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Abstract

We present an efficient algorithm that, given a discrete random
variable X and a number m, computes a random variable whose
support is of size at most m and whose Kolmogorov distance
from X is minimal. We present some variants of the algorithm,
analyse their correctness and computational complexity, and
present a detailed empirical evaluation that shows how they
performs in practice. The main application that we examine,
which is our motivation for this work, is estimation of the
probability of missing deadlines in series-parallel schedules.
Since exact computation of these probabilities is NP-hard, we
propose to use the algorithms described in this paper to obtain
an approximation.

1 Introduction
Various approaches for approximation of probability distribu-
tions are studied in the literature (Pettitt and Stephens 1977;
Miller and Rice 1983; Vidyasagar 2012; Cohen, Shimony, and
Weiss 2015; Pavlikov and Uryasev 2016; Cohen, Grinshpoun,
and Weiss 2018). These approaches vary in the types random
variables considered, how they are represented, and in the cri-
teria used for evaluation of the quality of the approximations.
In this paper we propose an approach for compressing the
probability mass function of a random variable X such that
the errors added to queries such as Pr(X ≤ t), for any t > 0,
is minimal. In other words, we minimise the Kolmogorov
distance between the approximation and the original variable,
see alternative definition in Equation (1).

Our main motivation for this work is estimation of the prob-
ability for missing deadlines, as described, e.g., in Cohen et
al. (Cohen, Shimony, and Weiss 2015; Cohen, Grinshpoun, and
Weiss 2018) and in (Kashef and Moayeri 2018). Specifically,
when X represents the probability distribution of the time to
complete some complex schedule and we cannot afford to
maintain the full table of its probability mass function, we
propose an algorithm for producing a smaller table, whose size
can be specified, such that probabilities for missing deadlines
are preserved as much as possible.

The main contribution of this paper is an efficient algorithm
for computing the best possible approximation of a given
random variable with a random variable whose size is not
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above a prescribed threshold, where the measures of the quality
of the approximation and of its size are as specified in the
following two paragraphs.

We measure the quality of an approximation scheme by
the distance between random variables and their approxima-
tions. Specifically, we use the Kolmogorov distance which is
commonly used for comparing random variables in statistical
practice and literature. Given two random variables X and X ′
whose cumulative distribution functions (cdf) are FX and FX′ ,
respectively, the Kolmogorov distance between X and X ′ is
dK(X,X ′) = supt |FX(t)−FX′(t)| (see, e.g., (Gibbons and
Chakraborti 2011)). We say that X ′ is a good approximation
of X if dK(X,X ′) is small. This distance is the basis for the
often used Kolmogorov-Smirnoff test for comparing a sample
to a distribution or two samples to each other.

The size of a random variable is measured by
the size of its support, the set of possible outcomes,
|X|=|{x : Pr(X=x) 6= 0}|. When probability mass func-
tions are maintained as tables, as done in many implementa-
tions of statistical software, the support size is proportional to
the memory needed to store the variable and to the complexity
of the computations that manipulate it. The exact notion of
optimality of the approximation targeted in this paper is:

Definition 1. A random variable X ′ is an optimal m-
approximation of a random variable X if |X ′| ≤ m and
there is no random variable X ′′ such that |X ′′| ≤ m and
dK(X,X ′′) < dK(X,X ′).

In these terms, the main contribution of the paper is an
efficient (linear time and constant memory) algorithm that
takes X and m as parameters and constructs an optimal m-
approximation of X .

