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Abstract
Region-based object detection infers object regions for one
or more categories in an image. Due to the recent advances
in deep learning and region proposal methods, object detec-
tors based on convolutional neural networks (CNNs) have
been flourishing and provided the promising detection results.
However, the detection accuracy is degraded often because of
the low discriminability of object CNN features caused by
occlusions and inaccurate region proposals. In this paper, we
therefore propose a region decomposition and assembly de-
tector (R-DAD) for more accurate object detection.
In the proposed R-DAD, we first decompose an object re-
gion into multiple small regions. To capture an entire appear-
ance and part details of the object jointly, we extract CNN
features within the whole object region and decomposed re-
gions. We then learn the semantic relations between the object
and its parts by combining the multi-region features stage by
stage with region assembly blocks, and use the combined and
high-level semantic features for the object classification and
localization. In addition, for more accurate region proposals,
we propose a multi-scale proposal layer that can generate ob-
ject proposals of various scales. We integrate the R-DAD into
several feature extractors, and prove the distinct performance
improvement on PASCAL07/12 and MSCOCO18 compared
to the recent convolutional detectors.

Introduction
Object detection is to find all the instances of one or more
classes of objects given an image. In the recent years, the
great progress of object detection have been also made by
combining the region proposal algorithms and CNNs. The
most notable work is the R-CNN (Girshick et al. 2014)
framework. They first generate object region proposals us-
ing the selective search (Uijlings et al. 2013), extract CNN
features (Krizhevsky, Sutskever, and Hinton 2012) of the re-
gions, and classify them with class-specific SVMs. Then,
Fast RCNN (Girshick 2015) improve the R-CNN speed us-
ing feature sharing and RoI pooling. The recent detectors
(Ren et al. 2015; Redmon et al. 2016; Liu et al. 2016) inte-
grate the external region proposal modules into a CNN for
boosting the training and detection speed further. As a re-
sult, the detection accuracy can be also enhanced by joint
learning of region proposal and classification modules.
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The modern convolutional detectors usually simplify fea-
ture extraction and object detection processes with a fixed
input scale. But even with the robustness of the CNNs to
the scale variance, the region proposal accuracy is frequently
degraded by the mismatches of produced proposals and ob-
ject regions. Also, the mismatch tends to be increased for
the small object detection (Lin et al. 2017a). To improve
the proposal accuracy, multi-scale feature representation us-
ing feature pyramid is used for generating stronger synthetic
feature maps. However, featurizing each level of an image
pyramid increases the inference time significantly. In an at-
tempt to reduce the detection complexity, (Lin et al. 2017a)
leverage the feature pyramid of CNNs.

In general, detections failures are frequently caused for
occluded objects. In this case, the CNN feature discriminat-
bility for the occluded one can be reduced considerably since
the some part details of the object are missing in the oc-
cluded regions. It implies that exploiting global appearance
features for an entire object region could be insufficient to
classify and localize objects accurately.

In this paper, we propose a novel region decomposition
and assembly detector (R-DAD) to resolve the limitations
of the previous methods. The proposed method is based on
(1) multi-scale-based region proposal to improve region pro-
posal accuracy of the region proposal network (RPN) and (2)
multi-region-based appearance model to describe the global
and part appearances of an object jointly.

In a multi-scale region proposal layer, we first generate
region proposals using RPN and re-scale the proposals with
different scaling factors to cover the variability of the object
size. We then select the region proposals suitable for train-
ing and testing in considerations of the ratios of object and
non-object samples to handle the data imbalanced problem.
The main benefits of our method is that we can deal with the
variability of the object size using the region scaling with-
out expensive image or feature pyramids while maintaining
the appropriate number of region proposals using the region
sampling. In addition, we can capture local and global con-
text cues by rescaling the region proposals. To be more con-
crete, we can capture the local details with smaller proposals
than its original region and the global context between object
and surround regions with larger proposals.

In order to improve the feature discriminability, we fur-
ther perform multi-region based appearance learning by
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combining features of an entire object and its parts. The
main idea behind this method is that a maximum response
from each feature map is a strong visual cue to identify ob-
jects. However, we also need to learn the semantic relations
(i.e. weights) between the entire and decomposed regions for
combining them adaptively. For instance, when the left part
of an object is occluded, the weights should be adjusted to
be used features of the right part more for object detection
since the features of the less occluded part are more reliable.
To this end, we propose a region assembly block (RAB)
for ensembling multi-region features. Using the RABs, we
first learn the relations between part feature maps and gen-
erate a combined feature map of part models by aggregat-
ing maximum responses of part features stage-by-stage. We
then produce strong high-level semantic features by combin-
ing global appearance and part appearance features, and use
them for classification and localization.

