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Abstract

Deep metric learning has been widely applied in many com-
puter vision tasks, and recently, it is more attractive in zero-
shot image retrieval and clustering (ZSRC) where a good
embedding is requested such that the unseen classes can be dis-
tinguished well. Most existing works deem this *good’ embed-
ding just to be the discriminative one and thus race to devise
powerful metric objectives or hard-sample mining strategies
for leaning discriminative embedding. However, in this paper,
we first emphasize that the generalization ability is a core in-
gredient of this "good’ embedding as well and largely affects
the metric performance in zero-shot settings as a matter of fact.
Then, we propose the Energy Confused Adversarial Metric
Learning (ECAML) framework to explicitly optimize a robust
metric. It is mainly achieved by introducing an interesting
Energy Confusion regularization term, which daringly breaks
away from the traditional metric learning idea of discrimi-
native objective devising, and seeks to confuse’ the learned
model so as to encourage its generalization ability by reducing
overfitting on the seen classes. We train this confusion term
together with the conventional metric objective in an adversar-
ial manner. Although it seems weird to ’confuse’ the network,
we show that our ECAML indeed serves as an efficient regu-
larization technique for metric learning and is applicable to
various conventional metric methods. This paper empirically
and experimentally demonstrates the importance of learning
embedding with good generalization, achieving state-of-the-
art performances on the popular CUB, CARS, Stanford Online
Products and In-Shop datasets for ZSRC tasks. Code available
at http://www.bhchen.cn/.

1. Introduction

Since zero-shot learning (ZSL) removes the limitation of
category-consistency between training and testing sets, it
turns to be more attractive where the model is required
to learn concepts from seen classes and then enables to
distinguish the unseen classes. ZSL has been widely ex-
plored in image classification (Changpinyo et al. 2016;
Fu et al. 2015) and retrieval tasks (Dalton, Allan, and Mi-
rajkar 2013; Shen et al. 2018; Oh Song et al. 2016), ezc.
In this paper, we focus on zero-shot image retrieval and
clustering tasks (ZSRC). In order to accurately retrieve
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Figure 1: Comparisons of conventional metric learning meth-
ods and our Energy Confused Adversarial Metric Learning
(ECAML). In (a), the deep model optimized by conventional
metric learning will selectively learn head knowledge which
is the easiest one to reduce the current training error and
omit other helpful concepts, but the testing instances can-
not be distinguished well by the head. In (b), the Energy
Confusion(EC) term among different classes is introduced
so as to make the biased head-based metric confused about
itself, then as the training going, EC will regularize this met-
ric to explore other complementary knowledge (even if this
knowledge is not discriminative enough for the seen classes,
it might be helpful for the unseen classes) and thus improve
the generalization ability.

and cluster the unseen classes, most existing works em-
ploy Deep Metric Learning to optimize a good embed-
ding, such as exploring tuple-based loss functions (Sun et
al. 2014; Yuan, Yang, and Zhang 2017; Wu et al. 2017;
Schroff 2015; Oh Song et al. 2016; Wang et al. 2017;
Huang, Loy, and Tang 2016; Sohn 2016) and proposing ef-
ficient hard-sample mining strategies (Kumar et al. 2017;
Wau et al. 2017; Schroff 2015), etc. However, the above meth-
ods deem this "good’ embedding just to be the discriminative
one and then concentrate on the discriminative learning over
the seen classes, but neglect the importance of the generaliza-
tion ability of the learned metric which is significant in ZSRC
as well, as a result, without robustness constraining they are



easily subject to concepts overfitting problem on the seen
classes and some helpful or general knowledge for unseen
classes may have been left out with a high probability.

To be specific, in ZSRC, we emphasize that the general-
ization ability of the learned embedding is seriously affected
by the following problem: “the biased learning behavior of
deep models”, concretely, as illustrated in Fig.1.(a)', for a
functional learner parameterized by CNN, to correctly dis-
tinguish classes A and B, it will selectively learn the partial
biased attributes concepts that are the easiest ones to reduce
the current training loss over the seen classes (here head
knowledge is enough to sperate class A from B and thus is
learned), instead of learning all-sided details and concepts,
thus yielding over-fitting on seen classes and generalizing
worse to unseen ones (classes C and D). In another word,
in order to correctly recognize classes, deep networks easily
learn to focus on surface statistical regularities rather than
more general abstract concepts.

Therefore, when learning the embedding as in the afore-
mentioned conventional metric learning methods, this issue
objectively exists and impedes the learning of the desired
good embedding. And without explicit and benign robustness
constraint, the learned embedding is unable to generalize
well to the unseen classes. Most ZSRC works ignore the im-
portance to learn robust descriptors. To this end, proposing
efficient regularization method for conventional metric learn-
ing to learn metrics with good generalization is important,
especially in ZSRC tasks.