The rest of the paper is organised as follows. In Section 2
we describe how our work relates to other algorithms and
problems studied in the literature. In Section 3 we detail the
proposed algorithm, analyse its properties, and prove the main
theorems. In Section 4 we demonstrate how the proposed
approach performs on the problem of estimating the prob-
ability of missing deadlines in series-parallel schedules on
randomly generated random variables and compare it to al-
ternative approximation approaches from the literature. The
paper is concluded with a discussion and with ideas for future
work in Section 5.
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2 Related work
The most relevant work related to this paper is the pa-
pers on approximations of random variables in the context
of estimating deadlines (Cohen, Shimony, and Weiss 2015;
Cohen, Grinshpoun, and Weiss 2018). In these papers, X ′ is
defined to be a good approximation of X if FX′(t) > FX(t)
for any t and supt FX′(t) − FX(t) is small. Note that this
measure is not a proper distance measure because it is not sym-
metric. The motivation given in these papers for using this type
of approximation is for cases where overestimation of the prob-
ability of missing a deadline is acceptable but underestimation
is not. We consider in this paper the same case-studies exam-
ined by Cohen et al. and show how the algorithm proposed
in this paper performs relative to the algorithms proposed
there when both over- and under- estimations are allowed. As
expected, the Kolmogorov distance between the approximated
and the original random variable is considerably smaller when
using the algorithm proposed in this paper.

In the technical level, the problem we study in this paper is
similar to the problem of approximating a set of 2-D points by
a step function. The study of this problem was motivated by
query optimisation and histogram constructions in database
management systems (Guha 2008; Guha and Shim 2007;
Guha, Shim, and Woo 2004; Jagadish et al. 1998; Karras,
Sacharidis, and Mamoulis 2007; Fournier and Vigneron 2011)
and computational geometry (Dı́az-Bánez and Mesa 2001;
Fournier and Vigneron 2008). There are, however, two tech-
nically significant differences between the problem studied
in the context of databases and the problem we analyse in
this paper. The first difference is that in the context of ap-
proximation of random variables, the step function (which is
the cumulative distribution function in our context) must end
with a value one, since we are dealing with random variables
which sums to one. The second difference is that the first step
is not counted because there is no need to put a value in the
support of the approximated random variable to generate this
first step. These cannot be addressed by adding a constant
(two) to m because the first step is always present and because
the requirement to end with the value one, restricts the set of
eligible step functions.

Another relevant prior work is the theory of Sparse Approx-
imation (aka Sparse Representation) that deals with sparse
solutions for systems of linear equations, as follows. Given
a matrix D ∈ Rn×p and a vector x ∈ Rn, the most studied
sparse representation problem is finding

min
α∈Rp

‖α‖0 subject to x = Dα

where ‖α‖0 = |{i ∈ [p] : αi 6= 0}| is the `0 pseudo-norm,
counting the number of non-zero coordinates of α. This prob-
lem is known to be NP-hard with a reduction to NP-complete
subset selection problems. In these terms, using also the `∞
norm that represents the maximal coordinate and the `1 norm
that represents the sum of the coordinates, our problem can be
phrased as:

min
α∈[0,∞)p

‖x−Dα‖∞ subject to ‖α‖0 = m and ‖α‖1 = 1

(1)
where D is the lower unitriangular matrix, x is related
to X such that the ith coordinate of x is FX(xi) where

support(X) = {x1 < · · · < xn} and α is related to X ′
such that the ith coordinate of α is fX′(xi). The functions FX
and fX′ represent, respectively, the cumulative distribution
function of X and the mass distribution function of X ′, i.e.,
the coordinates of x are positive and monotonically increasing
and its last coordinate is one.

The presented work is also related to the research on binning
in statistical inference. Consider, for example, the problem of
credit scoring (Zeng 2017) that deals with separating good ap-
plicants from bad applicants where the Kolmogorov–Smirnov
statistic KS is a standard measure. The KS comparison is often
preceded by a procedure called binning where small values
in the probability mass function are moved to nearby values.
There are many methods for binning (Mays 2001; Refaat 2011;
Bolton and others 2010; Siddiqi 2012). In this context, our
algorithm can be considered as a binning strategy that pro-
vides optimality guarantees with respect to the Kolmogorov
distance.