To sum up, the main contributions of this paper can be
summarized as follows: (i) proposition of the R-DAD archi-
tecture that can perform multi-scale-based region proposal
and multi-region-based appearance learning through end-to-
end training (ii) achievement of state-of-the-art results with-
out employing other performance improvement methods
(e.g. feature pyramid, multi-scale testing, data augmenta-
tion, model ensemble, etc.) for several detection benchmark
challenge on PASCAL07 (mAP of 81.2%), PASCAL12
(mAP of 82.0%), and MSCOCO18 (mAP of 43.1%) (iii)
extensive implementation of R-DADs with various feature
extractors and thorough ablation study to prove the effective-
ness and robustness of R-DAD. In this work, we first apply
the proposed detection methods for the Faster RCNN (Ren et
al. 2015), but we believe that our methods can be applied for
other covolutional detectors (Girshick 2015; Bell et al. 2016;
Kong et al. 2016; Dai et al. 2016) including RPN since these
methods do not depend on a structure of a network.

Related Works
In spired of the recent advances in deep learning, a lot of
progress has been made on object detection. In particular,
convolutional detectors have become popular since it allows
effective feature extraction and end-to-end training from im-
age pixels to object classification and localization. In par-
ticular, the remarkable improvement of deep networks for
large scale object classification has also leaded to the im-
provement of detection methods. For feature extraction and
object classification, the recent object detectors are therefore
constructed based on the deep CNNs (Simonyan and Zis-
serman 2014; He et al. 2016) trained beforehand with large
image datasets, and combined with region proposal and box
regression networks for object localization. Among several
works, Faster-RCNN (Ren et al. 2015) achieve the notice-
able performance improvement by integrating RPN and Fast
RCNN (Girshick 2015). In addition, (Redmon et al. 2016;
Liu et al. 2016) develop the faster detectors by predicting
object class and locations from feature maps directly with-
out the region proposal stage.

For improving detection and segmentation, multiple fea-
ture maps extracted from different resolutions and regions

have been exploited. (Gidaris and Komodakis 2015) im-
prove the feature discriminability and diversity by combin-
ing several region features. (Zeng et al. 2016) learn the rela-
tion and dependency between feature maps of different reso-
lutions via message passing. (Lin et al. 2017a) connect con-
volved and deconvolved (or up-sampled) feature mas from
bottom-up and top-down pathways for multi-scale feature
representation. HyperNet (Kong et al. 2016) and ION (Bell
et al. 2016) concatenate different layer feature maps, and
then predict the objects with the transformed maps hav-
ing more contextual and semantic information. Basically,
the previous works based on multiple feature maps focus
on (1) multi-region representation to improving the feature
discriminability and diversity (2) multi-scale representation
to detect the objects with small sizes without image pyra-
mid. Although most previous detection methods with multi-
ple features focus on only one of both issues, the proposed
R-DAD can efficiently handle both issues together.

Region Decomposition and Assembly Detector
The architecture of our R-DAD is shown in Fig. 1. It mainly
consists of feature extraction, multi-scale-based region pro-
posal (MRP) and object region decomposition and assem-
bly (RDA) phases. For extracting a generic CNN features,
similar to other works, we use a classification network
trained with ImageNet (Russakovsky et al. 2015). In our
case, to prove the flexibility of our methods for the fea-
ture extractors, we implement different detectors by com-
bining our methods with several feature extractors: ZF-Net
(Zeiler and Fergus 2014), VGG16/VGGM1024-Nets (Si-
monyan and Zisserman 2014), Res-Net101/152 (He et al.
2016). In Table 3, we compare the detectors with different
feature extractors. In Fig. 1, we however design the archi-
tecture using ResNet as a base network.

In the MRP network, we generate region proposals (i.e.
bounding boxes) of different sizes. By using the RPN (Ren
et al. 2015), we first generate proposal boxes. We then re-
scale the generated proposals with different scale factors for
enhancing diversity of region proposals. In the RoI sampling
layer, we select appropriate boxes among them for training
and inference in consideration of the data balance between
foreground and background samples.

In addition, we learn the global (i.e. an entire region) and
part appearance (i.e. decomposed regions) models in the
RDA network. The main process is that we decompose an
entire object region into several small regions and extract
features of each region. We then merge the several part mod-
els while learning the strong semantic dependencies between
decomposed parts. Finally, the combined feature maps be-
tween part and global appearance models are used for object
regression and classification.

