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Abstract

Multimodal sentiment analysis is a core research area that stud-
ies speaker sentiment expressed from the language, visual, and
acoustic modalities. The central challenge in multimodal learn-
ing involves inferring joint representations that can process and
relate information from these modalities. However, existing
work learns joint representations by requiring all modalities
as input and as a result, the learned representations may be
sensitive to noisy or missing modalities at test time. With the
recent success of sequence to sequence (Seq2Seq) models in
machine translation, there is an opportunity to explore new
ways of learning joint representations that may not require
all input modalities at test time. In this paper, we propose
a method to learn robust joint representations by translating
between modalities. Our method is based on the key insight
that translation from a source to a target modality provides a
method of learning joint representations using only the source
modality as input. We augment modality translations with a
cycle consistency loss to ensure that our joint representations
retain maximal information from all modalities. Once our
translation model is trained with paired multimodal data, we
only need data from the source modality at test time for final
sentiment prediction. This ensures that our model remains
robust from perturbations or missing information in the other
modalities. We train our model with a coupled translation-
prediction objective and it achieves new state-of-the-art results
on multimodal sentiment analysis datasets: CMU-MOSI, ICT-
MMMO, and YouTube. Additional experiments show that our
model learns increasingly discriminative joint representations
with more input modalities while maintaining robustness to
missing or perturbed modalities.

Introduction
Sentiment analysis is an open research problem in machine
learning and natural language processing which involves iden-
tifying a speaker’s opinion (Pang, Lee, and Vaithyanathan
2002). Previously, text-only sentiment analysis through
words, phrases, and their compositionality can be found to
be insufficient for inferring sentiment content from spoken
opinions (Morency, Mihalcea, and Doshi 2011), especially in
the presence of rich nonverbal behaviors which can accom-
pany language (Shaffer 2018). As a result, there has been a
recent push towards using machine learning methods to learn
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Figure 1: Learning robust joint representations via multi-
modal cyclic translations. Top: cyclic translations from a
source modality (language) to a target modality (visual). Bot-
tom: the representation learned between language and vision
are further translated into the acoustic modality, forming the
final joint representation. In both cases, the joint representa-
tion is then used for sentiment prediction.

joint representations from additional information present in
the visual and acoustic modalities. This research field has
become known as multimodal sentiment analysis and extends
the conventional text-based definition of sentiment analy-
sis to a multimodal environment. For example, (Kaushik,
Sangwan, and Hansen 2013) explore the additional acoustic
modality while (Wöllmer et al. 2013) use the language, vi-
sual, and acoustic modalities present in monologue videos
to predict sentiment. This push has been further bolstered
by the advent of multimodal social media platforms, such as
YouTube, Facebook, and VideoLectures which are used to ex-
press personal opinions on a worldwide scale. The abundance
of multimodal data has led to the creation of multimodal
datasets, such as CMU-MOSI (Zadeh et al. 2016) and ICT-
MMMO (Wöllmer et al. 2013), as well as deep multimodal
models that are highly effective at learning discriminative
joint multimodal representations (Liang, Zadeh, and Morency
2018; Tsai et al. 2018; Chen et al. 2017). Existing prior work
learns joint representations using multiple modalities as in-
put (Liang et al. 2018; Morency, Mihalcea, and Doshi 2011;
Zadeh et al. 2016). However, these joint representations also
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regain all modalities at test time, making them sensitive to
noisy or missing modalities at test time (Tran et al. 2017;
Cai et al. 2018).