Our study is also related to the work of Pavlikov and Urya-
sev (2016), where a procedure for producing a random variable
X ′ that optimally approximates a random variable X is pre-
sented. Their approximation scheme, achieved using linear
programming, is designed for a different notion of distance
called CVaR. The contribution of the present work in this con-
text is that our method is direct, not using linear programming,
thus allowing tighter analysis of time and memory complex-
ities. Also, our method is designed for minimising the Kol-
mogorov distance that is more prevalent in applications. For
comparison, in Section 4 we briefly discuss the performance
of linear programming approach similar to the one proposed
in (Pavlikov and Uryasev 2016) for the Kolmogorov distance
and compare it our algorithm.

A problem very similar to ours is termed “order reduction”
by Vidyasagar in (Vidyasagar 2012). There, the author de-
fines an information-theoretic based distance between discrete
random variables and studies the problem of finding a vari-
able whose support is of size m and its distance from X is
as small as possible (where X and m are given). The main
difference between this and the problem studied in this paper,
is that Vidyasagar examines a different notion of distance.
Vidyasagar proves that computing the distance (that he con-
siders) between two probability distributions, and computing
the optimal reduced order approximation, are both NP-hard
problems, because they can both be reduced to nonstandard
bin-packing problems. He then develops efficient greedy ap-
proximation algorithms. In contrast, our study shows that there
are efficient solutions to these problems when the Kolmogorov
distance is considered.

3 Algorithms for optimal approximation
We begin with presenting an algorithm for solving a problem
that is dual to the m-approximation problem: given a random
variable X and 0 ≤ ε ≤ 1, find a new random variable X ′
such that dk(X,X ′) ≤ ε and |X ′| is minimal.

We assume that the input to Algorithm 1 that solves the
dual problem is a representation of the variable X as a sorted
CDF, i.e., as an array XCDF = {(xi, ci)}ni=1 such that ci =
Pr(X ≤ xi) and support(X) = {x1 < · · · < xn}. In line 2
we perform a single pass over XCDF starting from the first
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Algorithm 1: dual({(xi, ci)}ni=1, ε)

1 f ← 1, l← n+1
2 while cf ≤ ε do f ← f + 1
3 while cl−1 ≥ 1− ε do l← l − 1
4 S ← ∅, s← 0,b← f , e← f
5 while e < l do
6 while ce+1 − cb ≤ 2ε ∧ e < l do
7 e← e+ 1

8 S ← S ∪ {(xb, (cb + ce)/2− s)}
9 s← (cb + ce)/2, b← e← e+ 1

10 S ← S ∪ {(xl, 1− s)}
11 return A r.v. X ′ such that Pr(X ′=x) = c if there is c

such that (x, c) ∈ S and Pr(X ′=x) = 0 otherwise.

index to find the last index where the cumulative distribution
function of X is less than ε, this index is stored in the variable
f . In line 3 we start from the last index of XCDF which is
n, and seek in decreasing order for the last index where the
cumulative distribution function of X is less than 1− ε. This
index is stored at the variable l. The last part of the algorithm
is a pass on all elements of XCDF between the indices f and
l in order to construct the random variable X ′. In lines 6-7
we check if the difference between the first element in the
current set of indices (which we call b) and the last element
in the current set of indices (which we call e+ 1) is less than
2ε. If yes, we add the pair (xb, (cb + ce)/2− s) to the set S.
Otherwise, we add one to e. See running Example 2.
Example 2. When dual is invoked with the parameters
X={(1, 0.3), (2, 0.7), (3, 0.9), (4, 1)} and ε=0.1: Lines 2
and 3 set f = 1 and l = 4. After an iteration of the main
loop (line 5), S = {(1, 0.3)}, s = 0.3, and b = e = 2. After
a second iteration, S = {(1, 0.3), (2, 0.5)}, s = 0.8, and
b = e = 4. At the end, S = {(1, 0.3), (2, 0.5), (4, 0.2)}.
Proposition 3. If {(xi, ci)}ni=1 is such that ci = Pr(X ≤
xi) and support(X) = {x1 < · · · < xn} then

dual({(xi, ci)}ni=1, ε) ∈ arg min
X′∈B̄(X,ε)

|X ′|

where B̄(X, ε) = {X ′ : dK(X,X ′) ≤ ε}.