Faster RCNN
We briefly introduce Faster-RCNN (Ren et al. 2015) since
we implement our R-DAD on this framework. The detec-
tion process of Faster-RCNN can be divided into two stages.
In the first stage, an input image is resized to be fixed and
is fed into a feature extractor (i.e. pretrained classification
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Figure 1: Proposed R-DAD architecture: In the MRP network, rescaled proposals are generated. For each rescaled proposal,
we decompose it into several part regions. We design a region assembly block (RAB) with 3x3 convolution filters, ReLU, and
max units. In the RDA network, by using RABs we combine the strong responses of decomposed object parts stage by stage,
and then learn the semantic relationship between the whole object and part-based features.

network) such as VGG16 or ResNet. Then, the PRN uses
mid-level features at some selected intermediate level (e.g.
“conv4” and “conv5” for VGG and ResNet) for generating
class-agnostic box proposals and their confidence scores.

In the second stage, features of box proposals are cropped
by RoI pooling from the same intermediate feature maps
used for box proposals. Since feature extraction for each pro-
posal is simplified by cropping the extracted feature maps
previously without the additional propagation, the speed can
be greatly improved. Then, the features for box proposals are
subsequently propagated in other higher layers (e.g. “fc6”
followed by “fc7”) to predict a class and refine states (i.e.
locations and sizes) for each candidate box.

Multi-scale region proposal (MRP) network
Each bounding box can be denoted as d = (x, y, w, h),
where x, y, w and h are the center positions, width and
height. Given a region proposal d, the rescaled box is ds =
(x, y, w · s, h · s) with a scaling factor s (≥ 0). By applying
different s to the original box, we can generate ds with dif-
ferent sizes. Figure 2 shows the rescaled boxes with different
s, where the original box d has s = 1. In our implementa-
tion, we use different s = [0.5, 0.7, 1, 1.2, 1.5].

Even though boxes with different scales can be generated

by the RPN in the Faster RCNN, we can further increase
diversity of region proposals by using the multi-scale detec-
tion. By using larger s, we can capture contextual informa-
tion (e.g. background or an interacting object) around the
object. On the other hand, by using smaller s we can investi-
gate local details in higher resolution and it can be useful for
identifying the object under occlusion where the complete
object details are unavailable. The effects of the multi-scale
proposals with different s are shown in Table 1.

Since huge number of proposals (63×38×9×5) are gen-
erated for the feature maps of size 63 × 38 at the “conv4”
layer when using 9 anchors and 5 scale factors, exploiting all
the proposals for training a network is impractical. Thus, we
maintain the appropriate number of proposals (e.g. 256) by
removing the proposals with low confidence and low over-
lap ratios over ground truth. We then make a ratio of object
and non-object samples in a mini-batch to be equal and use
the mini-batch for fine-tuning a detector shown in Fig 1.

Region decomposition and assembly (RDA)
network
In general, strong responses of features is one of the most
important cues to recognize objects. For each proposal from
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Figure 2: (Left) Rescaled proposals by the MRP. (Right)
Several decomposed regions for a whole object region.

the MRP network, we therefore infer strong cues by com-
bining features of multiple regions stage-by-stage as shown
in Fig. 1. To this end, we need to learn the weights which
can represent semantic relations between the features of dif-
ferent parts, and using the weights we control the amount of
features to be propagated in the next layer.

A region proposal from RPN is assumed usually to cover
the whole region of an object. We generate smaller decom-
posed regions by diving d into several part regions. We make
the region cover different object parts as shown in Fig. 2.

From the feature map used as the input of the MRP
network, we first extract the warped features xl of size
hroi × wroi for the whole object region using RoI pooling
(Girshick 2015), where hroi and wroi are the height and the
width of the map (for ResNet, hroi = 14 and wroi = 14).
Before extracting features of each part, we first upsample
the spatial resolution of the feature map by a factor of 2 us-
ing bilinear interpolation. We found that these finer resolu-
tion feature maps improve the detection rate since the ob-
ject details can be captured more accurately as shown in
Table 1. Using RoI pooling, we also extract warped fea-
ture maps of size dhroi/2e × dwroi/2e, and denote them as
xp
l , p ∈ {left, right, bottom, upper}.
In the forward propagation, we convolve part features

xp
i,l−1 at layer l−1 of size hpl−1×w

p
l−1 with different kernels

wl
ij of size ml ×ml, and then pass the convolved features

a nonlinear activation function f(·) to obtain an updated
feature map xp

j,l of size (hpl−1−ml+1)×(wp
l−1−ml+1) as

xp
j,l = f

(∑kl

i=1 x
p
i,l−1 ∗wl

ij + blj

)
, l= 2, 3, 4 (1)

where p represent each part (left, right, bottom, upper)
or combined parts (left-right(l/r), bottom-upper (b/u) and
comb) as in Fig. 1. blj is a bias factor, kl is the number of
kernels. ∗means convolution operation. We use the element-
wise ReLU function as f(·) for scaling the linear input.

