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Abstract

We investigate the task of distantly supervised joint entity re-
lation extraction. It’s known that training with distant super-
vision will suffer from noisy samples. To tackle the problem,
we propose to adapt a small manually labelled dataset to the
large automatically generated dataset. By developing a novel
adaptation algorithm, we are able to transfer the high quality
but heterogeneous entity relation annotations in a robust and
consistent way. Experiments on the benchmark NYT dataset
show that our approach significantly outperforms state-of-
the-art methods.

Introduction

A fundamental problem in information extraction is to rec-
ognize entities and relations from plain texts. Given a sen-
tence, the task aims to find out strings representing differ-
ent objects (e.g., person (“Jobs”, “Obama’), organization
(“Labour Party”)), and different semantic relations among
entities (e.g., affiliation relation between a person and an
organization). As it is always the first step to convert un-
structured texts into structured knowledge, the entity and re-
lation extraction task attracts long lasting interests in both
researches and applications of natural language processing.

Given a manually annotated dataset, fully supervised
models (especially, neural-network-based models) have
achieved remarkable progress on the extraction task (Miwa
and Bansal 2016; Katiyar and Cardie 2017; Zheng et al.
2017; Zhang, Zhang, and Fu 2017). However, the main fac-
tor limiting the application of these methods is the cost to
obtain high quality annotations on entities and relations.

In order to gain more training data on broader domains,
Mintz et al. (2009) start using distant supervision from
knowledge bases. Specifically, instead of annotating enti-
ties and relations manually, we can generate training data
automatically via aligning triples in knowledge bases and
free texts. The main problem of distantly supervised datasets
is the noisy samples: the aligned relations are not always
true in contexts. For example, the triple (“Obama”, “United
States”) holds a “born in” relation in a knowledge base, but
it does not necessarily mean all appearances of the pair ex-
press the same relationship.
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ACEO05 Entity Types NYT
PER (person) FAC (facility) PER | )
erson
LOC (location) VEH (venicle) LOC (Ipoca‘ion)

ORG (organiztaion) WEA (weapon)

ORG (organiztaion)
GPE (geographical entities)

ACEO05 Relation Types NYT

ART (agent-artifact)

GPE-AFF (gpe-affiliation)
ORG-AFF (organization-affiliation)
PART-WHOLE (part-whole)
PER-SOC (person-social)
PHYS (phisical)

/business/company/founders
/business/company/industry
/location/country/capital
/location/location/contains
Ipeople/person/nationality
Ipeople/person/place_of_birth

Figure 1: Datasets with different annotation schemas.
ACEOS is a manually labelled dataset with 7 entity types
and 6 relation types. NYT is a distantly supervised dataset
(from Freebase) with 3 entity types and 24 relation types.

In this work, we focus on distantly supervised extraction
models, and try to alleviate the effect of noisy training sam-
ples by adapting high quality annotations from manually la-
belled datasets. By introducing accurate context-dependent
samples to automatically generated datasets, we aim to make
distantly supervised models more accurate and robust.

The major challenge here is that the two datasets are usu-
ally heterogeneous: they could annotate different types of
entities and relations following different guidelines. For ex-
ample, Figure 1 shows annotation schemas of two bench-
mark datasets (ACEO5 and NYT). A straightforward way
to tackle this challenge is simply merging the two datasets.
However, it ignores inherent differences between the two
schemas and hardly brings performance gains to distantly
supervised models. Another way is trying to establish a
(approximate) mapping between the two schemas manually
(Qiu, Zhao, and Huang 2013). However, it would be inflexi-
ble to extend to more schemas. Thus, how to balance scala-
bility and specificity, and how to carefully control the adap-
tation process are key problems to the task.