Proof. The number of level sets of the CDF of X ′ is minimal:
(1) The first and the last sets are of maximal length; (2) By
construction, an extension of any of the other sets to the right
will generate a random variable whose Kolmogorov distance
from X is bigger than ε; and (3) Extension of a level set to
the left may either leave the number of level sets unchanged
or combine it with the previous set, which will enlarge the
Kolmogorov distance because it is equivalent to extending the
previous set to the right. Thus, there is no random variable
whose Kolmogorov distance from X is smaller or equal to ε
and its support is smaller than |X ′|.

Proposition 4. dual({(xi, ci)}ni=1, ε) runs in time O(n), us-
ing O(n) memory.

Proof. This algorithm describes a single pass over
{(xi, ci)}ni=1. Lines 2 and 3 are easy to follow, each takes

O(n) in the worst case. Lines 5-9 also describe a single pass
since the counter e is updated to e+ 1 at most n times. All to-
gether we get run-time complexity of O(n). We are construct-
ing the set S which is of size n in the worst case, therefore,
memory complexity is O(n).

The first solution to the m-approximation problem we
present is the binsApprox(X,m) algorithm which is based
on (Dı́az-Bánez and Mesa 2001). There are couple of signifi-
cant changes between our binsApprox(X,m) algorithm and
the algorithm suggested by Dı́az-Bánez and Mesa (2001) ad-
dressing the differences presented in the Related work section.
The algorithm binsApprox(X,m) gets as input a random
variable X and some number m. Again, we do not mind the
original representation of X since we can transform it to a
sorted CDF representation in O(nlog(n)) run-time as in line
1 which we call XCDF . In lines 3-8 we compute all possible
errors, in other words, all possible dK(X,X ′) such that X ′
is an approximation of X and support(X ′) ⊆ support(X).
The error is just the difference between the CDF values of
every two elements in XCDF . After computing the set E, we
sort it (line 9) in order to perform a binary search. In lines
10-19 we perform a binary search over the set E, in every step
of the binary search we run the X ′ = dual(X, ε) algorithm.
If the size of |X ′| > m then we know that the error ε is too
small and need to extend the search in the right side of E, if
the size of |X ′| < m then we know that the error ε is too big
and need to extend the search in the left side of E, otherwise
we found the correct m. We run the search twice to handle the
extreme case where m /∈ {|dual(X, ε)| : ε ∈ E}. In this case
we may end up with a variable that is not optimal because it
can be improved by using m′′ such that m < m′′ < m′. We
find the optimal m′′ by the second round (i = 2) that run after
line 18 that sets m to be the m′ found in the first round.

Algorithm 2: binsApprox(X,m)

1 Let {(xi, ci)}ni=1 be such that ci = Pr(X ≤ xi) and
support(X) = {x1 < · · · < xn}.

2 E ← ∅
3 for i← 1 to n− 1 do
4 for j ← i+ 1 to n− 1 do
5 if i = 1 then
6 E ← E ∪ {cj}
7 E ← E ∪ {(cj − ci)/2}
8 E ← E ∪ {1− ci}
9 Let e1 < · · · < en′ be such that E = {e1, . . . , en′}

10 for i← 1 to 2 do
11 l← 1, r ← n′, k ← 1, k′ ← 0
12 while k 6= k′ do
13 k′ ← k,k ← d(l + r)/2e
14 m′ ← |dual(X, ek)|
15 if m′ < m then l← k
16 if m′ > m then r ← k − 1
17 if m′ = m then r ← k

18 m← m′

19 return dual(X, ek)
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Proposition 5. binsApprox(X,m) ∈ arg min
|X′|≤m

dK(X,X ′)

Proof. Since lines 10-18 is a binary search of the smallest
ek ∈ E such that |dual(X, ek)| ≤ m, we only need to prove
that E = E′ = {dK(X, dual(X, em)) : m = 1, . . . , n}. To
see that this is true, note that every element in E′ corresponds
to a distance of a level set of the CDF of dual(X,m) from
the CDF of X (because we seek a variable whose support is
included in the original one). Line 6 of the algorithm adds all
the distances from level sets of height zero, Line 8 adds the
distances from level sets of height one, and Line 7 adds all
the distances from all other possible level sets. Note that the
distance is monotonic with the support size.