To address this problem, we draw inspiration from the
recent success of Seq2Seq models for unsupervised repre-
sentation learning (Sutskever, Vinyals, and Le 2014; Tu et
al. 2016). We propose the Multimodal Cyclic Translation
Network model (MCTN) to learn robust joint multimodal
representations by translating between modalities. Figure 1
illustrates these translations between two or three modali-
ties. Our method is based on the key insight that translation
from a source modality S to a target modality T results in an
intermediate representation that captures joint information
between modalities S and T . MCTN extends this insight
using a cyclic translation loss involving both forward trans-
lations from source to target modalities, and backward trans-
lations from the predicted target back to the source modality.
Together, we call these multimodal cyclic translations to en-
sure that the learned joint representations capture maximal
information from both modalities. We also propose a hierar-
chical MCTN to learn joint representations between a source
modality and multiple target modalities. MCTN is trainable
end-to-end with a coupled translation-prediction loss which
consists of (1) the cyclic translation loss, and (2) a predic-
tion loss to ensure that the learned joint representations are
task-specific (i.e. multimodal sentiment analysis). Another
advantage of MCTN is that once trained with multimodal
data, we only need data from the source modality at test time
to infer the joint representation and label. As a result, MCTN
is completely robust to test time perturbations or missing
information on other modalities.

Even though translation and generation of videos, au-
dios, and text are difficult (Li et al. 2017b), our experi-
ments show that the learned joint representations can help
for discriminative tasks: MCTN achieves new state-of-the-art
results on multimodal sentiment analysis using the CMU-
MOSI (Zadeh et al. 2016), ICT-MMMO (Wöllmer et al.
2013), and YouTube (Morency, Mihalcea, and Doshi 2011)
public datasets. Additional experiments show that MCTN
learns increasingly discriminative joint representations with
more input modalities during training.

Related Work
Early work on sentiment analysis focused primarily on writ-
ten text (Pang, Lee, and Vaithyanathan 2002; Pang and
Lee 2008; Socher et al. 2013). Recently, multimodal senti-
ment analysis has gained more research interest (Baltrusaitis,
Ahuja, and Morency 2017). Probably the most challenging
task in multimodal sentiment analysis is learning a joint rep-
resentation of multiple modalities. Earlier work used fusion
approaches such as concatenation of input features (Ngiam
et al. 2011; Lazaridou, Pham, and Baroni 2015). Several neu-
ral network models have also been proposed to learn joint
multimodal representations. (Liang et al. 2018) presented a
multistage approach to learn hierarchical multimodal repre-
sentations. The Tensor Fusion Network (Zadeh et al. 2017)
and its approximate low-rank model (Liu et al. 2018) pre-
sented methods based on Cartesian-products to model uni-
modal, bimodal and trimodal interactions. The Gated Multi-

modal Embedding model (Chen et al. 2017) learns an on-off
switch to filter noisy or contradictory modalities. Other mod-
els have proposed using attention (Cheng et al. 2017) and
memory mechanisms (Zadeh et al. 2018) to learn multimodal
representations.

In addition to purely supervised approaches, genera-
tive methods based on Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014) have attracted signifi-
cant interest in learning joint distributions between two or
more modalities (Donahue, Krähenbühl, and Darrell 2016;
Li et al. 2017a). Another method for multimodal data is to de-
velop conditional generative models (Kingma et al. 2014;
Pandey and Dukkipati 2017) and learn to translate one
modality to another. Generative-discriminative objectives
have been used to learn either joint (Pham et al. 2018;
Kiros, Salakhutdinov, and Zemel 2014) or factorized (Tsai
et al. 2018) representations. Our work takes into account the
sequential dependency of modality translations and explores
the effect of a cyclic translation loss on modality translations.

Finally, there has been some progress on accounting for
noisy or missing modalities at test time. One general ap-
proach is to infer the missing modalities by modeling the
probabilistic relationships among different modalities. Sri-
vastava and Salakhutdinov (2014) proposed using Deep
Boltzmann Machines to jointly model the probability dis-
tribution over multimodal data. Sampling from the con-
ditional distributions over each modality allows for test-
time inference in the presence of missing modalities. Sohn,
Shang, and Lee (2014) trained Restricted Boltzmann Ma-
chines to minimize the variation of information between
modality-specific latent variables. Recently, neural models
such as cascaded residual autoencoders (Tran et al. 2017),
deep adversarial learning (Cai et al. 2018), or multiple ker-
nel learning (Mario Christoudias et al. 2010) have also
been proposed for these tasks. It was also found that train-
ing with modalities dropped at random can improve the
robustness of joint representations (Ngiam et al. 2011).
These methods approximately infer the missing modali-
ties before prediction (Hill, Reichart, and Korhonen 2014;
Collell, Zhang, and Moens 2017), leading to possible error
compounding. On the other hand, MCTN remains fully ro-
bust to missing or perturbed modalities during testing.