We propose a novel fine-grained framework to incorpo-
rate manually labelled dataset to the distantly supervised
learning process. Specifically, we introduce two shared tasks
to bridge discrepancies between the two heterogeneous an-
notation schemas. For extracting entities, the shared task is



to locate boundaries of entities. For extracting relations, the
shared task is to determine whether two entities form a valid
relation. We assume that the two shared tasks are much less
sensitive to different annotation schemas, and can be utilized
to transfer context-dependent knowledge on entities and re-
lations from the manually labelled dataset. In order to fur-
ther control the adaptation process, we also investigate con-
sistency constraints between shared extraction tasks and the
original extraction tasks. A set of new loss functions is pro-
posed to characterize the constraints.

We conduct extensive experiments on the benchmark
NYT dataset, and observe that our model achieves 3.7% im-
provement of F1 score against the state-of-the-art system. To
summarize, the major contributions of this paper are

e We first investigate the problem of using manually la-
belled datasets to help distantly supervised entity relation

extraction.

We design a novel adaptation framework which transfers
heterogeneous knowledge through new shared tasks.

Our proposed model significantly outperforms the state-
of-the-art methods on benchmark NYT dataset. !

Related Work

There have been extensive studies on extracting entities
and relations from plain texts. Currently, the state-of-the-
art systems usually adopt the supervised joint learning algo-
rithm. It can mitigate the error propagation and strengthen
the interaction between the entity model and the relation
model. Feature-based joint models (Miwa and Sasaki 2014;
Li and Ji 2014) use manually extracted features to per-
form entity detection and relation detection simultaneously.
Those methods rely on handcrafted features, which leads
to additional complexity. To overcome this limitation, sev-
eral neural-network-based joint models have been proposed,
such as tree LSTM-based model (Miwa and Bansal 2016),
attention-based model (Katiyar and Cardie 2017), sequen-
tial labelling model (Zheng et al. 2017) and global nor-
malization model (Zhang, Zhang, and Fu 2017). Besides,
Ren et al. (2017) study domain-independent framework
by modeling entity-relation interactions jointly. Wang et
al. (2018) develop a transition-based system for joint extrac-
tion task. Specially, our basic models are derived from Sun
et al. (2018), which introduce joint minimum risk training to
provide a new joint learning paradigm. Different from Ren
et al.; Wang et al. (2017; 2018), our basic models do not
perform joint decoding or model the dependencies between
relations in a sentence.

Another thread of related work is multi-task learning. It
has been proven effective in many NLP tasks (Collobert and
Weston 2008; Jalali et al. 2010; Peng and Dredze 2016).
The basic method is hard parameter sharing (Caruana 1993).
(Sggaard and Goldberg 2016) only share parameters at lower
layers for lower level tasks. Liu, Qiu, and Huang; Chen
et al. (2017; 2017) induce the adversarial shared-private
space. However, those approaches do not model the rela-
tionships between labels. Meanwhile, Augenstein, Ruder,

'We will make our implementation publicly available.
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and Sggaard (2018) present a multi-task framework over
disparate label spaces to learn transfer functions between
label embeddings. Chen, Zhang, and Liu; Peng, Thomson,
and Smith (2016; 2017) train models on disparate annota-
tions of the same task. In contrast, the difference of our
method requires multiple tasks on multiple datasets. Be-
sides, Jiang, Huang, and Liu; Qiu, Zhao, and Huang (2009;
2013) study the joint Chinese word segmentation and the
part-of-speech tagging task with heterogeneous annotation
datasets. Comparing with Qiu, Zhao, and Huang (2013), the
shared representations of our method are more explanatory.

Task Definition

Given an input sentence s = wy, . . ., wg| (w; is a word), we
study the task of extracting a set of entities £ and a set of
relations R from s. An entity e € £ is a sequence of words
labeling with an entity type (e.g., person (PER), organization
(ORG)). Let 7T, be the set of possible entity types. A relation
r is a triple (eq, e2, 1), where e; and ey are two entities, [ is
a relation type describing the semantic relation between e;
and e (e.g., organization affiliation relation (ORG-AFF)).
Let 7, be the set of possible relation types.