Proposition 6. The binsApprox(X,m) algorithm runs in
time O(n2log(n)), using O(n2) memory where n = |X|.

Proof. In the first part of the algorithm, lines 2-8, we con-
struct the set E which takes O(n2) run-time. In the second
part of the algorithm, line 9, we sort the set E which takes
O(n2log(n2)) = O(n2log(n)) run-time. The third part of
the algorithm, lines 10-19, describes a binary sort over the
set E where in each step of the sorting we run the dual al-
gorithm, which takes O(nlog(n2)) = O(nlog(n)) run-time.
We run this part twice then we get O(2nlog(n)). All together,
the run-time complexity is O(n2 + n2log(n) + 2nlog(n)) =
O(n2log(n)) and the memory complexity is for storing the
set E which is O(n2).

Towards an improved algorithm let us introduce the matrix
E = (ei,j)

∞
i,j=1 defined by:

ei,j =



1− cn+1−j if j ≤ n ∧ i = n;

ci if i ≤ n ∧ j = n+ 1;

(ci − cn+1−j)/2 if i < n ∧ j ≤ n ∧ i+j ≥ n;

0 if i+j < n;

1 otherwise.

Where c1, . . . , cn are as in the first line of Algorithm 2. It is
easy to see that the set of values in this matrix are the elements
of the set E in Algorithm 2. An additional useful fact is that
E is a sorted matrix:
Lemma 7. If i ≤ i′ and j ≤ j′ then ei,j ≤ ei′,j′ .

Proof. Since the cis are monotonically increasing, ∀i, j, 0 ≤
ci−cn+1−j ≤ ci−cn+1−(j+1) and ∀i, j, 0 ≤ ci−cn+1−j ≤
ci+1 − cn+1−j , moreover, 0 is the minimal value of E. The
elements in the last row and the last column in E are keeping
the terms of sorted matrix. It suffices to compare row n with
row n− 1 and show that 1− cn+1−j ≥ (cn−1 − cn+1−j)/2.
After some manipulation we get that 2 − cn+1−j ≥ cn−1

which is true because 0 ≤ c ≤ 1. Next, it is suffice to compare
column n with only column n+ 1 and show that ci ≥ (ci −
cn+1−n)/2. After some manipulation we get that 2ci ≥ ci−c1
which is true because 0 ≤ c1 ≤ ci ≤ 1.

The fact that this matrix is sorted allows us to use the sad-
dleback search algorithm listed as Algorithm 3. The algorithm
starts at the top right entry of the matrix (ei,j)i=1..n,j=1..(n+1)

and traverses it as follows. If it hits an entry e such that

Algorithm 3: sdlbkApprox(X,m)

1 Let {(xi, ci)}ni=1 be such that ci = Pr(X ≤ xi) and
support(X) = {x1 < · · · < xn}.

2 i← 1, j ← n+1, S ← ∅
3 while i < n ∧ j ≥ 1 do
4 m′ ← |dual(X, ei,j)|
5 if m′ ≤ m then j ← j − 1
6 if m′ > m then i← i+ 1
7 if m′ ≥ m then S ← S ∪ (m′, ei,j)

8 e← min{e : (m′, e) ∈ arg max
(m′,e)∈S

m′}

9 return dual(X, e)

|dual(X, e)| ≤ m it goes left, otherwise it goes down. This
assures that the minimal e such that |dual(X, e)| ≤ m is
visited after at most n+ 1 steps. The optimal random variable
is found by brute-force search over the visited entries.

Proposition 8. sdlbkApprox(X,m)∈arg min
|X′|≤m

dK(X,X ′)

Proof. The algorithm traverses all the frontier between those
es that satisfy |dual(X, e)| ≤ m and those that do not satisfy
it. Since all the entries that satisfy the condition are recorded
in S and considered in the brute-force phase in line 7, the
minimal satisfying e is found.