Proposed Approach
In this section, we describe our approach for learning joint
multimodal representations through modality translations.

Problem Formulation and Notation
A multimodal dataset consists of N labeled video seg-
ments defined as X = (Xl,Xv,Xa) for the language, vi-
sual, and acoustic modalities respectively. The dataset is
indexed by N such that X = (X1,X2, ...,XN) where
Xi = (Xl

i,X
v
i ,X

a
i ), 1 ≤ i ≤ N . The corresponding labels for

these N segments are denoted as y = (y1, y2, ..., yN), yi ∈ R.
Following prior work, the multimodal data is synchronized
by aligning the input based on the boundaries of each word
and zero-padding each example to obtain time-series data
of the same length (Liang et al. 2018). The ith sample is
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given by Xl
i = (wi

(1),wi
(2), ...,wi

(L)) where wi
(`) stands

for the `th word and L is the length of each example. To
accompany the language features, we also have a sequence
of visual features Xv

i = (vi
(1),vi

(2), ...,vi
(L)) and acoustic

features Xa
i = (ai

(1),ai
(2), ...,ai

(L)).

Learning Joint Representations
Learning a joint representation between two modalities XS

and XT is defined by a parametrized function fθ that re-
turns an embedding EST = fθ(X

S ,XT ). From there, another
function gw is learned that predicts the label given this joint
representation: ŷ = gw(EST ).

Most work follows this framework during both training
and testing (Liang et al. 2018; Liu et al. 2018; Tsai et al. 2018;
Zadeh et al. 2018). During training, the parameters θ and w
are learned by empirical risk minimization over paired multi-
modal data and labels in the training set (XS

tr,X
T
tr,ytr):

EST = fθ(X
S
tr,X

T
tr), (1)

ŷtr = gw(EST ), (2)
θ∗,w∗

= argmin
θ,w

E [`y(ŷtr,ytr)]. (3)

for a suitable choice of loss function `y over the labels (tr
denotes training set).

During testing, paired multimodal data in the test set
(XS

te,X
T
te) are used to infer the label (te denotes test set):

EST = fθ∗(X
S
te,X

T
te), (4)

ŷte = gw∗(EST ). (5)

Multimodal Cyclic Translation Network
Multimodal Cyclic Translation Network (MCTN) is a neural
model that learns robust joint representations by modality
translations. Figure 2 shows a detailed description of MCTN
for two modalities. Our method is based on the key insight
that translation from a source modality XS to a target modal-
ity XT results in an intermediate representation that captures
joint information between modalities XS and XT , but using
only the source modality XS as input during test time.

To ensure that our model learns joint representations that
retain maximal information from all modalities, we use a
cycle consistency loss (Zhu et al. 2017) during modality
translation. This method can also be seen as a variant of
back-translation which has been recently applied to style
transfer (Prabhumoye et al. 2018; Zhu et al. 2017) and un-
supervised machine translation (Lample et al. 2018). We
use back-translation in a multimodal environment where we
encourage our translation model to learn informative joint
representations but with only the source modality as input.
The cycle consistency loss for modality translation starts by
decomposing function fθ into two parts: an encoder fθe and
a decoder fθd . The encoder takes in XS as input and returns
a joint embedding ES→T :

ES→T = fθe(X
S
), (6)

which the decoder then transforms into target modality XT :

XT
= fθd(ES→T ), (7)

Source  
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Figure 2: MCTN architecture for two modalities: the source
modality XS and the target modality XT . The joint repre-
sentation ES⇆T is obtained via a cyclic translation between
XS and XT . Next, the joint representation ES⇆T is used for
sentiment prediction. The model is trained end-to-end with
a coupled translation-prediction objective. At test time, only
the source modality XS is required.

following which the decoded modality T is translated back
into modality S:

ET→S = fθe(X̂
T
), X̂S

= fθd(ET→S). (8)

The joint representation is learned by using a Seq2Seq
model with attention (Bahdanau, Cho, and Bengio 2014) that
translates source modality XS to a target modality XT . While
Seq2Seq models have been predominantly used for machine
translation, we extend its usage to the realm of multimodal
machine learning.