Then, the bi-directional outputs xp
l and xq

l Eq. (1) of dif-
ferent regions are merged to produce the combined feature
xr
l by using an element-wise max unit over each channel as

xr
l = max (xp

l ,x
q
l ) (2)

p, q and r also represent each part or a combined part as
shown in Fig. 2. The element-wise max unit is used to merge
information between xp

l and xq
l and produce xr

l with the
same size. As a result, the bottom-up feature maps are re-
fined state-by-stage by comparing features of different re-
gions and strong semantics features remained only. The
holistic feature of the object is propagated through several

Figure 3: Intermediate semantic features and detection re-
sults generated by our R-DAD.

layers (in “conv5 block” for ResNet) of the base network,
and the features xwhole for the whole object appearance at
the last layer is also compared with the combined feature
xcomb
3 of part models, and then the refined features xcomb

4 are
connected with the object classification and box regression
layers with cls + 1 neurons and 4(cls + 1) neurons, where
cls is the number of object classes and the one is added due
to the background class.

Figure 3 shows the semantic features at several layers of
the learned R-DAD. Some strong feature responses within
objects are extracted by our R-DAD.

R-DAD Training
For training our R-DAD, we exploit the pre-trained and
shared parameters of a feature extractor (e.g. “conv1-5” of
ResNet) from the ImageNet dataset as initial parameters
of R-DAD. We then fine-tune parameters of higher lay-
ers (“conv3-5”) of the R-DAD while keeping parameters
of lower layers (e.g. “conv1-2”). We freeze the parameters
for batch normalization which was learned during ImageNet
pre-training. The parameters of the MRP and RDA networks
are initialized with the Gaussian distribution.

For each box d, we find the best matched ground truth
box d∗ by evaluating IoU. If a box d has an IoU than 0.5
with any d∗, we assign positive label o∗ ∈ {1...cls}, and
a vector representing the 4 parameterized coordinates of d∗.
We assign a negative label (0) to d that has an IoU between
0.1 and 0.5. From the output layers of the R-DAD, 4 pa-
rameterized coordinates and the class label ô are predicted
to each box d. The adjusted box d̂ is generated by applying
the predicted regression parameters. For box regression, we
use the following parameterization (Girshick et al. 2014).

tx = (x̂− x) /w, ty = (ŷ − y) /h,
tw = log(ŵ/w), th = log(ĥ/h),

(3)

where x̂ and x are for the predicted and anchor box, respec-
tively (likewise for y, w, h). Similarly, t∗ = [t∗x, t

∗
y, t
∗
w, t
∗
h]

is evaluated with the predicted box and ground truth boxes.
We then train the R-DAD by minimizing the classification
and regression losses Eq.(4).

L (o,o∗, t, t∗) = Lcls(o,o
∗) + λ [o ≥ 1]Lreg(t, t

∗)
(4)

Lcls(o,o
∗) = −

∑
uδ(u, o

∗)log(pu), (5)

Lloc(t, t
∗) = −

∑
v∈{x,y,w,h}smoothL1

(tv, t
∗
v) , (6)
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Table 1: Ablation study: effects of the proposed methods.
Method Combination

Multi-scale region proposal √ √
s = [0.7, 1.0, 1.5]

Multi-scale region proposal √ √ √
s = [0.5, 0.7, 1.0, 1.2, 1.5]
Decomposition/assembly

√ √ √ √

Up-sampling
√

Mean AP 68.90 70.0 70.30 71.95 72.65 73.90 74.90

Table 2: Ablation study: the detection comparison of differ-
ent region assembly blocks.

Stage 1 Stage 2 Stage 3 Mean AP
Sum Sum Sum 69.61
Sum Max Max 69.34
Sum Sum Max 69.82
Max Max Sum 69.08
Max Max Sum [c1 = 1, c2 = γ] 68.80
Max Max Sum [c1 = γ, c2 = 1] 69.30
Max Max Concatenation 71.95

Max(dil. d = 4) Max Max 70.87
Max (dil. d = 2) Max(dil. d = 2) Max 70.55

Max Max(dil. d = 4) Max 70.64
Max(m = 5) Max (m = 5) Max 75.10
Max (m = 3) Max (m = 3) Max (m = 3) 74.90

smoothL1(z) =

{
0.5z2 if |z| ≤ 1

|z| − 0.5 otherwise
(7)

where pu is the predicted classification probability for class
u. δ(u, o∗) = 1 if u = o∗ and δ(u, o∗) = 0 otherwise. Using
the SGD with momentum of 0.9, we train the parameters.
λ = 1 in our implementation.