Proposition 9. The sdlbkApprox(X,m) algorithm runs in
time O(n2), using O(n) memory where n = |X|.

Proof. At each step of the loop in lines 3-6, either j decreases
or i increases, thus the loop can be executed at most 2n times.
Since we execute dual once in a loop round, the total time
complexity is O(n2). Storing visited states in S on line 6
requires O(n) memory.

The problem with the saddleback algorithm is that it needs
to run dual at every step so it has a quadratic time complex-
ity. Since we cannot find the required entry of the matrix
in less than n steps, we can only reduce the complexity by
proposing an algorithm that does not execute dual in all the
steps, only in log(n) of them. Such an algorithm, based on
Section 2.1 of (Fournier and Vigneron 2011), is listed as Algo-
rithm 4. The algorithm maintains a set S of sub-matrices of
(ei,j)i=1..2dlog2(n)e,j=1..2dlog2(n+1)e . At each round of its exe-
cution, each sub-matrix is split to four and then about three
quarters of the matrix are discarded. At the end, at most four
scalar matrices remain containing the index of the entry we
seek. Note that this algorithm runs on a matrix that, in the
worst case, can be almost four times bigger than the matrix
traversed by the saddleback algorithm. This, of course, does
not affect the asymptotic complexity, but it may matter when
dealing with relatively small random variables.

Theorem 10. linApprox(X,m)∈arg min
|X′|≤m

dK(X,X ′)

Proof. In line 10 we only discard sub-matrices whose minimal
entry (at the top left) is larger than an entry that we prefer. In
line 12 we only discard sub-matrices whose maximal entry (at
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Algorithm 4: linApprox(X,m)

1 Let {(xi, ci)}ni=1 be such that ci = Pr(X ≤ xi) and
support(X) = {x1 < · · · < xn}.

2 S ← {((1, 1), (2dlog2(n)e, 2dlog2(n+1)e))}, S′ ← ∅
3 while S 6= S′ do
4 S′ ← S, S ←

⋃
s∈S split(s)

5 e−←median({ei1,j1 : ((i1, j1), (i2, j2)) ∈ S})
6 e+←median({ei2,j2 : ((i1, j1), (i2, j2)) ∈ S})
7 for e ∈ {e−, e+} do
8 m′ ← |dual(X, e)|
9 if m′ ≤ m then

10 S ←
S \ {((i1, j1), (i2, j2)) ∈ S : ei1,j1 > e}

11 else
12 S ←

S \ {((i1, j1), (i2, j2)) ∈ S : ei2,j2 ≤ e}

13 S′′ ← {(|dual(X, ei,j)|, ei,j) : ((i, j), (i, j)) ∈ S}
14 e← min{e : (m′, e) ∈ arg max

(m′,e)∈S′′
m′}

15 return dual(X, e)

Function split(((i1, j1), (i2, j2)))

1 j− ← b(j1 + j2)/2c, j+ ← d(j1 + j2)/2e
2 i− ← b(i1 + i2)/2c, i+ ← d(i1 + i2)/2e
3 return
{((i1, j1), (i−, j−)), ((i1, j

+), (i−, j2)),
((i+, j1), (i2, j

−)), ((i+, j+), (i2, j2))}

the bottom right) is smaller or equal to an entry that does not
meet our condition.

Theorem 11. The linApprox(X,m) algorithm runs in time
O(n log(n)), using O(1) memory where n = |X|.

Proof. The dimension of each matrix is halved in each round,
thus the loop is executed O(log(n)) rounds. Since dual is
called one in each round and a finite number of times at the
end, the time complexity is O(n log(n)).

4 Experimental evaluation
We describe below several experiments that show how
linApprox performs in practice in different applications and
domains. All algorithms were implemented in Python and the
experiments were executed on a hardware comprised of an
Intel i5-6500 CPU @ 3.20GHz processor and 8GB memory.
The algorithms of Cohen et al. were taken “as is” from in the
supplementary material to (Cohen, Shimony, and Weiss 2015).