In this paper, we propose the Energy Confused Adver-
sarial Metric Learning (ECAML) framework, an elegant
regularization strategy, to alleviate the problem of generaliza-
tion in ZSRC tasks by randomly confusing the learned metric
during each iteration. It is mainly achieved by a novel and
simple Energy Confusion (EC) term which is *plug and play’
and can be generally applied to many existing deep metric
learning approaches. Concretely, this confusion term plays
an adversary role against the conventional metric learning
objective, which intends to minimize the expected value of
the Euclidean distances between the paired images from two
different categories. As illustrated in Fig.1.(b), confusing the
biased head-based metric will make the model less discrim-
inative on the seen classes by reducing its dependence on
head learning and thus give it chances of exploring other
complementary and general knowledge, preventing overfit-
ting on the seen classes and improving the generalization
ability of the embedding in an adversarial manner. In another
word, the EC term allows the SGD solver to escape from the
"bad’ local-minima region induced by the seen classes and to
explore more for the robust one. The main contributions of
this work can be summarized as follows:

e We emphasize that the crucial issue to ZSRC, i.e. the biased
learning behavior of deep model, is the key stumbling block of

improving the generalization ability of the learned embedding.

We propose Energy Confused Adversarial Metric Learn-
ing(ECAML) framework to reinforce the robustness of embed-
ding in an adversarial manner. The Energy Confusion(EC) term

'In fact, the learned partial biased knowledge is more compli-
cated and cannot be easily illustrated in figure, here for intuitive
understanding, we translate it into some single body-part knowl-
edge.
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is "plug and play’ and can work in conjunction with many ex-
isting metric methods. To our knowledge, it is the first work to
introduce confusion for deep metric learning.

Extensive experiments have been performed on several popular
datasets for ZSRC, including CARS (Krause et al. 2013), CUB
(Wah et al. 2011), Stanford Online Products (Oh Song et al.
2016) and In-shop(Liu et al. 2016), achieving state-of-the-art
performances.

2. Related Work

Zero-shot: ZSL has been widely explored in many computer
vision tasks, such as image classification (Changpinyo et
al. 2016; Fu et al. 2015) and image retrieval (Dalton, Al-
lan, and Mirajkar 2013; Shen et al. 2018). Most of these
ZSL methods are capable of exploiting the extra auxiliary
supervision information of the unseen classes (e.g. word rep-
resentations of semantic name), thus aligning the learned
features in an explicit manner. However in real applications,
collecting and labelling these auxiliary information is time-
consuming and impractical. Our ECAML concentrates on
a more actual scene where there are only seen class labels
available.

Deep metric learning for ZSRC: The commonly used
contrastive (Sun et al. 2014) and triplet loss (Schroff 2015)
have been broadly studied. Additionally, there are some other
deep metric learning works: Smart-mining (Kumar et al.
2017) combines local triplet loss and global loss to optimize
the deep metric with hard-samples mining. Sampling-Matters
(Wu et al. 2017) proposes distance weighted sampling strat-
egy. Angular loss (Wang et al. 2017) optimizes a triangle-
based angular function. Proxy-NCA (Movshovitz-Attias et al.
2017) explains why popular classification loss works from a
proxy-agent view, and its implementation is very similar to
Softmax. ALMN (Chen and Deng 2018) proposes to gener-
ate geometrical virtual negative point instead of employing
hard-sample mining for learning discriminative embedding.
However, all the above methods are to cope with the met-
ric by designing discriminative losses or exploring sample-
mining strategies, thus suffer from the aforementioned issue
easily. Additionally, HDC (Yuan, Yang, and Zhang 2017)
employs the cascaded models and selects hard-samples from
different levels and models. BIER loss (Opitz et al. 2017;
2018) adopts the online gradients boosting methods. These
methods try to improve the performances by resorting to the
ensemble idea. Different from all these methods, our ECAML
has a clear object of improving the generalization ability of
the learned metric by introducing the Energy Confusion reg-
ularization term.

