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Abstract

The problem of generating a set of diverse paraphrase sen-
tences while (1) not compromising the original meaning of
the original sentence, and (2) imposing diversity in various
semantic aspects, such as a lexical or syntactic structure, is
examined. Existing work on paraphrase generation has fo-
cused more on the former, and the latter was trained as a
fixed style transfer, such as transferring from positive to neg-
ative sentiments, even at the cost of losing semantics. In this
work, we consider style transfer as a means of imposing di-
versity, with a paraphrasing correctness constraint that the
target sentence must remain a paraphrase of the original sen-
tence. However, our goal is to maximize the diversity for a set
of k generated paraphrases, denoted as the diversified para-
phrase (DP) problem. Our key contribution is deciding the
style guidance at generation towards the direction of increas-
ing the diversity of output with respect to those generated pre-
viously. As pre-materializing training data for all style deci-
sions is impractical, we train with biased data, but with de-
biasing guidance. Compared to state-of-the-art methods, our
proposed model can generate more diverse and yet seman-
tically consistent paraphrase sentences. That is, our model,
trained with the MSCOCO dataset, achieves the highest em-
bedding scores, .94/.95/.86, similar to state-of-the-art results,
but with a lower mBLEU score (more diverse) by 8.73%.

1 Introduction
Paraphrasing is the task of rephrasing a given sentence into
another with the same semantic meaning. Related tasks
include paraphrase identification, classifying whether the
given pair of sentences is a paraphrase of each other. Another
task is to generate a paraphrase sentence of a given input sen-
tence. Both tasks are useful in numerous NLP tasks, includ-
ing question answering (QA) and information retrieval (IR).
For example, a new question can be a paraphrase of an ex-
isting QA pair, which can be retrieved as an answer to a new
question. Similarly, in IR, a part of a document that matches
the query as its paraphrase can be a good retrieval candidate.
However, in both scenarios, we often fail to find paraphrase
pairs, due to lexical and structural differences (Zhou et al.
2015).
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Existing paraphrasing work mainly focuses on preserving
the original sentence’s semantic meaning but less on gen-
erating diversified paraphrases (see Section 2.3). This study
addresses the generation problem, with a focus on diversifi-
cation. With the advent of sequence-to-sequence (Seq2Seq)
models, after encoding the given sentence, paraphrase can
be decoded in various forms from a given encoded sen-
tence, by adding random noise to deep generative mod-
els, such as a variational autoencoder (VAE) (Kingma and
Welling 2014). However, these models reportedly have com-
mon weaknesses. The generated sentences, to preserve the
semantic meaning, are often safe yet tedious repetitions of
the original sentence, as frequently observed in generative
models (Xu et al. 2018). Our objective is to generate a set of
paraphrases p1, . . . , pk to maximize diversity.

Another closely related task is a style transfer that
rephrases a given sentence to impose a particular style prop-
erty. One can view the style transfer satisfying paraphrase
identification as a special paraphrase case. This property can
be implicitly trained using a paired or an unpaired corpus
(Fu et al. 2017) or in an explicitly guided manner (Iyyer et
al. 2018), such as enforcing the syntactic structure of a para-
phrase.

While style transfer focuses on imposing a single fixed
form of diversity, we extend that to paraphrase diversifica-
tion for a generated set of paraphrases p1, . . . , pk, given the
original sentence o and its paraphrase p, as well as the gen-
erated paraphrase history. When generating the first para-
phrase (without any history), history is set as null. Specif-
ically, we generate an uncontrolled random noise z, then
transformed it into z′ to provide diversity guidance during
generation.

Due to the challenging fact in pre-materializing the exist-
ing paraphrase training data to include all possible diversity
guidance during generation, our factual training instances
are often biased (e.g., having syntax that is too similar).
Training using counterfactual debiasing instances (having
dissimilar syntax) thus pave way to allow for more diversity
guidance. To allow that, in this work, we provide a debias-
ing guiding vector for generating counterfactual (debiased)
training instances.

We summarize our key contributions as follows.