Discussion of R-DAD
There are several benefits of the proposed object region
assembly method. Since we extract maximum responses
across spatial locations between feature maps of object parts,
we can improve the spatial invariance more to feature posi-
tion without a deep hierarchy than using max pooling which
supports a small region (e.g. 2 × 2). Since our RAB is sim-
ilar to the maxout unit except for using ReLU, the RAB can
be used as a universal approximator which can approximate
arbitrary continuous function (Goodfellow et al. 2013). This
indicates that a wide variety of object feature configurations
can be represented by combining our RABs hierarchically.
In addition, the variety of region proposals generated by the
MRP network can improve the robustness further to feature
variation occurred by the spatial configuration change be-
tween objects.

Implementation
We apply our R-DAD for various feature extractors to show
its flexibility to the base network. In general, a feature ex-
tractor affects the accuracy and speed of a detectors. In this
work, we use five different feature extractors and combine
each extractor with our R-DAD to compare each other as
shown in Table 3 and 4. We implement all the detectors us-
ing the Caffe on a PC with a single TITAN Xp GPU without
parallel and distributed training.

Table 3: Comparison between the R-DAD and Faster-RCNN
by using different feature extractors on the VOC07 test set.

Train set Detector mAP Train set Detector mAP
FRCN/ZF 60.8 FRCN/ZF 66.0

R-DAD/ZF 63.7 R-DAD/ZF 68.2
PASCAL FRCN/VGGM1024 61.0 PASCAL FRCN/VGGM1024 65.0

VOC R-DAD/VGGM1024 65.0 VOC R-DAD/VGGM1024 69.1
07 FRCN/VGG16 69.9 07++12 FRCN/VGG16 73.2

R-DAD/VGG16 73.9 R-DAD/VGG16 78.2
FRCN/Res101 74.9 FRCN/Res101 76.6

R-DAD/Res101 77.6 R-DAD/Res101 81.2

ZF and VGG networks
We use the fast version of ZF (Zeiler and Fergus 2014) with
5 shareable convolutional and 3 fully-connected layers. We
also use the VGG16 (Simonyan and Zisserman 2014) with
13 shareable convolutional and 3 fully connected layers.
Moreover, we exploit the VGGM1024 (variant of VGG16)
with the same depth of AlexNet (Krizhevsky, Sutskever,
and Hinton 2012). All these models pre-trained with the
ILSVRC classification dataset are given by (Ren et al. 2015).

To generate region proposals, we feed the feature maps
of the last shared convolutional layer (“conv5” for ZF and
VGGM1024, and “conv5 3” for VGG-16) to the MRP net-
work. Given a set of region proposals, we also feed the
shared maps of the last layer to the RDA network for learn-
ing high-level semantic features by combining the features
of decomposed regions. We use xcomb

4 produced by the RDA
network as inputs of regression and classification layers. We
fine-tune all layers of ZF and VGG1024, and conv3 1 and
up for VGG16 to compare our R-DAD with Faster RCNN
(Ren et al. 2015). The sizes of a mini-batch used for training
MRP and RAD networks are set to 256 and 64, respectively.

Residual networks
We use the ResNets (He et al. 2016) with different
depths by stacking different number of residual blocks. For
the ResNets50/101/152 (Res50/101/152), the layers from
“conv1” to “conv4” blocks are shared in the Faster RCNN.
In a similar manner, we use the features from the last layer of
the “conv4” block as inputs of the MRP and RDA networks.
We fine-tune the layers of MRP and RDA networks includ-
ing layers of “conv3-5” while freezing layers of “conv1-2”
layers. We also use the same mini-batch sizes (256/64) when
training MRP and RDA networks per iteration.

Experimental results
We train and evaluate our R-DAD on standard detection
benchmark datasets: PASCAL VOC07/12 (Everingham et
al. 2015) and MSCOCO18 (Lin et al. 2014) datasets.