Regularization technique: Regularization methods some-
times are important for deep models as the deep models are
more likely to be data-driven. There are some works inject-
ing random noise into deep nets so as to ensure the robust
training, such as Bengio, Léonard, and Courville (2013) and
Gulcehre et al. (2016) add noise in the ReLU and Sigmoid ac-
tivation functions respectively, Blundell et al. (2015), Graves
(2011) and Neelakantan et al. (2015) add noise in weights and
gradients respectively. Moreover, some research works intend
to regularize the deep models at the top layer, i.e. Softmax
classifier layer, for example, Szegedy et al. (2016) propose



label-smoothing regularization technique for training deep
models, Xie et al. (2016) propose label-disturbing technique
for improving the generalization ability of the deep mod-
els and, Chen, Deng, and Du (2017) inject annealed noise
into the softmax activations so as to boost the generalization
ability by postponing the early Softmax saturation behav-
ior. However, different from these above methods which are
mainly devised for classification tasks and applicable to the
Softmax classifier layer, our ECAML aims to promote the
generalization ability of the metric learning in ZSRC tasks,
and it is achieved by training the EC term in an adversarial
manner.

3 Notations and Preliminaries

In this section, we review some notations and the necessary
preliminaries on the relation between semimetric and RKHS
kernels for later convenience, which will be used to interpret
the differences between our EC (Sec.4.1) and some other
existing methods, i.e. general energy distance and maximum
mean discrepancy.

If not specified, we will assume that Z is any topological
space where the Borel measures can be defined. Denote by
M(Z) the set of all finite signed Borel measures on Z, and
by M’ (Z) the set of all Borel probability measures on Z.

Definition 1. (RKHS) Let H be a Hilbert space of real-
valued functions defined on Z. A functionk : Z x Z — R is
called a reproducing kernel of H, if (i)Vz € Z, k(-,z) € H,
and (ii)Vz € ZNf € H, < fk(,2) >u = [f(2).IfH
has a reproducing kernel, it is called a reproducing kernel
Hilbert space (RKHS).

Definition 2. (Semimetric) Let Z be a nonempty set and let
p: Zx Z — [0,400) be a function such that Vz, ;e z,
(i) p(z,2) = 0iff 2 = 2 and (ii) p(z,2 ) = p(2, 2). (Z, p)
is called a semimetric space and p is a semimetric.
Definition 3. (Negative type) Semimetric space (Z,p) is
said to have negative type if Yn > 2,z1,...,2, €
Z, and oq,...,0, € R with Y o 0,
doimy 2jey ip(zi, 27) < 0.

Then we have the following propositions, which are de-
rived from (Van Den Berg, Christensen, and Ressel 2012).

Proposition 1. If p satisfies Def.3, then so does p?, where
0<g<1

Proposition 2. p is a semimetric of negative type iff there
exists a H and an injective map ¢ : Z — H, such that

ey

This shows that (R%, || - — - ||?) is of negative type, and by
taking ¢ = 1/2, we conclude that all Euclidean spaces are
of negative type (Sejdinovic et al. 2012; 2013) , which will
be used to reason our Energy Confusion term. Then we also
show that the semimetrics of negative type and symmetric
positive definite kernels are in fact closely related by the
following Lemma (for more details please refer to Van Den
Berg, Christensen, and Ressel 2012).

p(z,2) = le(z) — o(2)II3,
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Lemma 1. For a nonempty Z, let p be a semimetric on Z.
Let zy € Z, and denote k(z, 2 ) = 3(p(z, 20) + p(z', 20) —
p(2,2)). Then k is positive definite iff p is of negative type.

We call the kernel defined above distance-induced kernel
and, it is induced by the semimetric p and centered at zg. By
varying the point at the center 2y, we obtain a kernel family

K, = 1[p(z, 20) + p(z', 20) — plz, z/)]ZOGZ, induced by p.
Then we can always express Eq.1 in terms of the canonical
feature map for RKHS H, as the following proposition.

Proposition 3. Let (Z, p) be a semimetric space of negative
type, and k € KC,,. Then:

1. k is nondegenerate, i.e. the Aronszajn map z — k(-, z) is
injective.
2. p(2,2) = k(z,2) + k(z,2) — 2k(z,2') = ||k(-,2) —
For the above valid p, we say that k generates p. And the
above proposition implies that the Aronszajn map z — k(- z)
is an isometric embedding of a metric space (Z, p'/?) into
‘H}., for each k € K,. Lem.1 and Prop.3 reveal the general
link between semimetrics of negative type and RKHS kernels
in different views. By taking some special cases of p and k,
we are able to elucidate our EC in the following sections.

4. Proposed Approach
4.1 Energy Confusion

As discussed in (Sec.1), without taking the generalization
ability into consideration explicitly, simply optimizing a
discriminative objective metric functions or applying hard-
sample mining strategies like in most existing metric learning
works wouldn’t lead a robust metric for ZSRC tasks, since the
’biased learning behavior of deep models’ will mostly force
the network to fit the surface statistical regularities rather than
the more general abstract concepts, i.e. it will only highlight
the concepts that are discriminative for the seen classes in-
stead of keeping all-sided information, resulting in overfitting
on the seen categories and limiting the generalization ability
of the learned embedding.