The hidden state output of each time step is based on the
previous hidden state along with the input sequence and is
constructed using a recurrent network.

h` = RNN(h`−1,X
S
` ) ∀` ∈ [1, L]. (9)

The encoder’s output is the concatenation of all hidden states
of the encoding RNN,

ES→T = [h1,h2, ...,hL], (10)

where L is the length of the source modality XS .
The decoder maps the representation ES→T into the target

modality XT . This is performed by decoding each token XT
t

at a time based on ES→T and all previous decoded tokens,
which is formulated as

p(XT
) =

L

∏
`=1

p(XT
` ∣ES→T ,X

T
1 , ...,X

T
`−1). (11)

MCTN accepts variable-length inputs of XS and XT , and is
trained to maximize the translational condition probability
p(XT ∣XS). The best translation sequence is then given by

X̂T = argmax
XT

p(XT
∣XS

). (12)

We use the traditional beam search approach (Sutskever,
Vinyals, and Le 2014) for decoding.

To obtain the joint representation for multimodal predic-
tion, we only use the forward translated representation during
inference to remove the dependency on the target modality at
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test time. If cyclic translation is used, we denote the translated
representation with the symbol⇆:

ES⇆T = ES→T . (13)

ES⇆T is then used for sentiment prediction:

ŷ = gw(ES⇆T ). (14)

Coupled Translation-Prediction Objective
Training is performed with paired multimodal data and labels
in the training set (XS

tr,X
T
tr,ytr) The first two losses are the

forward translation loss Lt defined as

Lt = E[`XT (X̂T ,XT
)], (15)

and the cycle consistency loss Lc defined as

Lc = E[`XS(X̂S ,XS
)] (16)

where `XT and `XS represent the respective loss functions.
We use the Mean Squared Error (MSE) between the ground-
truth and translated modalities. Finally, the prediction loss
Lp is defined as

Lp = E[`y(ŷ,y)] (17)

with a loss function `y defined over the labels.
Our MCTN model is trained end-to-end with a coupled

translation-prediction objective function defined as

L = λtLt + λcLc +Lp. (18)

where λt, λt are weighting hyperparameters. MCTN parame-
ters are learned by minimizing this objective function

θ∗e , θ
∗

d ,w
∗
= argmin

θe,θd,w
[λtLt + λcLc +Lp]. (19)

Parallel multimodal data is not required at test time. Infer-
ence is performed using only the source modality XS :

ES⇆T = fθ∗e(X
S
), (20)

ŷ = gw∗(ES⇆T ). (21)

This is possible because the encoder fθ∗e has been trained to
translate the source modality XS into a joint representation
ES⇆T that captures information from both source and target
modalities.

Hierarchical MCTN for Three Modalities
We extend the MCTN in a hierarchical manner to learn joint
representations from more than two modalities. Figure 3
shows the case for three modalities. The hierarchical MCTN
starts with a source modality XS and two target modalities
XT1 and XT2 . To learn joint representations, two levels of
modality translations are performed. The first level learns
a joint representation from XS and XT1 using multimodal
cyclic translations as defined previously. At the second level,
a joint representation is learned hierarchically by translating
the first representation ES→T1 into XT2 . For more than three
modalities, the modality translation process can be repeated
hierarchically.

Two Seq2Seq models are used in the hierarchical MCTN
for three modalities, denoted as encoder-decoder pairs
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Figure 3: Hierarchical MCTN for three modalities: the source
modality XS and the target modalities XT1 and XT2 . The
joint representation ES⇆T1 is obtained via a cyclic translation
between XS and XT1 , then further translated into XT2 . Next,
the joint representation of all three modalities, E(S⇆T1)→T2

,
is used for sentiment prediction. The model is trained end-to-
end with a coupled translation-prediction objective. At test
time, only the source modality XS is required for prediction.