Evaluation measure: We use average precision (AP) per
class which is a standard metric for object detection. It is
evaluated by computing the area under the precision-recall
curve. We also compute mean average precision (mAP) by
averaging the APs over all object classes. When evaluating
AP and mAP on PASCAL and COCO, we use the public
available codes (Girshick 2015; Lin et al. 2014) or evalua-
tion servers for those competition.
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Table 4: The speed of the Faster R-CNN (FRCN) and R-DAD (input size: 600 ×1000).
Base Network ZF VGGM1024 VGG16 Res101 Res152

Detector FRCN R-DAD FRCN R-DAD FRCN R-DAD FRCN R-DAD R-DAD(m = 5) FRCN R-DAD R-DAD(m = 5)
Time(sec/frame) 0.041 0.048 0.046 0.054 0.15 0.177 0.208 0.245 0.53 0.301 0.385 0.574

Table 5: Performance comparison with other detectors in PASCAL VOC 2012 challenge. The more results can be found in the
PASCAL VOC 2012 website.

Train set Detector mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Fast (Girshick 2015) 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2

Faster (Ren et al. 2015) 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5
PASCAL SSD512 (Liu et al. 2016) 74.9 87.4 82.3 75.8 59.0 52.6 81.7 81.5 90.0 55.4 79.0 59.8 88.4 84.3 84.7 83.3 50.2 78.0 66.3 86.3 72.0

VOC YOLOv2 (Redmon and Farhadi 2017) 73.4 86.3 82.0 74.8 59.2 51.8 79.8 76.5 90.6 52.1 78.2 58.5 89.3 82.5 83.4 81.3 49.1 77.2 62.4 83.8 68.7
07++12 MR-CNN (Gidaris and Komodakis 2015) 73.9 85.5 82.9 76.6 57.8 62.7 79.4 77.2 86.6 55.0 79.1 62.2 87.0 83.4 84.7 78.9 45.3 73.4 65.8 80.3 74.0

HyperNet (Kong et al. 2016) 71.4 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.9 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7
ION (Bell et al. 2016) 76.4 87.5 84.7 76.8 63.8 58.3 82.6 79.0 90.9 57.8 82.0 64.7 88.9 86.5 84.7 82.3 51.4 78.2 69.2 85.2 73.5

R-DAD/Res101 80.2 90.0 86.6 81.3 71.2 66.0 83.4 83.7 94.5 63.2 84.0 64.2 92.8 90.1 88.6 87.3 62.2 82.8 70.9 88.8 72.2
R-DAD/Res152 82.0 90.2 88.1 85.3 73.3 71.4 84.5 87.4 94.6 65.1 86.8 64.0 94.1 89.7 89.2 89.3 64.5 83.5 72.2 89.5 77.6

Learning strategy: We use different learning rates for
each evaluation. We use a learning rate µ = 1e−3 for 50k it-
erations, and µ = 1e−4 for the next 20k iterations on VOC07
evaluation. For VOC12 evaluation, we train a detector with
µ = 1e−3 for 70k iterations, and continue it for 50k iter-
ations with µ = 1e−4. For MSCOCO evaluation, we use
µ = 1e−4 and µ = 1e−5 for the first 700k and the next 500k
iterations.

Ablation experiments
To show the effectiveness of the methods used for MRP and
RDA networks, we perform several ablation studies. For this
evaluation, we train detectors with VOC07+(trainval) set and
test them on the VOC07 test set.

Effects of proposed methods: In Table. 1, we first show
mAPs of a baseline detector without the multi-scale and re-
gion decomposition/assembly methods (i.e. Faster RCNN)
and the detector by using the proposed methods. Compared
to the mAP of the baseline, we achieve the better rates when
applying our methods. We also compare mAP of detec-
tors with different number of scaling factors. By using five
scales, mAP is improved slightly. In particular, using decom-
position/assembly method can improve mAP to 3.05%. Us-
ing up-sampling improves mAP to 1%. This indicates that
part features extracted in finer resolution yield the better de-
tection. As a result, combining all proposed methods with
the baseline enhances the mAP to 6%.

Structure of the RDA network: To determine the best
structure of the RDA network, we evaluate mAP by chang-
ing its components as shown in Table 2. We first compare
feature aggregation methods. As in Fig. 1, we combine the
bi-directional outputs of different regions at each stage us-
ing a max unit. We change this unit one-by-one with sum
or concatenation units. When summing both outputs at the
stage 3, we try to merge outputs with different coefficients.
Sum [c1 = γ, c2 = 1] means that xwhole and xcomb

3 are
summed with γ and 1 weights. This is a similar concept to
the identity mapping (He et al. 2016). The scale parameter γ
is learned during training. However, we found that summing
feature maps or using identity mapping show the minor im-
provement. In addition, concatenating features improves the
mAP, but it also increases the memory usage and complexity

Figure 4: Comparisons of R-DAD without (top) /with (bot-
tom) the RDA method under occlusions on COCO18.

of convolution at the next layer. From this comparison, we
verify that merging the features using the max units for all
the stages provides the best mAP while the computational
complexity. This evaluation supports that our main idea of
that maximum responses of features are strong visual cues
for detecting objects.