• Random noise z is uncontrollable such that a particular
style property cannot be imposed; so, it is transformed
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Figure 1: Overview of the proposed approach, combining a VAE-based and adversarial learning architectures that mutually
communicate for the purpose of extracting different styles and discriminating the set of generated paraphrases that are dissim-
ilar from the original sentence, respectively. In addition, we consider the previously generated paraphrase as another diversity
condition in generating paraphrases. A shows that our controlled latent vector z’ is concatenated with each of the word em-
beddings in the paraphrase during decoding. In B, the hidden representation of the previously generated paraphrase (from the
decoder) is concatenated with z from the current paraphrase-sentence encoder. In the first step, the hidden representation of the
previously generated paraphrase is initialized as all zeros. C represents the semantic, syntactic, and lexical similarity vectors
(left to right) between the original sentence and its paraphrase.

into z′ to reflect our debiasing guidance.

• We use an aggregated representation of previous para-
phrase generations as a vector, so that the output is guided
to be different from that previously generated.

• We overcome the lack of quantity and diversity in training
data, by leveraging negative pairs and adversarial exam-
ples for training.

2 Related Work
2.1 Paraphrase Generation and Identification
Due to page limitation, we refer the reader to (Androut-
sopoulos and Malakasiotis 2010) for a comprehensive sur-
vey of paraphrase generation and identification methods;
here, we focus on the “diversity” aspects of this work.

Recent Seq2Seq paraphrasing models pursue diversity
primarily in two directions. First, decoding approaches di-
versify outputs using techniques such as top-k beam search
(Gupta et al. 2018). Second, random noise is introduced
in a generator as an additional input (Dai and Lin 2017;
Jain, Zhang, and Schwing 2017). The weakness of the for-
mer is that the quality of the output degrades as the number
of the outputs grows (or when the lower-ranked results from
the beam search are presented). The second group addresses
such weaknesses by generating the top-1 result for k differ-
ent random noises. However, the degree of diversity is often
marginal, as we have no control over z.

Another line of related work involves the hypothesis that
paraphrase generation is a sequence of edit operations ap-
plied to the original sentence (Huang et al. 2018; Guu et
al. 2018; Li et al. 2018; Quirk, Brockett, and Dolan 2004).
Compared to Seq2Seq models in generating sentences from
scratch, this approach deals with a smaller and discretely
guided search space in generating paraphrases but in return,
yields higher efficiency and quality throughput. However,
such a hypothesis limits diversity by assuming the genera-
tion of a paraphrase is conditioned on the original sentence
by some set of edit operation. Our work has the benefit of a
guided search space, using a guide vector, but without mak-
ing such a hypothesis.

Paraphrase identification, classifying whether the given
two sentences are paraphrases of each other, has a richer his-
tory of study (Androutsopoulos and Malakasiotis 2010). We
focus on discussing how such work contributes to guiding
paraphrase generation. We can train evaluator, which is a
paraphrase identification module, to judge whether the given
and the generated sentences are paraphrases of each other.
Networks of such evaluators can guide generator networks,
either through reinforcement learning (Li et al. 2017), or
through adversarial training (Su et al. 2018). Our work is
an example of adversarial training between a generator and
a discriminator.
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2.2 Style Transfer
Similar to machine translation of text written in one lan-
guage to another, image translation has recently been a pop-
ular topic, converting the style of a given image into another,
e.g., (Johnson, Alahi, and Fei-Fei 2016). Leveraging an ad-
versarial training framework, style transfer techniques have
been significantly improved (Zhu et al. 2017). In general,
these early studies require a training set of image pairs com-
posed of an original input and its output image after the style
transfer. Similarly, in the domain of natural language gener-
ation, the early work on style transfer in text builds on par-
allel resources. For example, (Jhamtani et al. 2017) converts
modern text into Shakespearean English using paired data.
Separately, in the work of (Prabhumoye et al. 2018; Xu et
al. 2012), paraphrases are generated by transferring differ-
ent types of styles, such as gender, political slant, and an-
cient writing, into the original sentences. However, all these
studies address the problem of fixed styles. For automatic
generation of training resources, back-translations between
a source language and a target language (Lample et al. 2018;
Artetxe et al. 2018) has been used for paraphrases (Wieting
and Gimpel 2017). However, back-translations as a training
resource is not suitable for diversity, as their syntactic varia-
tion is reportedly limited (Iyyer et al. 2018).

