Depth Prediction without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos

Authors

  • Vincent Casser Harvard University
  • Soeren Pirk Google
  • Reza Mahjourian University of Texas at Austin
  • Anelia Angelova Google

DOI:

https://doi.org/10.1609/aaai.v33i01.33018001

Abstract

Learning to predict scene depth from RGB inputs is a challenging task both for indoor and outdoor robot navigation. In this work we address unsupervised learning of scene depth and robot ego-motion where supervision is provided by monocular videos, as cameras are the cheapest, least restrictive and most ubiquitous sensor for robotics.

Previous work in unsupervised image-to-depth learning has established strong baselines in the domain. We propose a novel approach which produces higher quality results, is able to model moving objects and is shown to transfer across data domains, e.g. from outdoors to indoor scenes. The main idea is to introduce geometric structure in the learning process, by modeling the scene and the individual objects; camera ego-motion and object motions are learned from monocular videos as input. Furthermore an online refinement method is introduced to adapt learning on the fly to unknown domains.

The proposed approach outperforms all state-of-the-art approaches, including those that handle motion e.g. through learned flow. Our results are comparable in quality to the ones which used stereo as supervision and significantly improve depth prediction on scenes and datasets which contain a lot of object motion. The approach is of practical relevance, as it allows transfer across environments, by transferring models trained on data collected for robot navigation in urban scenes to indoor navigation settings. The code associated with this paper can be found at https://sites.google.com/view/struct2depth.

Downloads

Published

2019-07-17

How to Cite

Casser, V., Pirk, S., Mahjourian, R., & Angelova, A. (2019). Depth Prediction without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 8001-8008. https://doi.org/10.1609/aaai.v33i01.33018001

Issue

Section

AAAI Technical Track: Robotics