial and temporal features.

Dataset MARS PRID iLIDS-VID
Method mAP r1 r1 r1
2D baseline 62.54 76.43 82.02 49.33
M3D 69.90 81.01 87.64 70.00
M3D+RAL(s) 71.04 82.19 89.89 71.33
M3D+RAL(t) 70.66 81.81 88.76 71.33
M3D+RAL(c) 71.30 82.13 89.89 72.00
M3D+RAL 71.76 82.79 91.03 72.67
Two-stream M3D 74.06 84.39 94.40 74.00

achieves similar performance with 2D CNN in Table 1. The
reason might be because I3D model has too many parameters,
making it hard to train on the relatively small person ReID
training sets. The P3D-A shows poor performance compared
with 2D CNN. This could be caused by the serial connection
between spatial kernel and temporal kernel, which increases
the nonlinearity of the CNN model and makes it hard to be
optimized. The P3D-B and P3D-C connect the spatial and
temporal kernels through parallel or residual connections.
They get substantial performance improvements over the 2D
CNN. This shows the advantages of 3D CNN over 2D CNN
in person ReID.

The experimental results also show that, our M3D CNN
constantly outperforms 2D CNNs and other 3D CNNs. It
outperforms 2D CNN and P3D-C by about 7.4% and 2.9%
in mAP, respectively. Meanwhile, M3D CNN is also more
compact than the compared 3D CNNs. M3D CNN contains
4 M3D layers, which bring only 4.2MB parameter overhead
into 2D CNN. It is more compact than I3D (90.6MB) and
P3D (15.2MB). With 8-frames clip as model input, M3D
CNN achieves the speed of 98.3 clips/s (786.4 frames/s),
which is also the fastest among the compared 3D CNNs.
We further tested replacing all the 2D convolution layers in
ResNet50 as M3D layers, but don’t get further performance
improvement. This implies that a small number of M3D lay-
ers already captures the long-term temporal cues in video
sequences. We hence could conclude that, M3D convolu-
tion layer presents promising ability in learning multi-scale
temporal cues.

It is also interesting to observe that, 3D CNNs trained
with 8-frame clips outperform the ones trained with 16-frame
clips. The reason could be because 16-frame clips take more
memory and result in smaller batch size for training. Based
on the this observation, we adopt 8-frame clips for training
in the following experiments.

2) Residual Attention Layer This part further verifies the
effectiveness of Residual Attention Layer (RAL), which in-
clude spatial, temporal, and channel branches. Experimental
results are shown in Table 2. In the table, “2D baseline” de-
notes the performance of 2D ResNet50. “M3D” denotes M3D
CNN without RAL. “RAL(s)”, “RAL(t)”, and “RAL(c)” do-
nate attention layers only with spatial, temporal, and channel
branches, respectively. “RAL” donates the complete attention
layer containing 3 branches.
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Table 3: Comparison with recent works on MARS.
Method mAP r1 r5 r20
BoW+kissme (Zheng et al. 2016) 15.50 30.60 46.20 59.20
LOMO+XQ (Zheng et al. 2016) 16.40 30.70 46.60 60.90
IDE+XQDA (Zheng et al. 2016) 47.60 65.30 82.00 89.00
LCAR (Zhang et al. 2017) - 55.50 70.20 80.20
CDS (Tesfaye et al. 2017) - 68.20 - -
SFT (Zhou et al. 2017) 50.70 70.60 90.00 97.60
DCF (Li et al. 2017a) 56.05 71.77 86.57 93.08
SeeForest (Zhou et al. 2017) 50.70 70.60 90.00 97.60
DRSA (Li et al. 2018) 65.80 82.30 - -
DuATM (Si et al. 2018) 67.73 81.16 92.47 -
LSTM (Yan et al. 2016) 61.58 76.11 85.30 92.68
A&O (Simonyan et al. 2014) 63.39 77.11 88.41 94.60
Two-stream M3D 74.06 84.39 93.84 97.74

It is clear that, any one of the 3 attention branches con-
sistently improves the performance of M3D. Combining the
complete RAL brings the most substantial performance gains.
For example, RAL boosts the rank-1 accuracy of M3D from
87.64% to 91.03% on PRID. This demonstates the validity
of our RAL in identifying discriminative spatio-temporal fea-
ture. It also shows the advantages of introducing attention
mechanism in video feature learning.