Instead of implicitly defining a style through paired and
unpaired data as above, an explicit guidance, such as spec-
ifying a syntactic structure of the paraphrase (Iyyer et al.
2018), has also been studied. We leverage both approaches
by explicitly identifying which aspect to diversify (based on
the given input), while implicitly learning style representa-
tion, through adversarial training, learning to separate con-
tent and style representations, as similarly used in (Fu et al.
2017).

In summary, our work is distinguished as follows:
• Semantic preserving: Unlike some style transfer, such as

turning positive statements into negative, semantic preser-
vation is essential for paraphrase correctness.

• Debiasing guidance: Unlike the goal of maintaining con-
sistency to one style, for which training data is natu-
rally biased to one style, style changes based on previous
generation in our problem, for which proper training in-
stances may not exist. We thus present a biased training
data, with unbiasing guidance, to train on the debiased
counterfactual data. Our framework can also subsume a
classical problem of generating k paraphrases with a fixed
style, simply by not providing any such guidance.

2.3 Diversification
Lack of diversity in generative models has been a major is-
sue in natural language generation, such as conversation (Xu
et al. 2018) or paraphrasing (Iyyer et al. 2018), as we have al-
ready discussed above. However, their diversity requirement
is applied within a pair of sentences. To pursue set diver-
sity, we can consider a search engine result diversification
task – For a given query of keywords, matching multiple
semantic meanings, pursuing only a traditional goal of rele-
vance would provide the top k results covering only a dom-
inant one. A diverse set would generate a set that includes

a minority sense as well, without compromising much rele-
vance (Jiang et al. 2017).

3 Proposed Approach
Our goal is to generate a set of diverse paraphrases for each
input pair, composed of the original sentence and its para-
phrase. First, we provide an overview of the VAE-based
(SOTA) approach, which utilizes a latent vector z (Sec-
tion 3.1). Afterwards, we gradually introduce noise in two
steps into a controlled latent vector z′ (Sections 3.2 and 3.3),
which will be fed into a variational autoencoder (with the
guidance of a discriminator in Section 3.4), so that the au-
toencoder can generate diversified paraphrases, conditioned
upon z′.

3.1 VAE-based Paraphrase Generation
This section illustrates a VAE-based state-of-the-art para-
phrase generation model (Gupta et al. 2018), shown on the
left-hand side of Figure 1, as one of our baselines. This
model only considers z but not z′ (Figure 1).

Given a pair of original sentence o = (wo1 , wo2 , ..., won )
and its paraphrase p = (wp1

, wp2
, ..., wpn

), let us denote the
word embeddings of the two as eo = (eo1 , eo2 , ..., eon ), and
ep = (ep1

, ep2
, ..., epn

), respectively. The word embeddings
of the original sentence and its paraphrase are encoded us-
ing bidirectional-GRU encoders (Chung et al. 2014) (shown
as the inputs to the Original Sentence Encoder and Para-
phrase Sentence Encoder in Figure 1, respectively). In addi-
tion, the word embeddings of the paraphrase are also passed
to a GRU decoder (shown as the inputs to Decoder in Fig-
ure 1).

The hidden representation of the original sentence
(through the Original Sentence Encoder), hT , is fed as an
additional input to both Paraphrase Sentence Encoder and
Decoder. A latent vector z is then randomly sampled from
the mean and variance vector representations of the Para-
phrase Sentence Encoder.