In this work, we focus on improving distantly super-
vised information extraction using high quality heteroge-
neous datasets. Specifically, given two training sets D¢,
DP containing sentences annotated with entities and rela-
tions, we assume that D is a large automatically labeled
dataset which includes (many) noisy annotations, while Db
is a small manually labeled dataset which is more accurate.
Furthermore, D® and DY could be annotated with differ-
ent types of entities (7.2, 72) and relations (7,2, 7,%) fol-
lowing different guidelines (i.e., heterogeneous). Our goal
is to strengthen the model performance when training on the
noisy dataset D®.

Basic Models

Before describing our proposed models, we first introduce
two building blocks commonly applied in modern informa-
tion extraction systems: a biLSTM-based sequence labeling
model for detecting entities (Mq) and a CNN-based multi-
class classifiers for detecting relations (My).

The Sequence Model M.,

To extract certain text spans from a sentence, we adopt the
BILOU tagging scheme: B, I, L and O denote the begin,
inside, last and outside of a target span, U denotes a single
word span. For example, to extract entities annotated with
entity types 7., we assign a tag t; to each word w;, where
t; € {B,I,L,0,U}x T, ? encodes both the span and the type
information of an entity (e.g., (B, PER) means the begin of
a PER entity).

Given an input sentence s, the sequence labeling model
tries to predict the true tags t = t1,%2,. .., using a biL-
STM (bi-directional long short time memory network) chain

with parameter 6:
h; = biLSTM(x;; 0), (1

2We merge all (0, *) as the single tag O, where * € 7Te.



where h; is the hidden state vector of the biLSTM (i.e.,
concatenation of a forward and a backward LSTM’s hidden
states at position #), and x; is the word representation of w;
which contains pre-trained embeddings and character-based
word representations by running a CNN on the character se-
quences of w;. Then, the posterior of tag {; is given by

Pieq(ti|s) = Softmax(W h;),

where W, is the parameter. The objective is to minimize
@)

The Relation Model M ¢

Given a pair of entities (e1, e2) extracted by a sequence la-
beling model M4, we use a multi-class classifier to deter-
mine whether they form a certain type of relation. For exam-
ple, to identify relations in 7., the classifier assigns a relation
label | € {NONE} U 7, to the pair, where NONE means no
relation exists.

The multi-class classifier first applies CNNs (convolution
neural networks) to extract features for (eq, e3):

fe, e, = CNNs(eq, €2, s;w), 3)

where different CNNs are applied on words inside entities
e1, e2, and context words between them (see the experiment
section for details). Here, each word is represented using
hidden state vectors h; of the biLSTM chain (i.e., sharing
parameters with M) and one-hot entity tag representa-
tions. Then, the posterior of relation type [ is obtained by
a multi-layer perceptron with one hidden layer,

Re1(i|61, ez, s) = Softmax(W,,ReLUW,. ., .,)),4)
and the training objective is to minimize

>

(e1,e2)

log P(I = lle1, ea, 5;w)
# candidate pairs (eq, e2)’

Erel = - (5)

where the true label [ can be read from annotations, and
model parameters are W,.,, W,., and w.

A Joint Extraction Model on D“

With the help of the two building blocks, we are able to build
a simple joint extraction system given the training set D¢ 3.
First, we apply a sequence labeling model Mg, to extract
entities with type 7.*. Then, for each pair of the extracted
entities, we use a relation classifier M, to recognize rela-
tions in 7,%. Finally, to train the model jointly, we simply
minimize the sum of their objectives Lg,, + L.

In the following section, we will describe our strategies
to improve the performances of this simple model. In gen-
eral, instead of directly training with noisy samples in D?,
we will try to utilize another heterogeneous but high quality
dataset D°.

3To make notations clear, we will always use superscript to in-
dicate different models and parameters. For example Mg, Mfeq
are sequence models training on D and D® respectively, h¢, h?
are their hidden states, and P®, P? are their posterior distributions.
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Figure 2: Adapting via shared representations h® .