(f1θe , f
1
θd

) and (f2θe , f
2
θd

). A multimodal cyclic translation
is first performed between source modality XS and the first
target modality XT1 . The forward translation is defined as

ES→T1 = f
1
θe(X

S
tr), X̂

T1
tr = f1θd(ES→T1), (22)

and followed by the decoded modality XT1 being translated
back into modality XS :

ET1→S = f1θe(X̂
T1
tr ), X̂

S
tr = f

1
θd

(ET1→S). (23)

A second hierarchical Seq2Seq model is applied on the out-
puts of the first encoder f1θe :

ES⇆T1 = ES→T1 , (24)

E(S⇆T1)→T2
= f2θe(ES⇆T1), X̂

T2
tr = f2θd(E(S⇆T1)→T2

).
(25)

The joint representation between modalities XS , XT1 and
XT2 is now E(S⇆T1)→T2

. It is used for sentiment prediction
via a recurrent neural network via regression method.

Training the hierarchical MCTN involves computing a
cycle consistent loss for modality T1, given by the respective
forward translation loss Lt1 and the cycle consistency loss
Lc1 . We do not use a cyclic translation loss when translating
from ES⇆T1 to XT2 since the ground truth ES⇆T1 is unknown,
and so only the translation loss Lt2 is computed. The final
objective for hierarchical MCTN is given by

L = λt1Lt1 + λc1Lc1 + λt2Lt2 +Lp (26)

We emphasize that for MCTN with three modalities, only a
single source modality XS is required at test time. Therefore,
MCTN has a significant advantage over existing models since
it is robust to noisy or missing target modalities.
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Dataset CMU-MOSI
Model Test Inputs Acc(↑) F1(↑) MAE(↓) Corr(↑)
RF {`, v, a} 56.4 56.3 - -
SVM {`, v, a} 71.6 72.3 1.100 0.559
THMM {`, v, a} 50.7 45.4 - -
EF-HCRF {`, v, a} 65.3 65.4 - -
MV-HCRF {`, v, a} 65.6 65.7 - -
DF {`, v, a} 74.2 74.2 1.143 0.518
EF-LSTM {`, v, a} 74.3 74.3 1.023 0.622
MV-LSTM {`, v, a} 73.9 74.0 1.019 0.601
BC-LSTM {`, v, a} 75.2 75.3 1.079 0.614
TFN {`, v, a} 74.6 74.5 1.040 0.587
GME-LSTM(A) {`, v, a} 76.5 73.4 0.955 -
MARN {`, v, a} 77.1 77.0 0.968 0.625
MFN {`, v, a} 77.4 77.3 0.965 0.632
LMF {`, v, a} 76.4 75.7 0.912 0.668
RMFN {`, v, a} 78.4 78.0 0.922 0.681
MCTN {`} 79.3 79.1 0.909 0.676

Table 1: Sentiment prediction results on CMU-MOSI. Best
results are highlighted in bold. MCTN outperforms the cur-
rent state-of-the-art across most evaluation metrics and uses
only the language modality during testing.

Experimental Setup
In this section, we describe our experimental methodology to
evaluate the joint representations learned by MCTN1

Dataset and Input Modalities
We use the CMU Multimodal Opinion-level Sentiment Inten-
sity dataset (CMU-MOSI) which contains 2199 video seg-
ments each with a sentiment label in the range [−3,+3]. To
be consistent with prior work, we use 52 segments for train-
ing, 10 for validation and 31 for testing. The same speaker
does not appear in both training and testing sets to ensure that
our model learns speaker-independent representations. We
also run experiments on ICT-MMMO (Wöllmer et al. 2013)
and YouTube (Morency, Mihalcea, and Doshi 2011) which
consist of online review videos annotated for sentiment.

Multimodal Features and Alignment
Following previous work (Liang et al. 2018), GloVe word
embeddings (Pennington, Socher, and Manning 2014),
Facet (iMotions 2017), and COVAREP (Degottex et al. 2014)
features are extracted for the language, visual and acoustic
modalities respectively2. Forced alignment is performed us-
ing P2FA (Yuan and Liberman 2008) to obtain spoken word
utterance times. The visual and acoustic features are aligned
by computing their average over the utterance interval of each
word.