Consider that the biased learning behavior is actually in-
duced by the nature of model training since in order to cor-
rectly distinguish different seen classes, the deep metric has
to be confident about the feature distribution prediction over
the current seen classes as far as possible(e.g. features of
different classes should be far away from each other) and
as a result, only the partial biased knowledge that are dis-
criminative to separate seen categories as shown in Fig.1
are captured while other potentially helpful knowledge are
omitted. To this end, a natural solution is to introduce
an opposite optimizing objective, i.e. a feature distribu-
tion confusion term, into the conventional metric learn-
ing phase so as to ’confuse’ the network and reduce the
over-confident predictions of distances between feature
distributions on the seen classes. Specifically, denote the
input features by {;}¥ ,, the corresponding label inputs
by {y:}¥,,9; € [1...C], where C is the number of seen
classes. The conventional metric optimizing goal is to make



the distance measurement D(x;, ;) as large as possible if
Y; # y;, otherwise as small as possible, and it can be formu-
lated as:

0y = arg n;in L, (85;T,D) 2)

f

where L,,, is some specific metric loss function, 7" indicates
some instance-tuple, e.g. contrastive tuple 7'(z;, z;) (Sun
et al. 2014), triplet tuple T(:cz, X+, z;— ) (Schroff 2015) or
N-Pair tuple T'(x;, Tit Loy Ty 2) (Sohn 2016), D is

:L',

the distance distribution measurement, e.g. Euclidean mea-
surement (Oh Song et al. 2016; Yuan, Yang, and Zhang 2017;
Huang, Loy, and Tang 2016; Schroff 2015; Wu et al.
2017) or inner-product measurement (Opitz et al. 2017;
Sohn 2016), and 0 is the metric parameters to be learned.

Therefore, in order to prevent the biased learning behavior
by confusing the feature distribution learning, we would like
to learn 0y that make the feature distributions from differ-
ent classes closer when under some specific {L,T, D}. It
seems that the commonly adopted family of f-divergence
for measuring the difference between two probability distri-
butions might be a suitable choice, such as KL-divergence
(Kullback and Leibler 1951), Hellinger-distance (Hellinger
1909) and Total-variation-distance, however, we emphasize
that they cannot be directly applied here since they mostly
work with the probability measure (where ), z;, = 1)
but our confusion goal is based on the statistical distance
between two random vectors following some probability dis-
tributions. To this end, we propose the Energy Confusion
term as follows:

Lee(0: X1, Xg) =B, 5, (1 X7 = X513)

=> pijl
i

where E indicates the expected value, X, X ; are two differ-

ent class sets, X; I, X, 7 are random feature vectors which obey
some certain distribution, x;, ; are the corresponding feature
observations and p; ; is the ]01nt probability. Since during
training the samples are uniformly sampled and the classes

are independent, we have X, 1 ~ Uni form(X 1), X, 7o~
Uniform(Xy) and pij = pipj = - ;- In this case,
{L,T, D} are expected value function, contrastive tuple and
Euclidean measurement respectively.

From Eq.3, one can observe that the EC term intends
to minimize the distance expected value between different
classes so as to confuse the metric. As discussed above, the
learned embedding represents the learned concepts to some
extend, and the more accurate the prediction of distance on
the seen classes, the greater the risk of concepts overfitting.
EC serves as a regularization term that would like to prevent
the model being over-confident about the seen classes and
mitigate the biased learning issue by avoiding the learner
being stuck in the training-data-specific concepts. In another
word, the metric learning is regularized by explicitly reducing
model’s dependence on the partial biased knowledge, and
this is mainly achieved by the idea of feature distribution con-
fusion. Moreover, ’confusing’ also gives SGD solver chances
of escaping from the "partial’ and *bad’ local-minima induced

3)

g _xjuz
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by the seen instances, and then exploring other solution re-
gions for the more ’general’ ones.

Discussion: Inferred from the above analysis, it seems
that the commonly used general energy distance (GED) and
maximum mean discrepancy (MMD) might be also useful
here for confusing the network by pushing different feature
distributions closer. However, we will bridge our EC with
these two methods, and illuminate the significance of our
EC by theoretically accounting for why these two methods
cannot be directly applied here.

