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Abstract

This paper focuses on building up distributed representation
of words in cause and effect spaces, a task-specific word
embedding technique for causality. The causal embedding
model is trained on a large set of cause-effect phrase pairs
extracted from raw text corpus via a set of high-precision
causal patterns. Three strategies are proposed to transfer the
positive or negative labels from the level of phrase pairs to
the level of word pairs, leading to three causal embedding
models (Pairwise-Matching, Max-Matching, and Attentive-
Matching) correspondingly. Experimental results have shown
that Max-Matching and Attentive-Matching models signif-
icantly outperform several state-of-the-art competitors by a
large margin on both English and Chinese corpora.

Introduction
Causality, also referred to as causation, is a fundamental
concept in human thinking and reasoning (Stukker, Sanders,
and Verhagen 2008). It indicates a special semantic rela-
tion between one process (the cause) with another process
or state (the effect), where the cause is partially responsible
for the effect, and the effect is partially dependent on the
cause. Causality is commonly expressed, explicitly or im-
plicitly, in text of most natural languages, which is of great
value and has been exploited for various applications such
as why-question answering (Oh et al. 2013), event predic-
tion (Radinsky, Davidovich, and Markovitch 2012), and fu-
ture scenario generation (Hashimoto et al. 2014).

One key to the success of these downstream applications
lies in the automatic construction of a large causality base.
Many methods have been proposed to mine causalities from
text corpora, which can be categorized into classes. The old-
est approaches used hand-coded domain-specific knowledge
bases to extract explicit causal knowledge from text (Ka-
plan and Berry-Rogghe 1991) and to rank the extracted
possible causalities (Girju and Moldovan 2002). These
works achieved satisfactory precision but low recall. New
approaches employed machine learning algorithms to ex-
tract explicit and implicit causalities from text (Girju 2003;
Chang and Choi 2006; Hashimoto et al. 2015a), which relies
heavily on feature engineering.
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In recent years, there is an upsurge of deep learning in
natural language processing (Collobert et al. 2011), where
distributed representation of words serves as the basis. The
neural methods that learn vanilla distributed representation
of words (called word embeddings) usually capture only co-
occurrence relationships between words (Levy and Gold-
berg 2014b). Although such a general-purpose word em-
beddings is helpful for various NLP tasks, the acquisition
of generality is often at the cost of losing specificity to a
certain degree. Some work has been devoted to enhance
word embeddings for specific tasks. Task-specific word em-
beddings capture task-specific word similarity. For exam-
ple, if the task is about POS tagging, two nouns “cat” and
“man” might be considered similar by the model (Faruqui
et al. 2016). Tang et al. (2014) proposed learning sentiment-
specific word embedding for sentiment analysis, where sen-
timent information is encoded into the continuous represen-
tation of words such that it can separate good and bad to
opposite ends of the spectrum. Hashimoto et al. (2015b) pro-
posed a novel method to train word embeddings for seman-
tic relation classification, by predicting words between noun
pairs using lexical relation-specific features. Li et al. (2017)
developed a tailored neural network to learn contradiction-
specific word embedding.

With vanilla word embedding, the underlying rationale of
its wide applicability is the inference rule based on similar-
ity, which states that if A is similar to B, and A has some
property or has a semantic relation R with C, then it can be
hypothesized that B also has the property or has the relation
R with C. Such an inference rule may work for some prop-
erties and semantic relations, but definitely not applicable to
all of them, such as causal relation. We conjecture that it ex-
plains why there is little research work of embedding-driven
deep learning in causality-related tasks. The reason that the
similarity-based inference rule is not applicable to causality
exists possibly in the fact that causality is very sensitive to
the small variation of semantics. For example, “salmonella”
and “bacillus acidi lactici” have high similarity in their
vanilla word embeddings because they are both bacteria.
However, “salmonella” is the cause of some diseases, while
“bacillus acidi lactici” is non-pathogenic. Such a high sen-
sitivity results in the inapplicability of vanilla word embed-
ding to causality-related tasks, and at the same time, necessi-
tates the development of causality-specific word embedding
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techniques.
In this paper, we continue the line of task-specific word

embedding research, and devote to causal word embedding.
We develop three models to learn causal embeddings from
the corpus of cause-effect phrase pairs extracted from a text
corpus , and present quantitative evaluation results on both
English corpus and Chinese corpus. In particular, we make
the following contributions in this paper:
• We propose three methods (Pairwise Matching, Max