Evaluation Metrics
For parameter optimization on CMU-MOSI, the prediction
loss function is set as the Mean Absolute Error (MAE):
`p(ŷtrain,ytrain) = ∣ŷtrain − ytrain∣. We report MAE and

1Our source code is released at https://github.com/hainow/
MCTN.

2Details on feature extraction are in supplementary material.

Dataset ICT-MMMO YouTube
Model Test Inputs Acc(↑) F1(↑) Acc(↑) F1(↑)
RF {`, v, a} 70.0 69.8 33.3 32.3
SVM {`, v, a} 68.8 68.7 42.4 37.9
THMM {`, v, a} 53.8 53.0 42.4 27.9
EF-HCRF {`, v, a} 73.8 73.1 45.8 45.0
MV-HCRF {`, v, a} 68.8 67.1 44.1 44.0
DF {`, v, a} 65.0 58.7 45.8 32.0
EF-LSTM {`, v, a} 72.5 70.9 44.1 43.6
MV-LSTM {`, v, a} 72.5 72.3 45.8 43.3
BC-LSTM {`, v, a} 70.0 70.1 45.0 45.1
TFN {`, v, a} 72.5 72.6 45.0 41.0
MARN {`, v, a} 71.3 70.2 48.3 44.9
MFN {`, v, a} 73.8 73.1 51.7 51.6
MCTN {`} 81.3 80.8 51.7 52.4

Table 2: Sentiment prediction results on ICT-MMMO and
YouTube. Best results are highlighted in bold. MCTN out-
performs the current state-of-the-art across most evaluation
metrics and uses only the language modality during testing.

Pearson’s correlation r. We also perform sentiment classi-
fication on CMU-MOSI and report binary accuracy (Acc)
and F1 score (F1). On ICT-MMMO and YouTube, we set
the prediction loss function as categorical cross-entropy and
report sentiment classification and F1 score. For all metrics,
higher values indicate stronger performance, except MAE
where lower values indicate stronger performance.

Baseline Models
We compare to the following multimodal models:
RMFN (Liang et al. 2018) uses a multistage approach to
learn hierarchical representations (current state-of-the-art on
CMU-MOSI). LMF (Liu et al. 2018) approximates the expen-
sive tensor products in TFN (Zadeh et al. 2017) with efficient
low-rank factors. MFN (Zadeh et al. 2018) synchronizes
sequences using a multimodal gated memory. EF-LSTM con-
catenates multimodal inputs and uses a single LSTM (Hochre-
iter and Schmidhuber 1997). For a description of other base-
lines, please refer to the supplementary material.

Results and Discussion
This section presents and discusses our experimental results.

Comparison with Existing Work
Q1: How does MCTN compare with existing state-of-the-art
approaching for multimodal sentiment analysis?

We compare MCTN with previous models 3. From Table 1,
MCTN using language as the source modality achieves new
start-of-the-art results on CMU-MOSI for multimodal senti-
ment analysis. State-of-the-art results are also achieved on
ICT-MMMO and YouTube (Table 2). It is important to note
that MCTN only uses language during testing, while other
baselines use all three modalities.

Adding More Modalities
Q2: What is the impact of increasing the number of modalities
during training for MCTN with cyclic translations?

3For full results please refer to the supplementary material.
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Figure 5: t-SNE visualization of the joint representations
learned by MCTN. Legend: red: videos with negative senti-
ment, blue: videos with positive sentiment. Adding modal-
ities and using cyclic translations improve discriminative
performance and leads to increasingly separable representa-
tions.

Dataset CMU-MOSI
Model Translation Acc F1 MAE Corr

MCTN Bimodal (4a)
V ⇆ A 53.1 53.2 1.420 0.034
T ⇆ A 76.4 76.4 0.977 0.636
T ⇆ V 76.8 76.8 1.034 0.592

MCTN Trimodal (4e)
(V ⇆ A)→ T 56.4 56.3 1.455 0.151
(T ⇆ A)→ V 78.7 78.8 0.960 0.650
(T ⇆ V )→ A 79.3 79.1 0.909 0.676

Table 3: MCTN performance improves as more modalities
are introduced for cyclic translations during training.