Relation to GED: Let (Z, p) be a semimetric space of
negative type, and let P,Q € M} (Z)( M, (Z), then the
general energy distance(GED) between P and @, w.r.t p is:

Dp,p(P.Q) = 2550(P,Q) —Epp p(P P) —Eg s 0(Q,0)) (4)
f=d i.4.d i.4.d
where P,P ~" P and Q Q ~" Q. Dg,, is a general

extension of energy distance(Székely and Rizzo 2004; 2005)
on metric space. Then we have:

Lemma 2. For two different class sets Xi,X; €
ML(Z)NM](Z), let p be squared Euclidean metric, i.e.
H -

%, then:

1
Lec(0f; X1,X 1) > §DE,p(X17XJ)

Proof. from Prop.2, if p is the squared Euclidean metric, we
have (Z, p) is of negative type, thus from Eq.4
Xi2)

1 ~
5DE,p( X1, Xy) = E(| X1 —

~ 1 ~
X112) = {E(|| X; —
3 7112) 2{ (1 Xr

+E(| X, — X513))
since E(|| X, — X_||2) > 0 always holds, we have

1 ~ ~
aDE,p(XhXJ) < E(|X; — X,3)

by substituting Eq.3 here, the proof is completed. O

Remark: From Lem.2, one can observe that our EC can
be viewed as an upper bound of GED, minimizing this
upper bound function is equivalent to optimizing GED to
some extend. Moreover, it seems that directly optimizing
GED with p = || - — - ||3 is reasonable as well, since
GED itself is a statistical distance between two probabil-
ity distributions. However, by comparing EC with GED, we
emphasize that directly minimizing GED will additionally
make E(||X; — X;||3) + E(| X7 — X,||3) large, i.e. mak-
ing points in the same class be far away from each other
which violates the basic discrimination criterion of metric
learning and will degrade the model into a noisy counterpart,
it isn’t what we desire. Therefore, GED cannot be directly
applied here.

Relation to MMD: Let £ be a kernel on Z, and let
P,QeML(Z)N Ml/Q( Z). The maximum mean discrep-
ancy(MMD) vk between P and @ is:

VR (P, Q) =lluk(P) — k(@3 = IIEk(-, P) —Eg k( )”3%;5
7E~~/k(P P )+Eg /k(Q,Q ) — 2E~~k ) (5)
where pu (%) is the kernel embedding, P, P’ zfvd P and

~/ i.d.d

Q @ '~ Q. Then we have:



Lemma 3. For two different class sets X;,X; €
ML(Z)N Ml/Q( Z), let k be degree-1 homogeneous poly-
nomzal kernel, then:
LeC(anXIaXJ) > 'Yl%(XIvXJ)

Proof. Insert the distance-induced kernel k by corresponding
p from Lem.1 into Eq.5, and cancel out the terms dependant
on a single random variable, we have:

1 ~ ~1 ~ o~/
Vi (X1, Xg) = §E)}Ig} [p(X1, 20) + p(X[, 20) — p(X1, X )]
1 ~ ~/ ~ ~1
+ 5E;}J;{"] [p(X g, 20) + p(X 5, 20) — p(Xs, X ;)]
—E~I;2J[P()}I,Zo) + p(X 7, 20) —P()?I X7)]
!’
=Ex;x, (X1, X5) = 5B, X/p(Xz Xy) - 5Ex, X! p(X,X,)
(6)

ie. v}(X;,Xy) = 2Dg (X1, X,), since k is degree-1
homogeneous polynomial kernel, from Prop.3 we have the
corresponding generated p = || - — - ||3, then by using Lem.2,
we have Lec(ef;X],XJ) z’yi(X[,X,]). O

Remark: From Lem.3, one can observe that our EC
can also be viewed as an upper bound of MMD. More-
over, it seems that directly optimizing MMD with degree-
1 homogeneous polynomial kernel, i.e. 77 = [E(X;) —

E(X;)|3,,, is reasonable as well, since many existing
works employ this to pull two probability distributions
closer, such as in transfer learning (Long et al. 2015; 2016;
Tzeng et al. 2014). However, by expanding this 77, we
have 72 = E(X7 X;) + E(XTX ) — 2E(XT X ;), and in
this case, if we minimize 7,% so as to pull different classes
distributions closer and thus confuse the metric learning, we
will additionally force E(X7 X;)+E(XTX) to be small,
which implicitly pushes the points within the same class
further apart as their inner-products are getting small. This
results also aren’t what we desire and will degrade the model
into a noisy counterpart. Therefore, MMD cannot be directly
applied here as well.

Remark Summary: We theoretically derive the relations
between our EC and both GED and MMD, and also reason
about why they cannot be directly applied here even if they
have been widely adopted in many machine learning tasks
for measuring probability distributions. Thus, we will focus
on ’confusing’ the metric learning via our EC term.