Matching, and Attentive Matching) for building causal
embeddings from a corpus of cause-effect phrase pairs,
by transferring causal relationship from phrase-pair level
to word-pair level. Performance evaluation has shown that
Max Matching and Attentive Matching models perform
much better than several state-of-the-art competitors, by a
large margin, on both English and Chinese corpora. Here,
Max Matching model assumes that there is at least one
word pair carrying the causality information of the posi-
tive phrase pair, which can be thought of as a special case
of multi-instance learning, and Attentive Matching con-
siders the causal relations between words and phrases.

• For Chinese corpus, we hand-craft a set of high-precision
causal patterns and extract nearly 1.5 million of cause-
effect phrase pairs from raw corpus. The quality of those
extractions is satisfactory, with precision approaching
90%.

• We define a new task of identifying causal word pairs
from cause-effect phrase pairs, and manually annotate
a dataset of cause-effect phrase pairs accordingly. This
annotated dataset can be used for evaluating the perfor-
mance of causal embeddings, to promote the research on
causal embeddings.

Related Work
To the best of our knowledge, there are two research pa-
pers (Sharp et al. 2016; Zhao et al. 2017) that are closely
related to this paper.

Sharp et al. (2016) generated a causality-specific embed-
dings and demonstrated that these dedicated embeddings is
helpful in a downstream causal QA task. Their cEmbed-
family methods for embedding construction are based on the
Skip-Gram algorithm (Mikolov et al. 2013), by treating an
effect phrase as the context of its cause and an cause phrase
as the context of its effect. However, such treatment is based
on the assumption that each word pair between a cause-
effect phrase pair is causally related. This assumption is far
from reality and introduces too much noise. The cEmbed-
family models perform undistinguished in our performance
evaluation.

Zhao et al. (2017) proposed to construct an abstract
causality network from the specific one, and then to learn
network embedding by a dual cause-effect transition model,
in order to achieve generalization ability. However, their ap-
proach has two shortcomings. Firstly, the construction of
abstract causality network depends on the availability of
knowledge resources, which limits its applicability. Sec-
ondly, the rationality of generalizing a noun to its hyper-
nym need further clarification, because it is doubtful whether

such a generalization will preserve the causal-effect relation-
ship.

Causal Embedding Models
Given a corpus of N cause-effect phrase pairs D =
{(Ci, Ei)|1 ≤ i ≤ N}, we use V c = {c|∃Ci such that c ∈
Ci} to denote the vocabulary of cause words, and V e =
{e|∃Ei such that e ∈ Ei} to denote the vocabulary of effect
words. For a cause word c ∈ V c, its cause embedding is a
vector c(c), and the effect embedding of effect word e ∈ V e
is e(e), both of size d (200 by default).

In this paper, we solve the causal embedding problem in
a classification framework. Each phrase pair (C,E) ∈ D
is thought of as a positive example, because C and E are
causally related. Negative example (C,E) can be gener-
ated by choosing randomly one phrase C from all the cause
phrases in D and one phraseE from all the effect phrases. As
a result, we obtain a dataset of positive examples and nega-
tive examples for classification, where examples are phrase
pairs.

Let t(C,E) denote the class label of phrase pair (C,E).
The class label is assigned clearly at the phrase-pair level.
In order to learn causal embeddings for words, we have
to transfer the class information from phrase-pair level to
word-pair level. This problem can be solved easily for neg-
ative examples: for a given negative phrase pair (C,E), we
assume that all word pairs (c, e), where c ∈ C and e ∈ E,
are negative (i.e., not causally related).

However, for positive examples, the situation is more
complex, because we do not know which word pair domi-
nates the causality between the phrase pair. Next, we pro-
pose three strategies to deal with positive phrase pairs, lead-
ing to three different causal embedding models.