Adaptation Models

Although distant supervision is an effective way to obtain
large amounts of data, drawbacks of the automatically gen-
erated D® are also obvious. For example, some annotated
relations are incorrect (false positive) due to the heuristic
grounding of knowledge base triples, and some true rela-
tions may not be annotated (false negative) due to the low
coverage of seed relations of the distant supervision process.

On the other hand, there are many manually labeled
datasets which are built for extracting entities and relations
in various domains. They may not follow the same anno-
tation schema with D, but the high quality annotations in
them may provide some useful common knowledge which
is invariant with respect to domains. Thus, it’s interesting to
study whether we can improve model performances on D¢
by adapting those heterogeneous datasets.

Adapting via Merging Datasets

Our first attempt is simply merging datasets D® and D°,
and feeding the merged dataset into a vanilla joint extrac-
tion model (Meq, Me1). The system is the same as trained
on D%, except that now it needs to work with larger sets of
entity types 7. U 7.2 and relation types 7,% U 7,°.

However, according to our empirical evaluation (on the
testing set of D), this simple solution fails to improve per-
formances. In fact, since the distant supervised set D® is
usually much larger than the manually labeled set D°, di-
rectly mixing the two training sets is inefficient to explore
the samples in DP. Thus, we may need to develop fine-
grained methods to control the adaptation process.

Adapting via Shared Representations

Instead of using a unified model, we could keep extraction
models of D® and D" separated and capture interactions be-
tween the two models using an additional model. Specif-
ically, we break the task of adapting D® to D into two
steps. First, we try to identify shared information between
the two datasets which will serve as common knowledge
for extracting entities and relations. Second, we combine
the shared and the private (dataset-dependent) information
in each model’s prediction (Figure 2).

Formally, for each sentence s € D¢, we feed it into a joint
extraction model with a sequence model M, and a relation

seq
model M2

rel*

other pair of models M2 _, M?

seq? rel®

Similarly, for sentences in D°, we apply an-
The biLSTMs and CNNs



Db ORG-AFF 1

7 INEYa

Markovic, the leader of the party. |:> leader party
(U,PER) (U, ORG) T 7

1
Plushenko ,——~gnded the evening
in third pflace, behingd Stephane /\
Lambim,”. ,and ':>

Brian Joubert of France. Brain Joubert France
(BPER) (LPER)  (U,LOC) B L u

De S
Ipeople/person/nationality

Figure 3: An example of different annotations and their
transformation versions for the shared extraction tasks. The
left part is original annotations in D® and D®. The right part
is corresponding annotations for the entity span detection
and the binary relation detection.

in these models will aim to represent dataset-dependent fea-
tures.

In order to encode the shared information, we introduce a
new biLSTM chain which accepts both sentences from D¢
and DY. The hidden states h¢ of this shared biLSTM are con-
catenated to h{ of Mg, and h® of /\/lfeq before performing
the private prediction on the entity tag ¢;,

PS‘;q(fi|s) = Softmax(W¢(h{ & hY)),

PL,(E:]s) = Softmax(W?(h @ h)). (7
The relation models M2, M®, also build feature vectors
£ ens fé’l)ez using the shared representation hy.

Here, the main assumption is that if the representation
h¢ is useful on both D® and D?, it probably captures some
shared information between them. Thus, from the perspec-
tive of D, instead of only using its private feature repre-
sentation, we also adapt some knowledge from DP through
the shared representation. Our major concern about only us-
ing shared representations in adaptation is that the meaning
of shared information is unclear. In fact, there is no crite-
ria about which representations are better except the end-
performances. Thus, it may be possible that h® hold unnec-
essary information to overfit the training sets.