Compared to classical LSTM decoder models, which use
a beam search to generate multiple candidates, VAE-based
models have the strength of generating multiple different
hidden representations z’s to generate diverse candidates
with comparable quality. However, with uncontrolled z for
the pairwise paraphrase generation objective, we need to
overcome three new challenges, as follows:
C1: Unlike uncontrollable z, which cannot guide a style
property, we need to generate z′ that reflects our guidance.
C2: We need to represent previous paraphrase generations
to impose diversity as compared with those previously gen-
erated.
C3: We need to overcome the lack of quantity and diversity
in training data, by leveraging negative pairs and adversarial
examples for training.

3.2 C1: Generating Controlled z′ from Guidance
We first discuss how to perturb the original latent vector z
into a controlled vector z′, which has a different style.

To our knowledge, the closest study is (Iyyer et al. 2018),
which specified a syntactic structure to ensure the lexical

6885



diversity on the paraphrase sentences. However, we empir-
ically observe that such generation, being constrained for
the explicit syntax requirement, often violates the semantic
equivalence required for the generated paraphrase.

Our goal is to explicitly guide the perturbation of z into
z′, to encourage the diversity, specifically, with respect to the
following three dimensions:

We first train a classifier that takes a pair of sentences as
input and returns a three-dimensional binary vector, denoted
as a guide vector, [Sem, Syn, Lex]. Sem is set to one, if
the pairs are labeled as a paraphrase, and 0 for a negative
example. Inspired by (Iyyer et al. 2018), Syn compares the
parsed results of the two sentences and quantifies their sim-
ilarity into a binary score. 1 Lex indicates whether the un-
igram Jaccard similarity (Goodall 1966) of a given pair is
higher than 0.5.

We then train a controlled representation z′, using a con-
catenation of an embedded labeled vector

z′ = σ(wT [z; eSem; eSyn; eLex]) (1)

where w is the parameter learned to separate the opposite
labels as much as possible.

To illustrate, when the given paraphrase pair has a similar
lexical structure, a guide vector will indicate such similarity
to encourage lexical diversity when generating z′.

3.3 C2: Set-Diversification via Previous
Generated Paraphrases

We now extend the notion of pairwise diversity from the
original sentence into diversity within a set of generated
paraphrases: Existing models generate paraphrases without
considering the previously generated sentences (Xu et al.
2017; Li et al. 2015). As a result, a set of paraphrases gener-
ated from a single original sentence tends to be highly simi-
lar with one another.

In contrast, we utilize the previously generated para-
phrases to generate an additional paraphrase that is different.
In detail, we first concatenate the hidden representation, hg ,
from its previous paraphrase to z′ and introduce a novel loss
term, called a word coverage loss, by computing the word
level differences between the generated paraphrase and its
previous version.

In word coverage loss, the word-level differences between
the generated paraphrase and its previous paraphrases is
computed by first generating two different vectors, corre-
sponding to the generated and previous paraphrases Gp and
Pp respectively. The dimension of the vectors equals the
size of the vocabulary. If a word is present in Gp or Pp, the
vector cell corresponding to the vocabulary will be marked
as 1, otherwise, 0. We then subtract Pp fromGp in returning
a single vector. The word coverage loss is then computed by
summing the cells of the vector that contains the value 1.

Finally, the latent vector z′ is represented as

z′ = σ(wT [z; eSem; eSyn; eLex;hg]). (2)

1We follow the convention of (Iyyer et al. 2018) to use the top
two-level parses.

3.4 C3: Diversity beyond Training Data
Our last challenge is to confirm that a guided paraphrase can
be generated even when such transfer is not frequently ob-
served in the training dataset.

This is important because lexical and syntactic diversity is
limited in many public datasets. For example, in the Quora
dataset, only 10% of the original and paraphrase questions
are lexically diverse. Desirably, our guided vector, even
when given the pair without lexical diversity, should still en-
force the generation of a set of diverse paraphrases. That is,
if Syn and Lex suggest that the given pair lacks diversity in
either aspect, we can set the guidance vector as its negation,
Syn, Lex, to enforce the diversity (or negated guidance)
requirement. For training a negated effect, we use negative
sampling, to be elaborated further.