4.2 Energy Confused Adversarial Metric Learning
The framework of ECAML can be generally applied to var-
ious metric learning objective functions, where we simulta-
neously train our Energy Confusion term and the distance
metric term as follows:

minL = Ly (0557, D) + A > L
o5 I,J,I#J

ec(0p; X1, X5) (1)

where A is the trade-off hyper-parameter and class sets
X7, X s are randomly chosen in the current minibatch. In or-
der to demonstrate the effectiveness of the proposed ECAML
framework, we develop various SOTA metric learning objec-
tive functions here, i.e. L,,(67; T, D):
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ECAML(Tri): For triplet-tuple 7" and Euclidean measure-
ment D, we employ (Schroff 2015; Wang and Gupta 2015):

an —a

where the objective limits the distances of negative pairs
larger than that of the positive pairs by margin m and features
x; is assumed to be on unit sphere, we experimentally find
m = 0.1 performs best.

ECAML(N-Pair): For N-tuple 7" and inner-product mea-
surement D, we employ (Sohn 2016):

N
Z log(1

>
=1,y #vi
where the objective limits the inner-product of each negative
pair xiij smaller than that of the positive pair z7 z;+.
ECAML(Binomial): For contrastive-tuple 7" and cosine
measurement D, we employ (Yi et al. 2014; Opitz et al. 2017):

_ Zlog(l + e~ @D =Amigy - (10)

¥

m (05T, D) it 13 = llws = 2 13 +m]+ (8)

m(0f;T,D) = exp(zlz; —alz,1)) (9)

L'm(ef;T: D)

where s;; = 1 if z;,z; are from the same class, otherwise
sij = 0, a = 2, 8 = 0.5 are the scaling and translation pa-
rameters resp, 1);; is the penalty coefficient and is set to 1 if
ITZL’]
EARREAIENE
Moreover, for numerical stability, we extend our EC to a
logarithmic counterpart and thus Eq.7 becomes:

mlnL L(05;T, D)+ X > log(1+ Lec(05; X1, X))
I1,J,I#J
(11

Discussion: From Eq.11, our ECAML is achieved by jointly
training the conventional metric objective and the proposed
Energy Confusion goal. These two terms form an adversarial
learning scheme by optimizing the opposite objective func-
tions. Specifically, L,, acts as a defender’ and L., acts as
an ’attacker’, the attacker intends to confuse the metric so
as to make it confound with the training data, while in order
to correctly distinguish the training data, the defender has to
learn more ’general’ and complementary concepts. As the
defending-attacking going, the learned embedding will be
less likely to the prejudiced concepts and, thus successfully
prevent the biased learning behavior and improve the gener-
alization ability. Moreover, we experimentally find that the
overfitting mainly appears at the fc layer, thus our EC term is
only used to constrain the learning of fc layer.

s;; = 1, otherwise 7n;; = 25, D;

5. Experiments and Results

Implementation details: Following many other works, e.g.
(Oh Song et al. 2016; Sohn 2016), we choose the pretrained
GooglenetVI (Szegedy et al. 2014) as our bedrock CNN and
randomly initialized an added fully connected layer. If not
specified, we set the embedding size as 512 throughout our
experiments. We also adopt exactly the same data prepro-
cessing method (Oh Song et al. 2016) so as to make fair
comparisons with other works?. For training, the optimizer is

2Only the images in CARS dataset are preprocessed differently,
see the detail underneath Tab.3
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Figure 2: Recall@1 curves on training(seen classes, top
fig) and testing(unseen classes, bottom fig) sets over CARS
dataset.

Adam (Kingma and Ba 2014) with learning rate le — 5 and
weight decay 2e — 4. The training iterations are 5k(CUB),
10k(CARS), 20k(Stanford Online Products and In-Shop),
resp. The new fc-layer is optimized with 10 times learning
rate for fast convergence. Moreover, for fair comparison,
we use minibatch of size 128 throughout our experiments,
which is composed of 64 random selected classes with two
instances each class. Our work is implemented by caffe (Jia
et al. 2014).

Evaluation and datasets: The same as many other works,
the retrieval performance is evaluated by Recall@K met-
ric. And following (Oh Song et al. 2016), we evaluate the
clustering performances via normalized mutual informa-
tion(NMI) and F; metrics. The input of NMI is a set of
clusters Q = {wy,...,wk} and the ground truth classes
C ={ey,...,cx}, where w; represents the samples that be-
long to the ith cluster, and c; is the set of samples with
label j. NMI is defined as the ratio of mutual informa-
tion and the mean entropy of clusters and the ground truth,
NMI(Q2, C)= %, and F; metric is the harmonic
mean of precision and recall as follows F; = %. Then
our ECAML is evaluated over the widely used benchmarks
with the standard zero-shot evaluation protocol (Oh Song et
al. 2016) on CARS (Krause et al. 2013), CUB (Wah et al.