Repetitive support size minimization. One use of sup-
port size minimization is when commutations that involve
summations of random variables slow due to an exponen-
tial growth in the support of convolutions of random vari-
ables (Cohen, Shimony, and Weiss 2015). A key action

in coping with this situation is reduction of the support
size by replacing the summed random variable by an ap-
proximation of it that has a smaller support size. Previ-
ous work such as the work of Cohen et al. in (2015;
2018) handle this reduction using weaker or sub-optimal no-
tion of approximation than ours.

As we proved above, given m, a single step of linApprox
guarantees an optimal m-approximation. However in the set-
ting considered here we need to repetitively use linApprox,
thus the optimality of the eventually obtained random vari-
able is not guaranteed. In light of this, we tested the ac-
curacy of the repetitive-linApprox to see how it performs
against the tools of (Cohen, Shimony, and Weiss 2015;
Cohen, Grinshpoun, and Weiss 2018) using their benchmarks.
These benchmarks are taken from the area of task trees with
deadlines, a sub area of the well-established hierarchical
planning (Dean, Firby, and Miller 1988; Alford et al. 2016;
Xiao et al. 2017).

We estimated the probability for meeting deadlines in
plans, as described in Cohen et al. (2015; 2018), and experi-
mented with four different methods of approximation. The first
two, OptTrim (Cohen, Grinshpoun, and Weiss 2018) and the
Trim (Cohen, Shimony, and Weiss 2015), are taken from the
repository provided by the authors and are designed for achiev-
ing only a one-sided Kolmogorov approximation - a weaker
notion of approximation than the Kolmogorov approximation
analyzed in this work. The third method is a simple sampling
scheme and the fourth is our Kolmogorov approximation ob-
tained by the proposed linApprox algorithm. The parameters
for the different methods were chosen in a compatible way,
M is the maximal support size, N is the number of nodes of
the plan network and s is the number of samples. We ran also
an exact computation as a reference to the approximated one
in order to calculate the errors.

Task Tree M
linApprox OptTrim Trim Sampling
m/N=10 m/N=10 ε ·N=0.1 s=104 s=106

Logistics
2 0 0 0.0019 0.007 0.0009

(N = 34) 4 0.0024 0.0046 0.0068 0.0057 0.0005

DRC-Drive
2 0.0014 0.004 0.009 0.0072 0.0009

(N=47) 4 0.001 0.008 0.019 0.0075 0.0011

Sequential
2 0.0093 0.015 0.024 0.0063 0.0008

(N=10) 4 0.008 0.024 0.04 0.008 0.0016

Table 1: Comparison of estimated errors with respect to the
reference exact computation on various task trees.

Table 1 shows the results of the experiment. The quality of
the solutions obtained with the linApprox operator are better
than those obtained by the Trim and OptTrim operators as
expected. In some of the task trees, the sampling method
produced better results than linApprox. Still, the linApprox
approximation algorithm comes with an inherent advantage of
providing exact quality guarantees, as opposed to sampling
where the best one can hope for is probabilistic guarantees.

Run-time comparison. Similarly to accuracy and error
computation, we also conducted empirical evaluation to ex-
amine the run-time in practice of the discussed algorithms.
Figure 1 presents a comparison of the run-time performances
of an exact computation and approximated computations with
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Figure 1: Run-time of a long computation with linApprox,
binsApprox, OptTrim, Trim, and without any trimming.

linApprox, binsApprox, OptTrim and Trim as operators.
We examined four versions of approximation each of which
with different run-time but only linApprox and binsApprox
produce optimal Kolmogorov approximation. The computa-
tion is a summation of a sequence of random variables with
support size of m=10, where the number n of variables varies
from 6 to 19. In this experiment, we executed the approxima-
tion algorithm with m=10 after performing each convolution
between two random variables, in order to maintain a sup-
port size of 10 in all intermediate computations. Equivalently,
we executed the Trim operator with ε = 0.1. The results
clearly show the exponential run-time of the exact compu-
tation, caused by the convolution between two consecutive
random variables. In fact, in the experiment with N=20, the
exact computation ran out of memory. These results illumi-
nate the advantage of the proposed linApprox algorithm that
balances between solution quality and run-time performance –
while there exist other, faster, methods (e.g., Trim), linApprox
provides high-quality solutions in O(nlog(n)) time, which is
especially important when an exact computation is not feasi-
ble, due to time or memory. In general, Figure 1 is consistent
with the theory and show a good fit to the complexity analysis.