Model 1: Pairwise-Matching
The first strategy assumes that for each positive phrase pair,
all the word pairs between the cause phrase and the effect
phrase are treated as positive (i.e., being causally related).
With this strategy, for a phrase pair (C,E), no matter pos-
itive or negative, all the word pairs between C and E will
inherit the class label from the phrase pair. The correspond-
ing method works in a straightforward way as follows.

As illustrated in Figure 1, for a given word pair (c, e),
Pairwise-Matching model first calculates a causal interac-
tion score cs(c, e) as the inner product between the cause
embedding of c and the effect embedding of e:

cs(c, e) = c(c)> · e(e) (1)
and then uses sigmoid function to transform the score into a
probability as the prediction of the class label:

p(c, e) = σ(cs(c, e)) =
exp(cs(c, e))

1 + exp(cs(c, e))
(2)

Given a training set D of phrase pairs, we choose the
cross-entropy loss function as the objective JPM to mini-
mize:

JPM =
∑

(C,E)∈D

∑
c∈C,e∈E

−t(C,E) log p(c, e)

−(1− t(C,E)) log(1− p(c, e))
(3)
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Figure 1: The architecture of Pairwise-Matching and Max-
Matching models. Here, À is “the cause and effect embed-
dings”, Á is “the causal interaction scores between words”,
the upper branch of Â corresponds to Pairwise-Matching
model, and the lower branch of Â corresponds to Max-
Matching one.

The focal loss (used in the following two models) was also
tried, but we found that it is very unstable for pairwise-
matching model. We conjecture that the reason is that focal
loss is sensitive to noise, and the assumption of pairwise-
matching introduces too much noise.

This model is similar to cEmbed-family models (Sharp
et al. 2016). Quantitative evaluation shows that they have
similar performance . The difference exists in the negative
sampling part: Pairwise-Matching samples negative exam-
ples at the phrase level, while cEmbed uses downsampling
technique to sample negative examples at the word level.

Model 2: Max-Matching
The second strategy treats the task of learning causal em-
bedding as a multi-instance learning problem (Maron and
Lozano-Pérez 1998), where each phrase pair (C,E) can be
mapped to a bag of word pairs {(c, e)|c ∈ C, e ∈ E}. We as-
sume that the bag does not contain positive word pairs if the
phrase pair is negative, and the bag contains at least one pos-
itive word pair if the phrase pair is positive. In other words,
it requires that there is at least one word pair carrying the
causality information of the positive example. That is, for a
given cause-effect phrase pair (C,E), it is expected that we
can find a word pair (c, e) between C and E such that the
cause word c ∈ C has a large causal interaction with the
effect word e ∈ E.

The causal score of a phrase pair (C,E) is defined as the
maximum causal interaction score among all the word pairs
between C and E:

csMM (C,E) = max
c∈C,e∈E

cs(c, s) (4)

In other words, only the word pair with the highest causal
interaction score is selected as the positive word pair which
serves as the representative of the positive phrase pair (as
illustrated in Figure 1.

The Max-Matching method also uses a sigmoid function
to transform the causal score csMM (C,E) into the predicted
probability that the phrase pair (C,E) is positive or causally

related, as follows:

pMM (C,E) =
exp(csMM (C,E))

1 + exp(csMM (C,E))
(5)

The Max-Matching method uses focal loss (Lin et al.
2017) as the loss function, which focuses training on a sparse
set of hard examples and prevents the vast number of easy
negatives from overwhelming the model during training.
We adopt focal loss function here, because during learning
causal embedding, there are a vast number of easy negatives,
and focal loss is suitable for this situation, especially for the
max-matching strategy. For a given predicted probability p
and a target class label t, the focal loss fl(p, t) is defined as:

fl(p, t) =

{
−α(1− p)γ log(p) if t = 1

−(1− α)pγ log(1− p) if t = 0
(6)

where α and γ are two hyperparameters, which are set to 0.8
and 2.0 by default.

The total focal loss JMM for the training dataset D is cal-
culated by summing all the focal losses of positive phrase
pairs and the focal losses of all the negative word pairs:

JMM =
∑

(C,E)∈D
t(C,E)=1

fl(pMM (C,E), 1)

+
∑

(C,E)∈D
t(C,E)=0

∑
c∈C
e∈E

fl(p(c, e), 0)
(7)

where p(c, e) is defined in Equation 2.