Moreover, to determine the effective receptive field size,
we change the size of convolution kernels with m = 5 at
the stage 1 and 2 in the RDA network. Moreover, we also
try d-dilated convolution filters to expand the receptive field
more. However, exploiting the dilated convolutions and 5x5
convolution filters does not increase the mAP significantly.
It indicates that we can cover the receptive fields of each part
and combined regions sufficiently with the 3x3 filters.

Comparison with Faster-RCNN
Accuracy: To compare the Faster-RCNN (FRCN), we train
both detectors with the VOC07trainval (VOC07, 5011 im-
ages) and VOC12trainval sets (VOC07++12, 11540 im-
ages). We then test them on the VOC07 test set (4952 im-
ages). For more comparison, we implement both detectors
with various feature extractors. The details of the implemen-
tation are mentioned in previous section. Table 3 shows the
comparison results of both detectors. All the R-DADs show
the better mAPs than those of Faster RCNNs. We improve
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Table 6: Comparison of state-of-the-art detectors on MSCOCO18 test-dev set. More results can be founded in the MSCOCO
evaluation website (test-dev2018). For each metric, the best results are underlined.

Detector Base Network Bells and whistles Avg. Precision, IoU: Avg. Precision, Area: Avg. Recall, # Dets: Avg. Recall, Area:
0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

Single-stage-based dectectors
YOLOv2 (Redmon and Farhadi 2017) DarkNet-19 - 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 54.4

SSD512 (Liu et al. 2016) VGG-16 - 28.8 48.5 30.3 10.9 31.8 43.5 26.1 39.5 42.0 16.5 46.6 60.8
RectinaNet (Lin et al. 2017b) ResNet-101 - 34.4 53.1 36.8 14.7 38.5 49.1 - - - - -
RectinaNet (Lin et al. 2017b) ResNet-101 Feature pyramid 39.1 59.1 42.3 21.8 42.7 50.2 - - - - - -

RefineDet512 (Zhang et al. 2018) ResNet-101 - 36.4 57.5 39.5 16.6 39.9 51.4 30.6 49.0 53.0 30.0 58.2 70.3
RefineDet512+ (Zhang et al. 2018) ResNet-101 Multi-scale testing 41.8 62.9 45.7 25.6 45.1 54.1 34.0 56.3 65.5 46.2 70.2 79.8

Two-stage-based dectectors
R-FCN (Dai et al. 2016) ResNet-101 - 29.9 51.9 - 10.8 32 .8 45.0
ION (Bell et al. 2016) VGG-16 - 33.1 55.7 34.6 14.5 35.2 47.2 28.9 44.8 47.4 25.5 52.4 64.3

CoupleNet (Zhu et al. 2017) ResNet-101 Multi-scale training 34.4 54.8 37.2 13.4 38.1 50.8 30.0 45.0 46.4 20.7 53.1 68.5
Faster R-CNN+++ (He et al. 2016) ResNet-101-C4 Multi-scale testing 34.9 55.7 37.4 15.6 38.7 50.9 - - - - - -

Feature pyramid network (Lin et al. 2017a) ResNet101 - 36.2 59.1 39.0 18.2 39.0 48.2 31.0 46.6 48.1 27.1 52.2 63.6
Deformable R-FCN (Dai et al. 2017) Aligned-Inception-ResNet - 36.1 56.7 - 14.8 39.8 52.2 - - - - - -
Deformable R-FCN (Dai et al. 2017) Aligned-Inception-ResNet Multi-scale testing 37.1 57.3 - 18.8 39.7 52.3 - - - - - -

G-RMI (Huang et al. 2017) Inception-ResNet-v2 - 34.7 55.5 36.7 13.5 38.1 52.0 - - - - - -
R-DAD (ours) ResNet-50 - 37.1 57.7 39.9 19.6 41.2 52.1 31.4 48.2 50.2 29.3 54.7 68.1
R-DAD (ours) ResNet-101 - 40.4 60.5 43.7 20.4 45.0 56.1 32.5 53.2 56.9 34.1 61.9 75.2

R-DAD-v2 (ours) ResNet-50 Multi-scale testing 41.8 62.7 46.3 23.3 44.6 53.5 33.2 55.3 59.4 37.5 63.0 75.3
R-DAD-v2 (ours) ResNet-101 Multi-scale testing 43.1 63.5 47.4 24.1 45.9 54.7 34.1 56.7 60.9 39.3 64.3 76.2

mAP about 3∼ 5% using R-DAD. We also confirm that us-
ing feature extractors with higher classification accuracies
leads to better detection rate.