2011), Stanford Online Products (Oh Song et al. 2016) and
In-Shop (Liu et al. 2016).

5.1 Ablation Experiments

Regularization ability: To demonstrate the regularization
ability of our ECAML, we plot the R@1 retrieval result
curves on training(seen) and testing(unseen) sets resp, as
in Fig.2. Specifically, for example, from the figures in left
column, one can observe that the training curve of the conven-
tional Triplet method rises quickly to a relatively high level
but its testing curve only rises a little at first and then starts
dropping to quite a low level, showing that the metric learned
by conventional Triplet are more likely to over-fit the seen
classes and generalize worse to the unseen classes in zero-
shot settings. Conversely, by employing our ECAML(Tri),
the training result curve rises much slower than the original
Triplet and stops rising at a relatively lower level (80% vs.
90%), however, the testing cure of our ECAML(Tri) rises
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A 0 (Triplet) ~ 0.001 0.01 0.02 0.1 1
ECAML(tri) 68.3 746 80.1 81.0 723 593
A 0 (N-Pair) 0.1 02 03 04 05
ECAML(N-Pair) 74.3 774 79.6 804 78.6 73.7
A 0 (Binomial) 0.01 0.1 0.13 0.15 0.5
ECAML(Binomial) 74.2 763 83.1 84,5 843 69.7

Table 1: Ablation experimental results on parameter .

CARS
R@1 R@2 R@3 R@4
Binomial 742 83.1 867 929
Dropout(Binomial,0.1)  73.1 82.1 88.6 92.6
Dropout(Binomial,0.25) 74.5 83.3 859 92.6
Dropout(Binomial,0.4) 724 814 875 925
ECAML(Binomial) 84.5 904 938 96.6

Table 2: Comparison with Dropout on CARS datasets. We
have experimented Dropout with {0.1,0.25,0.4} ratio.

fast to quite a high level, more than 80%, implying that our
ECAML(Tri) indeed serves as a regularization method and
improves the generalization ability of the learned metric by
suppressing the learning of biased metric over seen classes
caused by ’biased learning behavior’. Moreover, the similar
phenomenon can be observed by ECAML(N-Pair,Binomial).
Ablation on \: From Tab.1, it can be observed that when
A = 0 our ECAML degenerates into the corresponding
conventional metric learning method and the performance
is unsatisfactory, and as A increasing, the performances of
ECAML(tri,N-Pair,Binomial) peak around {0.02,0.3,0.13}
resp and outperform the baselines (Triplet, N-Pair, Binomial)
by a large margin, validating the effectiveness and importance
of our ECAML.

Ablation on regularization method There are some other
research works aiming at imposing regularization in the top
layer of the whole network, such as label-smothing(Szegedy
et al. 2016), label-disturbing(Xie et al. 2016) and Noisy-
Softmax(Chen, Deng, and Du 2017). However these methods
are all designed for Softmax classifier layer and cannot be
applied in the metric learning methods. Then, in order to
show the effectiveness of our ECAML in the metric learning
framework, we compare it with the commonly used ’Dropout’
method. The dropout layer is placed after the CNN model.
From Tab.2, one can observe that although the dropout with
ratio 0.25 improves most of the performances over the base-
line, the improvements are limited and not worthy of attention.
However, in contrast to Dropout, our ECAML significantly
surpasses the baseline model by a large margin. We conjec-
ture that is because Dropout is not specially designed for the
metric learning and the tested datasets are all fine-grained
datasets in which simply depressing the neurons to be zero
will largely affects the estimated distributions of these fine-
grained classes regardless of the ratio value due to the small
inter-class variations (for example, by using a smaller ratio
(e.g. 0.1) the performance will still be reduced). In summary,
our ECAML regularization method is specially designed for
the deep metric learning and indeed performs well.