Model 3: Attentive-Matching
The third method considers the interaction between a cause
word with the effect phrase and the interaction between an
effect word with the cause phrase. It is expected that there
is at least one cause word that has a close causal interaction
with the effect phrase, and also at least one effect word that
causally interacts with the cause phrase.

The architecture of Attentive-Matching model is illus-
trated in Figure 2 to implement this idea. We firstly define
the attentive representation Catt of the cause phrase C with
respect to the effect phrase E and the attentive representa-
tion Eatt of the effect phrase E with respect to the cause
phrase C, as follows:

Catt =

m∑
i=1

aCi c(ci) (8)

Eatt =

n∑
j=1

aEj e(ej) (9)

where m and n are the lengths of C and E respectively, aCi
is the attention weight of the cause word ci on condition of
the effect phrase E, and aEj is the attention weight of the
effect word ej on condition of the cause phrase C:

aCi =

∑n
j′=1 exp(cs(ci, ej′))∑m

i′=1

∑n
j′=1 exp (cs(ci′ , ej′))

(10)

aEj =

∑m
i′=1 exp(cs(ci′ , ej))∑m

i′=1

∑n
j′=1 exp (cs(ci′ , ej′))

(11)
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Figure 2: The architecture of Attentive-Matching model.
Here, À is “the cause and effect embeddings”, Á is “the
causal interaction scores between words”, Â is “the atten-
tive representations of phrases”, and Ã stands for “the causal
interaction scores between words and phrases”.

The causal interaction score between a cause word ci and
the effect phrase E is defined as the inner product of the
cause embedding of ci and the attentive representation of E
with respect to C:

csAM (ci, E) = c(ci)
> ·Eatt (12)

Similarly, the causal interaction score between the cause
phrase C and an effect word ej is calculated as:

csAM (C, ej) = e(ej)
> ·Catt (13)

Given a phrase pair (C,E), its causal score from cause to
effect is defined as:

−→csAM (C,E) = max
ci∈C

csAM (ci, E) (14)

and its causal score from effect to cause is defined as:
←−csAM (C,E) = max

ej∈E
csAM (C, ej) (15)

Finally, both the scores are transformed into two proba-
bilities −→p AM (C,E) and ←−p AM (C,E) by sigmoid func-
tion, respectively. Therefore, for each positive phrase pair
(C,E), there are two focal losses: one is from cause to ef-
fect fl(−→p AM (C,E), 1), the other is from effect to cause
fl(←−p AM (C,E), 1).

The total focal loss JAM is the summation of all the pos-
itive losses and all the negative losses:

JAM =
∑

(C,E)∈D
t(C,E)=1

fl(−→p AM (C,E), 1) + fl(←−p AM (C,E), 1)

+
∑

(C,E)∈D
t(C,E)=0

∑
c∈C
e∈E

fl(p(c, e), 0)

(16)

Model Training
We use simple gradient descent algorithm to train our mod-
els, with learning rate of 0.005. Other related hyperparame-
ters are listed as follows. The number of training epochs are

set to 30, and the batch size is 256. The words whose fre-
quencies are less than 8 are pruned. The cause embeddings
and the effect embeddings have the same dimensionality of
200. The negative sampling rate is 10, which means that we
samples 10 negative phrase pairs for each positive phrase
pair.

Evaluation on English Corpus
To make an evaluation on English, we build our models on
a corpus of 815,233 cause-effect phrase pairs which was ex-
tracted with a set of 13 rules from Gigaword and Simple
English Wikipedia. Both the rules and the corpus are taken
from (Sharp et al. 2016)1.

Direct Evaluation: Ranking Word Pairs
The models are evaluated on an external set of word pairs
drawn from the SemEval 2010 Task 8 (Hendrickx et al.
2010)2, 865 of which were from the Cause-Effect relation
and an equal number of which were randomly selected from
the other eight relations. These pairs are then ranked and the
goal is to rank the causal pairs above the others.

We compare our causal embedding models against several
baseline and state-of-the-art models:
• Look-up: A word pair is ranked by the number of times

that it appears in the extracted cause-effect phrase pairs.
• vEmbed: The vanilla word embeddings trained on raw text

corpus with the skip-gram algorithm and a sliding window
of 5.