We run experiments with MCTN using combinations of
two or three modalities with cyclic translations. From Ta-
ble 3, we observe that adding more modalities improves
performance, indicating that the joint representations learned
are leveraging the information from more input modalities.
This also implies that cyclic translations are a viable method
to learn joint representations from multiple modalities since
little information is lost from adding more modality trans-
lations. Another observation is that using language as the
source modality always leads to the best performance, which

Dataset CMU-MOSI
Model Translation Acc(↑) F1(↑) MAE(↓) Corr(↑)

MCTN Bimodal (4a)
V ⇆ A 53.1 53.2 1.420 0.034
T ⇆ A 76.4 76.4 0.977 0.636
T ⇆ V 76.8 76.8 1.034 0.592

Simple Bimodal (4b)
V → A 55.4 55.5 1.422 0.119
T → A 74.2 74.2 0.988 0.616
T → V 75.7 75.6 1.002 0.617

No-Cycle Bimodal (4c)
V → A, A→ V 55.4 55.5 1.422 0.119
T → A, A→ T 75.5 75.6 0.971 0.629
T → V, V → T 75.2 75.3 0.972 0.627

Double Bimodal (4d)

[V → A,A→ V ] 57.0 57.1 1.502 0.168
[T → A,A→ T ] 72.3 72.3 1.035 0.578
[T → V,V → T ] 73.3 73.4 1.020 0.570

Table 4: Bimodal variations results on CMU-MOSI dataset.
MCTN Bimodal with cyclic translations performs best.

is intuitive since the language modality contains the most
discriminative information for sentiment (Zadeh et al. 2017).

In addition, we visually inspect the joint representations
learned from MCTN as we add more modalities during train-
ing (see Table 5). The joint representations for each segment
in CMU-MOSI are extracted from the best performing model
for each number of modalities and then projected into two
dimensions via the t-SNE algorithm (van der Maaten and
Hinton 2008). Each point is colored red or blue depending
on whether the video segment is annotated for positive or
negative sentiment. From Figure 5, we observe that the joint
representations become increasingly separable as the more
modalities are added when the MCTN is trained. This is con-
sistent with increasing discriminative performance with more
modalities (as seen in Table 3).

Ablation Studies
We use several models to test our design decisions. Specifi-
cally, we evaluate the impact of cyclic translations, modality
ordering, and hierarchical structure.
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Dataset CMU-MOSI
Model Translation Acc(↑) F1(↑) MAE(↓) Corr(↑)

MCTN Trimodal (4e)
(V ⇆ A)→ T 56.4 56.3 1.455 0.151
(T ⇆ A)→ V 78.7 78.8 0.960 0.650
(T ⇆ V )→ A 79.3 79.1 0.909 0.676

Simple Trimodal (4f)

(V → T)→ A 54.1 52.9 1.408 0.040
(V → A)→ T 52.0 51.9 1.439 0.015
(A→ V )→ T 56.6 56.7 1.593 0.067
(A→ T)→ V 54.1 54.2 1.577 0.028
(T → A)→ V 74.3 74.4 1.001 0.609
(T → V )→ A 74.3 74.4 0.997 0.596

Double Trimodal (4g) [T → V, V → T ]→ A 73.3 73.1 1.058 0.578

Concat Trimodal (4h)

[V,A]→ T 55.0 54.6 1.535 0.176
[A,T ]→ V 73.3 73.4 1.060 0.561
[T,V ]→ A 72.3 72.3 1.068 0.576
A→ [T,V ] 55.5 55.6 1.617 0.056
T → [A,V ] 75.7 75.7 0.958 0.634

[T,A]→ [T,V ] 73.2 73.2 1.008 0.591
[T,V ]→ [T,A] 74.1 74.1 0.999 0.607

Paired Trimodal (4i) [T → A,T → V ] 73.8 73.8 1.022 0.611

Table 5: Trimodal variations results on CMU-MOSI dataset.
MCTN (hierarchical) with cyclic translations performs best.