CARS Stanford Online Products
Method R@l R@2 R@4 R@8 NMI FI Method R@I R@I0 R@I00 R@I000 NMI FI
Lifted(Oh Song et al. 2016) 49.0 603 721 815 55.1 215 Lifted(Qh Song et al. 2016) 62.1 79.8 91.3 97.4 87.4 247
Clustering(Song etal. 2017) ~ 58.1 706 803 878 590 - ClusteringSong et 2017) €10 81 932 . el
Angular(Wang et al. 2017) 713 807 870 918 624 318 Angular(Wang et al. 2017) —70. . 3 98.0 7. 5
ALMN(Chen and Deng 2018)  69.9 84.8 92.8 - - -
ALMN(Chen and Deng 2018)  71.6  81.3 882 934 620 294 DAML(Duan ct al. 2018 684 835 923 894 324
DAML(Duan et al. 2018) 751 838 897 935 660 364 (Duan ctal. 2018) S S5 ' - S
8 Triplet 579 756 885 963 864 208
Triplet 683 783 862 917 592 262 ECAML(Tri) 649 80.0  90.5 96.9 870 233
ECAML(Tri) 81.0 882 928 96.0 657 330 N-Pair 630 84.0 3.1 978 7.6 258
N-Pair 743 836 902 931 618 299 ECAML(N-Pair) 69.8 847 932 97.8 880 272
ECAML(N-Pair) 804 882 924 958 646 32.7 Binomial 685 840 931 977 885 299
Binomial 742 831 867 929 615 288 ECAML(Binomial) 713 856 936 98.0 899 32.8
ECAML(Binomial) 845 904 938 966 684 384
Table 5: Comparisons(%) with state-of-the-arts on Stanford
Table 3: Comparisons(%) with state-of-the-arts on Online Products(Oh Song et al. 2016). A for ECAML(tri,

CARS(Krause et al. 2013). X\ for ECAML(tri, N-Pair, Bi-
nomial) are {0.02,0.3,0.13}. Here, the images are directly

N-Pair, Binomial) are {0.002,0.03,0.013} resp.

In-Shop
resized to 256x256, which are different from(Oh Song et al. Method R@l R@I0 R@20 R@30 R@40 R@50
2016 th 227 227 . . d FashionNet(Liu et al. 2016) 53 73 76 77 79 80
), then a X region 1s cropped. HDC(Yuan, Yang, and Zhang 2017)  62.1 849  89.0 912 923  93.1
BIER(Opitz et al. 2017) 769 928 952 962 967 971
CUB Triplet 644 871 910 927 939 948
Method R@] R@2 R@4 R@S NMI FI RCAML(T) o T T 2
Lifted(Oh Song etal. 2016)  47.2 589 702 802 562 22.7 ECAML(N-Pais) 95 ots 961 990 ora o
Clustering(Song et al. 2017) 482 614 71.8 819 592 - Binomial 317 945 962 972 976 979
Angular(Wang et al. 2017) 536 650 753 837 610 302 ECAML(Binomial) 838 951 966 973 977  98.0
ALMN(Chen and Deng 2018) 524 64.8 754 843 60.7 28.5
?AI\IAI:(D“" ct al. 2018) ig'z 2?“7‘ ;z; :g; 2; ; ii‘? Table 6: Comparisons(%) with state-of-the-arts on In-shop
ECAML(Tsi) 534 647 751 847 601 269 (Liu et al. 2016). \ for ECAML(tri, N-Pair, Binomial) are
N-Pair 519 633 739 830 597 265 {0.002,0.03,0.013} resp.
ECAML(N-Pair) 532 651 759 849 604 285
Binomial 529 650 754 836 59.0 265 L. . L.
ECAML(Binomial) 557 665 767 851 618 305 approaches, for ZSRC tasks by explicitly intensifying the

Table 4: Comparisons(%) with state-of-the-arts on CUB(Wah
et al. 2011). A for ECAML(tri, N-Pair, Binomial) are
{0.02,0.3,0.13}.

5.2 Comparison with State-of-the-art

To highlight the significance of our ECAML framework, we
compare with the aforementioned corresponding baseline
methods, i.e. the wildly used Triplet (Schroff 2015), N-Pair
(Sohn 2016) and Binomial (Yi et al. 2014), moreover, we
also compare ECAML with other SOTA methods. The exper-
imental results over CUB, CARS, Stanford Online Products
and In-shop are in Tab.3-Tab.6 resp, bold number indicates
improvement over baseline method. From these tables, one
can observe that our ECAML consistently improves the per-
formances of original metric learning methods (i.e. Triplet,
N-Pair and Binomial) on all the benchmark datasets by a
large margin, demonstrating the necessity of explicitly en-
hancing the generalization ability of the learned metric and
validating the universality and effectiveness of our ECAML.
Furthermore, our ECAML(Binomial) also surpasses all the
listed state-of-the-art approches. In summary, learning ’gen-
eral’ concepts by avoiding the biased learning behavior is
more important in ZSRC tasks and the generalization ability
of the optimized metric heavily affects the performance of
conventional metric learning methods.

6. Conclusion

In this paper, we propose the Energy Confused Adversar-
ial Metric Learning (ECAML) framework, a generally ap-
plicable methods to various conventional metric learning
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generalization ability within the learned embedding with the
help of our Energy Confusion term. Extensive experiments
on the popular ZSRC benchmarks (CUB, CARS, Stanford
Online Products and In-Shop) demonstrate the significance
and necessity of our idea of learning metric with good gener-
alization by energy confusion.
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