• cEmbed: The cEmbed method (Sharp et al. 2016) treats
the effect phrase as the context of the cause, and uses
the variant of Skip-Gram implemented by Levy and Gold-
berg (2014a) to train the causal embeddings.

• cEmbedBi: The bidrectional embedding model (Sharp et
al. 2016) trains a second embedding model by reversing
the input, which treats the cause phrase as the context of
the effect, and ranks word pairs by the average of the
scores returned by the two unidirectional causal embed-
ding models.

• cEmbedBiNoise: The noise-aware bidirectional model
makes an improvement on cEmbedBi by weigh a word
pair by the likelihood that they are truly causal, which
is approximated by the pointwise mutual information
(PMI).
Figure 3 shows the precision-recall (PR) curve for these

models and baselines. The Max-Matching and Attentive-
Matching models perform consistently much better than
other existing models and baselines including cEmbed-
BiNoise, cEmbedBi and cEmbed, which is attributed to
their more-reasonable assumptions. The Pairwise-Matching
model performs similarly to the cEmbed-family models, be-
cause they all share the same assumption that all word pairs
between a cause-effect phrase pair are causally related.

It is also noted that the curves of all causal embedding
models become straight at tail, which is caused by the fact

1http://clulab.cs.arizona.edu/data/emnlp2016-causal/
2http://www.kozareva.com/downloads.html
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Figure 3: Precision-recall curve of the compared models to
rank causal word pairs above non-causal pairs

Model P@1
Random 16.4
CR 24.3
CR+vEmbed 34.6
CR+vEmbed+allCausalEmbed 37.9

Table 1: Performance on the Causal QA Task

that about 30% of test word pairs have at least one word
missing from the training corpus.

Indirect Evaluation: Causal Question-Answering
Here, we would like to investigate whether the learned
causal embeddings can help the downstream causal
question-answering task. To do so, we conduct five-fold
cross validation on a dataset of 3031 causal questions ex-
tracted from the Yahoo! Answers corpus (Sharp et al. 2016),
where each question has at least four alternatives (candidate
answers). All the alternatives are generated by the commu-
nity, and one of them is voted as the top answer. Our task
is to identify the top answer from the alternatives. With ran-
dom guess, the P@1 is 16.4%, which means that each causal
question has more than 5 candidate answers on average.

Here, we use a standard answer reranking architec-
ture (Jansen, Surdeanu, and Clark 2014), where the candi-
date answers are initially ranked by a shallow information
retrieval method called candidate retrieval (CR). For each
embedding model, no matter vanilla or causal, four features
are computed for each question-answer pair: the maximum,
the minimum, the average cosine similarity between word
pairs, and the overall similarity between the composite ques-
tion and answer vectors, where the composition vector is cal-
culated as the mean vector of all its words. Then, the SVM
ranker (a SVM classifier adapted for ranking) is applied to
re-rank the candidate answers, with the initial CR score and
the embedding-related features.

The following facts can be observed from Table 1 which
lists the precision-at-one scores (P@1):

• The shallow candidate retrieval method (CR) achieves the
P@1 of only 24.31%, which indicates the difficulty of this

causal QA task.
• With CR+vEmbed(word2vec), the P@1 is 34.6%, which

illustrates the vanilla word embeddings are helpful.
• By augmenting the above configuration (CR+word2vec)

with the derived features from all the causal embedding
models, the P@1 gets increased to 37.9%, which demon-
strates that causal embeddings are complementary to the
vanilla word embeddings and make their own contribution
in the downstream QA task.

We shall explore how to use CNN and RNN to build up
the representations of questions and answers on the basis of
vanilla embeddings and causal embeddings, as future work.

Evaluation on Chinese Corpus
Chinese Corpus construction
To build up causal embeddings for Chinese words, we have
to collect a sufficiently large number of Chinese cause-effect
phrase pairs from raw text corpus. It is too costly to be
done by human annotation, so we make use of a few high-
precision hand-crafted (causal) patterns instead.