(6)

Adapting via Shared Tasks

Inspired by the separation of shared and private representa-
tions, we can add more control on the adaptation process. A
key observation is that although D® and D® have different
annotation schemas, we can decompose the extraction tasks
into overlapped subtasks. For example, to extract entities,
we can first find the start and end positions of them, then
determine their entity types. It is possible that even though
entity types 7.2, 7.2 are different, the distributions of the start
and end positions could be much closer in the two datasets.
For example, in Figure 3, “party” and “France” are anno-
tated with different entity types in D® and D, but the start
positions of them are both right behind the preposition “of™.
Thus, it would be reasonable to assume that they share a task
of predicting boundaries of entity spans.
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Figure 4: Adapting via shared tasks. As Figure 2, shared rep-
resentations are included (the yellow flow). The main differ-
ences are the new loss functions in red and blue .

Similarly, in order to extract relations, we can first pre-
dict whether an entity pair forms a valid relation, then deter-
mine their relation types. In Figure 3, entity pairs (“leader”,
“party”’) and (“Brian Joubert”, “France”) are annotated with
different types in D® and D, but both of them hold a syn-
tax relation of nominal modification. It suggests that we can
also add a share task to predict the existence of a relation.

Formally, we introduce two shared tasks to help the adap-
tation: entity span detection and binary relation detection
(Figure 4). The entity span detection task focuses on lo-
cating boundaries of entities. As for the ordinary entity ex-
traction task, we apply a sequence labeling model M. For
each word w;, Mg, predicts a tag in {B, I, L, 0, U} to mark
the appearance of an entity (ignoring specific entity types). It
also shares hidden states h® with Mg, and ./\/lfeq as Equa-
tion 6 and 7. More importantly, Mg, now equips with a

loss function £g,, which is based on the entity span annota-

tions in both D® and D°. We compute Lq using Equation 2
by transforming ground truth annotations t into the BILOU

schema.

The binary relation detection task is to predict whether
a certain relation exists between an entity pair (ignoring spe-
cific relation types). We use a relation model M, which is
applied on the candidate entity pairs from Mg, and extract
entity pair representations f7, . based on the hidden states
he. It will assign each entity pair a label in {0, 1} to indicate
the existence of a relation. Like Mg, , we add a loss func-
tion L, on outputs of M, to supervise the training process.
The computation of Ly, follows Equation 5 with true binary
annotations [ transformed from the original typed relation la-
bels. One additional observation is that we could also utilize
representations of entity pairs f7, . in the private relation
models.

Comparing with sharing representations, the main differ-
ence here is the loss functions £g,, £y, on the shared task.
In fact, as the shared loss functions are computed on the
merged dataset D U D®, we are combining the paradigms
of adapting via merged dataset and adapting via shared rep-

resentations in a more careful way.



Transition Loss Functions

Based on the designed shared tasks, we can add a set of con-
sistent constrains to further control the relation between the
shared and private models.

For entity models, Mg, outputs a posterior qeq( i[s)
over the tag set {B, I, L, o, , U} x T2, and Mg, outputs a

posterior beq( ;|s) over {B, I, L, 0, U} which is a projected
set. A natural consistency requirement between Pg, and P
is the margin constraint,

E seq

*€TH

In other words, given a sentence in D® and a position ¢, the
probability of being the start of an entity (B) should be the
sum of probabilities of being the start of any specific entity
(B, *). The same consistency problem also appears between
qu and Pg

Instead o[tl addlng hard constraints, we characterize the
consistency using soft constraints. Specifically, we will try to

x)|s), € {B,I,L,0,U}.(8)

seq

minimize two new transition loss functions L5, £ooed,
V ,seq v v
trans ” seq Msequeq||27 S {a7 b} (9)
where M® . MP  are transition matrices which convert dis-

seq? seq
crete distributions Fg, Pfgq to Pg,. We can also add similar

transition loss functions for the relatlon model,
v, rel
‘Clrarrli - ” rel MerR‘ZlH?? Ve {a"b}' (10)
The adaptation model jointly minimize the sum of loss

functions
Do (A L)+ Y (e i) an
s€fa,b,c} ved{a,b}

To summarize, adapting via shared tasks is a finer model
than only sharing representations. It has a clear interpreta-
tion of the shared model, and the connection between the
shared and the private task can be explicitly characterized.
These prior knowledge on model design could make the
learned models more stable and robust.