Speed: In Table 4, we have compared the detection speed
of both detectors. Since the speed depends on size of the
base network, we evaluate them by using various base net-
works. We also fix the number of region proposals to 300 as
done in (Girshick 2015). The speed of our R-DAD is com-
parable with it of the FRCN. Indeed, to reduce the detec-
tion complexity while maintaining the accuracy, we design
the R-DAD structure in consideration of several important
factors. We found that the spatial sizes of RoI feature maps
(hroi and wroi) and convolution filters (m) can affect the
speed significantly. When using hroi = 14, wroi = 14 and
m = 5 in RABs, R-DAD gets 1.5x ∼ 2.1x slower but en-
hanced only about 0.2% as in Table 2. Therefore, we confirm
that adding MRP and RDA networks to the Faster RCNN
does not increase the complexity significantly.

Detection Benchmark Challenges
In this evaluation, our R-DAD performance is evaluated
from PASCAL VOC and MSCOCO servers. We also post
our detection scores to the leaderboard of each challenge.

PASCAL VOC 2012 challenge: We evaluate our R-DAD
on the PASCAL VOC 2012 challenge. For training our R-
DAD, we use VOC07++12 only and test it on VOC2012test
(10911 images). Note that we do not use extra datasets such
as the COCO dataset for improving mAP as done in many
top ranked teams.

Table 5 shows the results. As shown, we achieve the best
mAP among state-of-the-art convolutional detectors. In ad-
dition, our detector shows the higher mAP by using the
Res152 model. Compared to the Faster RCNN and MR-
CNN (Gidaris and Komodakis 2015) using multi-region ap-
proach, we improve the mAP to 11.6% and 8.1%.

MS Common Objects in Context (COCO) 2018 chal-
lenge: We participate in the MSCOCO challenge. This chal-
lenge is detection for 80 object categories. We use COCO-
style evaluation metrics: mAP averaged for IoU ∈ [0.5 :

0.05 : 0.95], average precision/recall on small (S), medium
(M) and large (L) objects, and average recall on the number
of detections (# Dets). We train our R-DAD with the union
of train and validation images (123k images). We then test it
on the test-dev set (20k images). For enhancing detection for
the small objects, we use 12 anchors consisting of 4 scales
(64, 128, 256, 512) and 3 aspect ratios (1:1, 1:2, 2:1).

Table 6 compares the performance of detectors based on a
single network. We divide detectors with single-stage-based
and two-stage-based detectors depending on region proposal
approach. Note that our R-DAD with ResNet-50 is superior
to other detectors. The performance of R-DAD is further im-
proved to 40.4% by using ResNet-101 with higher accuracy.

Compared to the scores of this challenge winners of Faster
R-CNN+++ (2015) and G-RMI (2016), our detectors pro-
duce the better results. Remarkably, we achieve the best
scores without bell and whistles (e.g. multi-scale testing,
hard example mining, feature pyramid (Lin et al. 2017a),
model ensemble, etc). By applying multi-scale testing for R-
DADs with ResNet50 and ResNet101, we can improve mAP
to 41.8% and 44.9%, respectively. As shown in this chal-
lenge leaderboard, our R-DAD is ranked on the high place.

In Fig. 4, we have directly compared detection results
with/without the RDA network. Some detection failures (in-
accurate localizations and false positives) for occluded ob-
jects are occurred when not using the proposed network.

Conclusion
In this paper, we have proposed a region decomposition
and assembly detector to solve a large scale object detec-
tion problem. We first decompose a whole object region into
multiple small regions, and learn high-level semantic fea-
tures by combining a holistic and part model features stage-
by-stage using the proposed method. For improving region
proposal accuracy, we generate region proposals of various
sizes by using our multi-scale region proposal method and
extract wrapped CNN features within the generated propos-
als for capturing local details of an object and global con-
text cues around the object. From the extensive compari-
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son with other state-of-the-art convolutional detectors, we
have proved that the proposed methods lead to the notice-
able performance improvements on several benchmark chal-
lenges such as PASCAL VOC07/12, and MSCOCO18. We
clearly show that the robustness and flexibility of our meth-
ods by implementing several versions of R-DADs with dif-
ferent feature extractors and detection methods through ab-
lation studies.
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