Causality is pervasive in natural language. Part of them
are marked by a variety of explicit causative devices (or
called causal patterns) that can be categorized into two
types: the causal verbs that mark causal relations within one
clause, and the causal connectives that mark causal relations
between clauses. However, these causal patterns usually sig-
nal different causal strengths. Since our emphasis here is
put on the high precision of the extractions, we choose only
a limited number of hand-crafted strong patterns that have
sufficiently high precision, some of which is listed in Table
2. Additionally, in Chinese, some strong causal connectives
can only indicate the existence of causalities, but can not de-
termine the exact position of the cause and effect text spans.
For example, the pattern signaling the
fact that there exists causality and the cause phrase follows
the connective closely, but the position of ef-
fect phrase is ambiguous, which may appear before the con-
nective or after the cause phrase. Therefore, we choose the
patterns that not only signal strongly the existence of causal-
ity, but also be unanimouos in the location of cause phrase
and effect phrase. The cause and effect phrases are extracted
according to the dependency parses of causality sentences
with a Chinese dependency parser PyLTP3. The extracted
causal phrase pairs are further filtered by requiring that both
the cause phrase and the effect phrase should have at least
one content word (i.e., noun, verb or adjective).

We apply the above causal patterns on two raw Chinese
corpora, the Baike corpus and the SogouCS corpus, where
Baike is a 10GB data crawled from a Chinese encyclope-
dia website and SogouCS4 (Wang et al. 2008) is the news
data on the web, yielding to about 1.5 million of cause-
effect phrase pairs in total. The statistics of the extractions
are listed in Table 3.

To assess the quality of the extracted causality pairs, we
randomly sample 500 cause-effect phrase pairs from each

3https://github.com/HIT-SCIR/pyltp
4http://www.sogou.com/labs/resource/cs.php
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Table 2: The causal patterns used to automatically extract cause-effect pairs. For connective patterns, <C> denotes the position
of cause phrase, and <E> denotes the phrase position. For verb patterns, the cause phrase is alway on the left side of the verb,
and the effect phrase on the right.

Corpus Pattern Type #Extracted CE Pairs

Baike causal connectives 356,654
causal verbs 619,526

Sogou causal connectives 233,126
causal verbs 284,620
Total. 1,493,926

Table 3: Statistics of the extracted CE Pairs

subset and let annotators judge whether these pairs express
causality. The results are shown in Table 4. It can be seen that
the extracted cause-effect pairs have satisfactory precision of
nearly 90%, and the extractions by causal verbs have slightly
higher precision than those by causal connectives.

Corpus Pattern Type # Samples Precision

Baike causal connectives 500 88.4%
causal verbs 500 89.6%

Sogou causal connectives 500 89.4%
causal verbs 500 90.4%

Table 4: Quality of the extracted CE Pairs

Quantitative Evaluation
To assess our causal embedding models, we use a sim-
ple causality-related task: identifying the causal word pair
that carries the most significant causal information from a
cause-effect phrase pair. For example, the causal word pair

from the cause-effect phrase pair
in Table 5. Identifying causal word pairs helpful in interpret-
ing a cause-effect phrase pair, and can be used to extend the
potential causality patterns and then to help identify implicit
causality in text.

Table 5: A simple cause-effect phrase pair

To evaluate the performance of causal embedding models,
we let two annotators to mark the causal word pairs from
cause-effect phrase pairs, obtaining 715 pairs for which the

two annotators got the same annotating results: 360 pairs
for Baike corpus and 355 pairs for Sogou, where the overall
inter-annotator agreement is near to 80%.

Model Accuracy MRR
Look-up 6.8% 0.184
vEmbed 12.7% 0.305
cEmbed 19.1% 0.338
cEmbedBi 23.5% 0.404
cEmbedBiNoise 24.1% 0.400
Pairwise-Matching 24.9% 0.424
Max-Matching 58.6% 0.720
Attentive-Matching 53.0% 0.674

Table 6: Quantitative performance on Sogou test data of the
causal embeddings trained from Baike corpus

Model Accuracy MRR
Look-up 8.4% 0.190
vEmbed 8.4% 0.272
cEmbed 18.9% 0.345
cEmbedBi 19.2% 0.344
cEmbedBiNoise 18.3% 0.334
Pairwise-Matching 19.5% 0.348
Max-Matching 42.9% 0.586
Attentive-Matching 42.1% 0.572