Training the Models

To train the joint model, we optimize the Equation 11 on two
datasets in an alternative way. Specifically, we alternately
select a random batch from the two datasets D® and DP,
then the Equation 11 on batch B is reduced to

S (Lhgt L) + (LT £5) . € {a,b).
are{v,c}

(12)
The training procedure is described in Algorithm 1. We em-
ploy the scheduled sampling strategy (Bengio et al. 2015) in
the entity model similar to (Miwa and Bansal 2016). We op-
timize our model using Adadelta (Zeiler 2012) with gradient
clipping. The network is regularized with dropout. * Within
a fixed number of batches, we select the model according to
the best relation performance on development sets.

*Our word embeddings is initialized with 100-dimensional
glove (Pennington, Socher, and Manning 2014) word embeddings.
The dimensionality of the hidden units is 128. For all CNN in our
network, the kernel sizes are 2 and 3, and the output channels are
25.
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Algorithm 1 The training procedure
Input: D?, Db,
Output: the trained model

1: randomly initialize parameters
2: while the model has not converged do

3: for v € {a,b} do

4: randomly select batch B from corpus D"

5: compute Ly, LS., on batch B by Equation 2
6: compute £:°°% by Equation 9

7: generate candidate relations

8: compute LY.}, LS, by Equation 5

9: compute Ef,;flls by Equation 10
10: compute final loss £ by Equation 12
11: update parameters by minimizing loss £
12: end for

13: end while

Experiments

We evaluate the proposed framework on public NYT
dataset. 3 The training set has 353k relation triples, which
are generated by distant supervision. The test set is man-
ually labeled and contains 3880 relation triples. Following
(Ren et al. 2017; Zheng et al. 2017; Wang et al. 2018), we
randomly select 10% of the test set as the development set
and use the remaining data as evaluation. We use standard
A(%)EOS dataset as the manually labeled dataset (see Figure
DH°.

We compute the Equation 3 according to (Sun et al.
2018). Specifically, the f., ., is concatenated by six fea-
ture vectors, namely, f.,,f.,, fiiddie, fieft, fright and fqig.
f., and f,, are feature vectors by running two CNNs on
word representations of e; and e.. Similarly, we build
fmidqale with another CNN, on words between e; and es.
We use “LSTM-Minus” method (Wang and Chang 2016;
Zhang, Zhang, and Fu 2017; Sun et al. 2018) to compute left
context feature vectors flo¢ and right context feature vectors
fright. For fqis¢, we use one-hot feature vectors to represent
the distance between e and e in the sentence.

We evaluate the performances using precision (P), recall
(R) and F1 scores. Specifically, an output entity e is correct
if its type and the region of its head are correct, and an output
relation r is correct if its e, es, ! are correct (i.e., “exactly
match”). In previous work, the entity type are not consid-
ered when computing the relation F1 score (Ren et al. 2017;
Zheng et al. 2017; Wang et al. 2018). We also report this
results for comparison.

In this paper, the default setting is the adaptation model
with entity transition loss (line 6 in Table 2), which achieves
the best relation performance on NYT dataset.

Results on NYT

First, we compare our method with previous work (Table 1).
The first part contains pipelined methods, and the second
part contains joint extraction models. The last part includes
joint extraction models with the “exactly match” evaluation.

Shttps://github.com/shanzhenren/CoType.
®https://github.com/tticoin/LSTM-ER.



Relation

Model P R F

Gormley (2015) 553 154 240
Mintz (2009) 258 39.3 31.1
Tang (2015) 335 329 332
Hoffman (2011) 338 327 333
L&J (2014) 574 256 354
Ren (2017) 423 51.1 463
Zheng (2017) 61.5 414 495
Wang (2018) 643 42.1 509
Sun (2018) 674 420 S51.7
Our Model 704 456 554
Sun (2018)(exactly match) | 65.2 40.6 50.0
Our Model(exactly match) | 68.3 442 53.7

Table 1: Results on the NYT dataset.