For bimodal MCTN, we design the following ablation
models shown in the left half of Figure 4: (a) MCTN bimodal
between XS and XT , (b) simple bimodal by translating from
XS to XT without cyclic loss, (c) no-cycle bimodal which
does not use cyclic translations but rather performs two in-
dependent translations between XS and XT , (d) double bi-
modal: two seq2seq models with different inputs (of the same
modality pair) and then using the concatenation of the joint
representations ES→T and ET→S as the final embeddings.

For trimodal MCTN, we design the following ablation
models shown in the right half of Figure 4: (e) MCTN tri-
modal which uses the proposed hierarchical translations be-
tween XS , XT1 and XT2 , (f) simple trimodal based on trans-
lation from XS to XT1 without cyclic translations, (g) dou-
ble trimodal extended from (d) which does not use cyclic
translations but rather performs two independent translations
between XS and XT1 , (h) concat trimodal which does not
perform a first level of cyclic translation but directly translates
the concatenated modality pair [XS ,XT1] into XT2 , and fi-
nally, (i) paired trimodal which uses two separate decoders
on top of the intermediate representation.

Q3: What is the impact of cyclic translations in MCTN?
The bimodal results are in Table 4. The models that employ

cyclic translations (Figure 4(a)) outperform all other models.
The trimodal results are in Table 5 and we make a similar
observation: Figure 4(e) with cyclic translations outperforms
the baselines (f), (g) and (h). The gap for the trimodal case is
especially large. This implies that using cyclic translations
is crucial for learning discriminative joint representations.
Our intuition is that using cyclic translations: (1) encourages
the model to enforce symmetry between the representations
from source and target modalities thus adding a source of
regularization, and (2) ensures that the representation retains
maximal information from all modalities.

Q4: What is the effect of using two Seq2Seq models instead
of one shared Seq2Seq model for cyclic translations?

We compare Figure 4(c), which uses one Seq2Seq model
for cyclic translations with Figure 4(d), which uses two sep-

arate Seq2Seq models: one for forward translation and one
for backward translation. We observe from Table 4 that (c) >
(d), so using one model with shared parameters is better. This
is also true for hierarchical MCTN: (f) > (g) in Table 5. We
hypothesize that this is because training two deep Seq2Seq
models requires more data and is prone to overfitting. Also,
it does not learn only a single joint representation but instead
two separate representations.

Q5: What is the impact of varying source and target modal-
ities for cyclic translations?

From Tables 3, 4 and 5, we observe that language con-
tributes most towards the joint representations. For bimodal
cases, combining language with visual is generally better than
combining the language and acoustic modalities. For hierar-
chical MCTN, presenting language as the source modality
leads to the best performance, and a first level of cyclic trans-
lations between language and visual is better than between
language and audio. On the other hand, only translating be-
tween visual and acoustic modalities dramatically decreases
performance. Further adding language as a target modality
for hierarchical MCTN will not help much as well. Overall,
for the MCTN, language appears to be the most discrimi-
native modality making it crucial to be used as the source
modality during translations.

Q6: What is the impact of using two levels of translations
instead of one level when learning from three modalities?

Our hierarchical MCTN is shown in Figure 4(e). In Fig-
ure 4(h), we concatenate two modalities as input and use only
one phase of translation. From Table 5, we observe that (e) >
(h): both levels of modality translations are important in the
hierarchical MCTN. We believe that representation learning
is easier when the task is broken down recursively: using two
translations each between a single pair of modalities, rather
than a single translation between all modalities.

Conclusion
This paper investigated learning joint representations via
cyclic translations from source to target modalities. During
testing, we only need the source modality for prediction
which ensures robustness to noisy or missing target modal-
ities. We demonstrate that cyclic translations and seq2seq
models are useful for learning joint representations in multi-
modal environments. In addition to achieving new state-of-
the-art results on three datasets, our model learns increasingly
discriminative joint representations with more input modali-
ties while maintaining robustness to all target modalities.
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