Table 7: Quantitative performance on Baidu test data of the
causal embeddings trained from Sogou corpus

Given a cause-effect phrase pair pp = (C,E) where
C = c1c2 . . . cm and E = e1e2 . . . en, all the word pairs
between C and E get ranked according to their interaction
scores cs(·, ·) in Equation 1. For a word pair wp = (c, e)
where c ∈ C and e ∈ E, let r(wp, pp) denote the rank of
word pair wp with respect to the phrase pair pp. If the 1st
ranked word pair is the same as the annotated causal word
pair, then we say that the causal embedding has correctly
identified the causal word pair. The accuracy of a causal em-
bedding model on the test dataset is defined as the percent-
age of the correctly identified causal word pairs. The mean
reciprocal rank (MRR) is calculated as:

MRR =
1

|D|
∑
pp∈D

1

r(ann(pp), pp)
(17)

where ann(pp) denotes the annotated word pair for the
phrase pair pp ∈ D.
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Table 8: Examples of top-5 effect words retrieved for the given cause words. For the cause word , it can be seen
that the top-5 effect words retrieved by the Attentive-Matching model and the Max-Matching model are all correct. However,
the words retrieved by cEmbed or Pairwise-Matching model are not the case. For example, for the cause word ,

is retrieved by vEmbed and is retrieved by Pairwise-Matching model.

Based on the two Chinese corpora and their respective
annotated causal word pairs, we train the causal embed-
dings on one corpus, and then evaluate their performance
on the annotated word pairs of the other corpus. The ac-
curacies and MRRs are reported in Table 6 and Table 7.
It can be seen that cEmbed-family models and Pairwise-
Matching have achieved similar accuracy and MRR values,
which are far below those of Attentive-Matching model and
Max-Matching model. Max-Matching is the best model, no
matter in Accuracy or in MRR value. The reason is because
both the Pairwise-Matching and cEmbed-family models as-
sume all word pair between a cause-effect phrase pair are
causally related, yielding too much noise of false positives
which will definitely do harm to the process of learning
causal embeddings. With Max-Matching, only one word pair
with the highest interaction score is used as positive, all the
other word pairs do not take part in the training, which has
effectively controlled the noise. As to Attentive-Matching, it
can be thought of as a soft version of Max-Matching. The
false negatives are controlled in some degree, because most
words (no matter cause words or effect words) will receive
small attentive weights.

The causal embeddings trained from Baike corpus have
better performance than those trained from Sogou corpus,
partly because the Baike corpus of nearly 1 million pairs
is larger than Sogou corpus of only half million pairs (see
Table 3) and the Baike corpus can provide a higher coverage.

Qualitative Observation
To give more insight into the quality of different causal em-
bedding models, we train causal embedding models on the
merged Baidu and Sogou corpus, and show the retrieved top-
5 effect words to a given set of cause words in Table 8. Due
to the space limitation, the results from effect to cause are
not shown here.

It can be observed that all the top-5 words retrieved by

Max-Matching and Attentive-Matching are always causally
related to the queries. The quality of the words retrieved by
Pairwise-Mathing and cEmbed is much lower.

As a conclusion, the qualitative observation, in accor-
dance with the quantitative evaluation, manifests the supe-
riority of Max-Matching and Attentive-Matching in the task
of learning causal embeddings.

Conclusion and Future Work
This paper proposes three models for learning causal em-
beddings, with the following contributions:

• We propose three strategies to transfer the class label from
the level of phrase pairs to the level of word pairs, leading
to three causal embedding models.

• We construct automatically a large Chinese corpus of
cause-effect phrase pairs by a few hand-crafted high-
precision causal patterns, and annotate manually the
causal word pairs that carry causal information between
cause phrases and their effect phrases. Such an annotated
dataset is helpful for evaluating causal embedding mod-
els.

• Quantitative evaluation demonstrates that Attentive-
Matching and Max-Matching models outperform the ex-
isting models substantially, no matter on English or Chi-
nese corpus.

In the future, we would like to improve the coverage
of learned causal embeddings by making use of numerous
weak causal patterns and explore the potential applicability
of the learned causal embeddings in the downstream appli-
cation such as event prediction and scenario generation.
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