In general, our proposed method achieves significant im-
provements over all the existing models in relation F1 score.
In particular, it achieves 5.9 percent improvement over the
joint sequence labeling method (Zheng et al. 2017) and out-
performs 4.5 percent comparing with the joint transition-
based system (Wang et al. 2018). Comparing with the state-
of-the-art method (Sun et al. 2018), it achieves 3.7 point
improvement. It shows that our method can boost the per-
formance of distant supervision using the manually labeled
high quality dataset.

Next, we analyse the contributions and effects of the var-
ious components of our method (Table 2). We have some
observations regarding this results.

1. “only D*” (line 1) is competitive with current best joint
decoders (Wang et al. 2018; Sun et al. 2018). It suggests
that basic models Meq, M1 (see previous section) are ef-
fective.

2. “D® U D" (line 2) has poor relation performance com-
paring“only D®”. We think that directly mixing the two
datasets is inefficient since the D® dataset is much larger
than the DY dataset,

3. After exploiting the manually labeled ACEOQS dataset via
shared representations (line 3), it achieves slight improve-
ments on both the entity and the relation performances.
These observations show that the shared representations can
improve performances and it is a simple method for adapta-
tion model.

4. After adding two shared tasks (line 4), both the entity and
relation performances have large improvements (1.2 per-
cent for entity and 2.7 percent for relation). It demonstrates
that this model can combine the paradigms of adapting via
merged dataset and adapting via shared representations in a
more careful way.

5. After imposing the transition losses both on entity model
and relation model (line 5), the relation performance has
slight improvement (0.1 percent), but the entity performance
decreases. Interestingly, when we keep only transition loss
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Entity Relation

Model | P R F |P R F

only D* | 82.6 912 867 | 61.8 433 509
D*UD | 845 919 881 | 60.7 423 498
onlyh® | 835 93.1 880|656 420 512
he+L£° | 862 925 892|665 454 539
+ Lians | 82.8 89.6 86.1 | 648 462 54.0
+ L300 1 86.6 929 89.6 | 704 456 554
+ Ll 1872 939 904 | 729 409 524

Table 2: Results on the NYT dataset in different settings.
“only D®” uses basic models trained on D*; “D* U D?” de-
notes the adaptation model via merging datasets; “only h®”
denotes adaptation model via shared representations; “h® +
L is the adaptation model via shared task. “+ Lians” 1S
the “h¢+ £ with entity and relation transition losses; Sim-
ilarly, “+ Lot and “+ £l keep only transition losses

. trans € trans
on entity and relation respectively.

Percentage Entity Relation
of D° P R F |P R F
100% 86.6 929 89.6 | 704 456 554
75% 83.6 91.1 872|690 420 522
50% 859 927 892 | 628 47.6 542
25% 845 914 878 | 673 445 53.6

Table 3: Results on the NYT dataset varying on the percent-
age of the ACEQ5 dataset.

on entity model (line 6), it largely improves the relation per-
formance. Meanwhile, when we keep only transition loss on
relation model (line 7), it fails to improve relation perfor-
mance but achieves the best entity performance. These ob-
servations show that the transition loss added to the entity
model or relation model could bias the performance of en-
tity or relation. One possible reason is that the entity model
and the relation model are closely related to each other, and
imposing restrictions on one side will affect the other. How-
ever, how they affect each other in this joint settings is still
a open question.

Thirdly, we present the influences of quantity of manually
labeled dataset (Table 3). We randomly select 25%, 50%,
75% of the ACEO5 dataset. We note that as the quantity
increases, the performance does not increase steadily. We
think this is caused by random sampling. In other word, the
impact of each sample of ACEQ5 dataset on performance is
different. For example, the result with 50% ACEOQ5 dataset
has high recall, but the result with 100% ACEQS dataset has
high precision. How to select samples efficiently could be an
interesting future work.