Single step support minimisation. To better understand
the quality gaps in practice between linApprox, OptTrim,
and Trim, we tested their performance on random variables
with n=100, and different ms. Note that the error obtained
by linApprox is optimal while the other methods are not
optimised for the Kolmogorv distance. In each instance of
the experiment, a random variable is randomly generated by
choosing the probabilities of each element in the support
uniformly and then normalise these probabilities to sum to 1.

Figure 2 presents the error produced by the above methods.
The depicted results are averages over fifty instances of random
variables. The curves in the figure show the average error of
OptTrim and Trim operators with comparison to the average
error of the optimal approximation provided by linApprox as
a function of m. It is evident from this graphs that increasing
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Figure 2: Error comparison between linApprox, OptTrim,
and Trim on randomly generated variables as function of m.

the support size of the approximation m reduces the error, as
expected, in all three methods. However, the errors produced
by the linApprox are significantly smaller, a half of the error
produced by OptTrim and Trim.

Comparison to Linear Programming. We also compared
the run-time of linApprox with a linear programming (LP) al-
gorithm that guarantees optimality, as described and discussed
in (Pavlikov and Uryasev 2016). We used the “Minimize”
function of Wolfram Mathematica as a state-of-the-art imple-
mentation of linear programming, encoding the problem by
the LP problem minα∈Rn ‖x − α‖∞ subject to ‖α‖0 ≤ m
and ‖α‖1=1. The run-time comparison results were clear and
persuasive: linApprox significantly outperforms the LP al-
gorithm. For a random variable with support size n=10 and
m = 5, the LP algorithm run-time was 850 seconds, where
the linApprox algorithm run-time was less than a second.
For n=100 and m=5, the linApprox algorithm run-time was
0.14 seconds and the LP algorithm took more than a day. Since
it is not trivial to formally analyze the run-time of the LP al-
gorithm, we conclude by the reported experiment that in this
case the LP algorithm might not be as efficient as linApprox.

5 Discussion and future work
We developed an efficient algorithm for computing optimal
approximations of random variables where the approximation
quality is measured by the Kolmogorov distance. As demon-
strated in the experiments, our algorithm improves on the
approach of Cohen et al. (2015) and (2018) in that it finds an
optimal two sided Kolmogorov approximation, and not just
one sided. In addition, the algorithm linApprox presented in
this paper is very efficient with complexity of O(nlog(n)) as
proved in Theorem 11 and showed in Figure 1. Beyond the
Kolmogorov measure studied here, we believe that similar ap-
proaches may apply also to total variation, to the Wasserstein
distance, and to other measures of approximations.

Acknowledgments. This research was supported by the
Lynn and William Frankel Centre for Computer Science at
Ben-Gurion University and by the Israel Science Foundation.

7814



References
Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and Aha,
D. W. 2016. Hierarchical planning: Relating task and goal
decomposition with task sharing. In IJCAI, 3022–3029.
Bolton, C., et al. 2010. Logistic regression and its application
in credit scoring. Ph.D. Dissertation, University of Pretoria.
Cohen, L.; Grinshpoun, T.; and Weiss, G. 2018. Optimal ap-
proximation of random variables for estimating the probability
of meeting a plan deadline. In AAAI, 6327–6334.
Cohen, L.; Shimony, S. E.; and Weiss, G. 2015. Estimating
the probability of meeting a deadline in hierarchical plans. In
IJCAI, 1551–1557.
Dean, T.; Firby, R. J.; and Miller, D. 1988. Hierarchical
planning involving deadlines, travel time, and resources. Com-
putational Intelligence 4(3):381–398.
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