3) Spatial-Temporal Feature Fusion This part tests the
performance of our two-stream convolution network which
involves the M3D convolution layer, RAL, and the spatial-
temporal feature fusion. The comparisons on three datasets
are summarized in Table 2. “Two-stream M3D” refers to the
complete two-stream architecture in Fig. 3.

It can be observed from Table 2 that, M3D CNN outper-
forms the 2D baseline by large margins by considering extra
temporal information. This shows the benefits of considering
temporal cues in video based person ReID. The attention
layer RAL further boosts the performance of M3D CNN.
Combining the 2D CNN and M3D CNN features achieves
the best performance in Table 2. This shows our two-stream
architecture is effective to exploit the complementary infor-
mation cross spatial and temporal domains. In the following
part, we compare our two-stream M3D network with recent
works on three datasets.

Comparison with Recent Work
Table 3 reports the comparison of our approach with recent
works on MARS. It can be observed from Table 3 that, our
method constantly outperforms all of the compared methods.
Our method achieves the rank1 accuracy of 84.39% and mAP
of 74.06%, outperforming two latest works DuATM (Si et
al. 2018) and DRSA (Li et al. 2018) by 6.33% and 8.26% in
mAP, respectively. Note that, DRSA (Li et al. 2018) extracts
local part features to gain stronger discriminative power. Du-
ATM (Si et al. 2018) introduces a complex frame feature
matching strategy with quadratic complexity. Compared with
those two works, our method is more concise and efficient,
e.g., we extract global feature and match features with simple
Euclidean distance.

We further build two widely used temporal feature extrac-
tion methods based on ResNet50, e.g., LSTM (Yan et al.

Table 4: Comparisons on PRID and iLIDS-VID.
Dataset PRID iLIDS-VID
Method r1 r5 r1 r5
BoW+XQDA (Zheng et al. 2016) 31.80 58.50 14.00 32.20
DVDL (Karanam et al. 2015) 40.60 69.70 25.90 48.20
RFA-Net (Yan et al. 2016) 58.20 85.80 49.30 76.80
STFV3D (Koestinger et al. 2012) 64.10 87.30 44.30 71.70
DRCN (Wu et al. 2016) 69.00 88.40 46.10 76.80
RCN (McLaughlin et al. 2016) 70.00 90.00 58.00 84.00
IDE+XQDA (Zheng et al. 2016) 77.30 93.50 53.00 81.40
DFCP (Li et al. 2017b) 51.60 83.10 34.30 63.30
SeeForest (Zhou et al. 2017) 79.40 94.40 55.20 86.50
AMOC (Liu et al. 2017a) 83.70 98.30 68.70 94.30
QAN (Liu et al. 2017b) 90.30 98.20 68.00 86.80
DRSA (Li et al. 2018) 93.20 - 80.20 -
Two-stream M3D 94.40 100.00 74.00 94.33

2016) and Appearance&Optical flow (Simonyan and Zisser-
man 2014). The comparison in Table 3 clearly shows that,
our method outperforms those temporal feature extraction
works. For example, our method outperforms the LSTM
based method by 12.48% in mAP. This significant perfor-
mance boost demonstrates the advantage of our two-stream
M3D network in spatial-temporal feature learning.

The comparisons on PRID and iLIDS-VID datasets are
shown in Table 4. As shown in the table, our proposed
method presents competitive performance on rank1 accuracy.
DRSA (Li et al. 2018) also gets competitive performance on
both datasets, and outperforms our method on iLIDS-VID
dataset. The reason may be because iLIDS-VID has a small
training set. DRSA alleviates the insufficiency of training
data using multi-task learning strategy on part cues. DRSA
also impose Online Instance Matching loss (OIM) loss for
training, which is shown more effective than our softmax.
Extracting global feature trained with basic softmax loss, our
method still outperforms DRSA on the other two datasets.
Our competitive performance demonstrates the advantage of
learning spatial-temporal cues in person ReID.

Conclusion
This paper proposes a two-stream convolution network to
explicitly leverages spatial and temporal cues for video based
person ReID. A novel Multi-scale 3D (M3D) network is
constructed to learn the multi-scale temporal cues in video
sequences. Implemented by inserting serval M3D convolu-
tion layers into 2D CNN networks, M3D network can learn
robust temporal representations with a fraction of increased
parameters. A Residual Attention Layer (RAL) is further
designed to refine the learned temporal features by M3D in
residual manner. The learned temporal representations are
combined with spatial representation learned through 2D
CNN for video ReID. Experimental results on three widely
used video ReID datasets demonstrate the superiority of the
proposed model over current state-of-the-art methods.
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