Forthly, we visualize the transition matrix in Figure 5
(take Mg, as a example). Darker color indicates larger
weight. The diagonal entries have a darker color, which
means the transition meets the Equation 8 approximately.
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S1 after the authorities described suspects talking about blowing up the [sears tower] - "7, g in
[chicago]igggf'n‘sfl:@ & and the f.bi.’s [miami] 0% V% headquarters .

S2 said [dennis rice]iiign"'yfl:@ P senior vice president of marketing for [disney]giign“; 20k ’s buena
vista [pictures]°%%* unit .

S3 in [california]igig‘i"n*s_lm *d|contains- b where parents first started educational founda-
tions in response to a statewide law capping property taxes , the combined district of

. LOC:Qdetd . LOC:Qdetd .

[santa monlca]containsfll:ﬂo|contains—2:‘ and [mahbu]containsflwﬂo requires ...

Table 4: Examples from the NYT dataset with label annotations from “+ £
The Q is the gold standard, and the &, # are the output of the “+ L5}
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Figure 5: Visulization of the transition matrix Mg,,.

For example, the probability of tag B mainly comes from
the transition of tag (B, PER), (B, LOC) and (B, ORG). In
addition, to compare with automatically learned transition
matrix, we try to fix the matrix by the mapping between the
tag of original task and the tag of shared task. Specifically,
in Figure 5, the diagonal entries are set to 1.0, while others
are set to 0.0. In this case, it achieves 88.9 entity F1 score
and 52.8 relation F1 score, demonstrating the effectiveness
of the soft constraints on modeling consistency.

Fifthly, we examine the performance with respect to dif-
ferent distances between entity pairs (Figure 6). In general,
our model outperforms the two baselines significantly when
the distance is lower than 6. Besides, we observe that the
performances of all models are very low when the distance
is greater than 6. Thus, joint decoding algorithms which can
capture long distance dependencies might be a promising di-
rection in this joint extraction task.

Finally, in this work, we focus on improving distantly su-
pervised information extraction using high quality hetero-
geneous datasets. We report the performances on ACE05
dataset. We use the same data split as previous work (Li and
Ji 2014; Miwa and Bansal 2016; Sun et al. 2018). Our ba-
sic models achieve 57.8 relation F1 score trained on ACEQS.
Comparing with the model only trained on ACEQS, our sys-
tems (with NYT) have nearly the same performance. For
example, our best model “+ L2 > achieves 56.6 relation

trans
F1 score on test set. We think the automatically generated
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s~ model and “only h®” model for comparison.

only h®”’ model respectively.
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Figure 6: F1 scores on NYT dataset with respect to the dis-
tance between entity pairs.

data degrades the quality of whole dataset, due to it includes
many noisy samples and has the low coverage.

Case Study

We compare the “+ Li, .7 with the “only h®” on some
concrete examples, as shown in Table 4. For S1, our model
identifies a cont ains relation between “[chicago]*°°” and
“[sears tower]"°°”, while the “only h®” do not find this re-
lation even the entities are correct. For S2, the “+ Lo .7
does not detect company relation while the “only h®” cor-
rectly find it. These two observations show that our model is
good at dealing with the situation when the distance between
entities is low, as expected. For S3, the “+ L2 > wrongly
identifies the relation between “[california]*°“” and “[santa
monica]*°®” even the relation between “[california]“°°”
and “[malibu]°°” is detected. We think advanced improve-
ment methods which model dependencies between relations

might be helpful in this situation.

Conclusions

We propose a novel adaptation framework for distantly su-
pervised joint entity relation extraction using the high qual-
ity heterogeneous dataset. By introducing shared extraction



tasks and imposing consistency constraints between shared
extraction tasks and the original extraction tasks, our frame-
work could control the adaptation process in a more care-
ful and interpretable way. Experiments on benchmark NYT
dataset show the effectiveness of the proposed methods.
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