This section discusses how we guide the generation of
a set of diverse paraphrases through discrimination of the
generated paraphrases from the original sentences. Specifi-
cally, we train an adversarial network, consisting of a gen-
erator (G) and a discriminator (D) (shown on the right side
of Figure 1). The generator is used to produce paraphrases
that are similar to the training data (human-written para-
phrases), while the discriminator learns the similarity [Sem,
Syn, Lex] between the generated paraphrases and the orig-
inal sentence to further guide the generator in recognizing
and producing human-like written paraphrases.

We describe the two loss functions used in our adversarial
network:

(1) GAN Adversarial Loss (Goodfellow et al. 2014)

Ladv =Ep [Dadv (p)]

+ Eo,p,c [log (1−Dadv (G (o, p, c)))] (3)

(2) Relational Loss – In addition to distinguishing be-
tween human-written and machine-generated paraphrases,
the adversarial network also learns to distinguish the
[Sem, Syn, Lex] features between the human-written and
machine-generated paraphrases. We call the loss of this
function the Relational Loss. Mathematically, the relational
loss function is shown as the following:

Lrel =Eo,p,c [− logDrel (c|o, p)]
+ Eo,p,c [− logDrel (c|o,G (o, p, c))]

+ Eo,p,c̄ [− logDrel (c̄|o,G (o, p, c̄))] (4)

The original sentence and its paraphrase are denoted as o
and p, respectively, while c denotes the similarity condition
(i.e., Sem, Syn, Lex). The use of the negative sampling per
similarity condition is given by c̄ (i.e., Syn, Lex). As the
generated paraphrases should be semantically similar to the
original sentence, we do not perform a negative sampling on
Sem. The second and the third parts of equation 4 represent
the use of positive and negative sampling in calculating our
proposed relational loss function respectively.

We note that the use of negative sampling for paraphrase
generation has not been attempted in previous studies, and
our work is the first to introduce negative sampling for para-
phrase generation.
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4 Experimental Setup
We describe the details of the model’s decoder (Section 4.1),
the datasets used for training (Sections 4.2 and 4.3), and the
evaluation of the generated paraphrases, both quantitatively,
through different metrics (Section 4.4), and qualitatively,
through a user study (Section 4.5). We implemented our
models and experimented using NSML (Kim et al. 2018).

4.1 Details of the Decoder
In our decoder networks, we use a beam search, in which
the beam size is set to 10, following the same setting as the
previous SOTA model (Gupta et al. 2018), and we did not
perform any additional reranking.

4.2 Ensemble of Skewed Transfers
To illustrate the robustness and effectiveness of the mod-
els on different types of data, we used multiple para-
phrase datasets for training/development/testing (Quora
2018; Bowman et al. 2015; Dolan, Brockett, and Quirk
2005; Lin et al. 2014; Coster and Kauchak 2011). These
datasets are also widely used in previous paraphrase gen-
eration work (Prakash et al. 2016; Gupta et al. 2018; Brad
and Rebedea 2017). We note that our work is the first to use
multiple different datasets for evaluation. We describe the
datasets used in the following:

Quora: Released by Quora in 2017, this dataset contains
question pairs (asked in Quora) that are paraphrases of one
another. It consists of 400K pairs of questions, in which
140K are annotated as paraphrased questions, while the oth-
ers are not (Quora 2018). We used the sentence pairs that are
labeled as duplicates/paraphrases as the paraphrase dataset.

Microsoft: Released by Microsoft in 2005, this dataset
consists of 5,800 pairs of sentences extracted from online
news sources that are annotated as paraphrases.

SNLI: Released by the Stanford NLP Group (Stanford
2018) in 2015, this dataset contains 570K of human-written
English sentence pairs that are human-labeled as entailment,
contradiction, and neutral, in which each group of sentence
pairs totals approximately 190K. We used the sentence pairs
that are labeled as entailment as the paraphrase dataset.

MSCOCO: Released by COCO Consortium (COCO
2018) in 2017, this dataset consists of 123K images that
are human-annotated with five annotations per image (Lin et
al. 2014). In terms of generating a sentence paraphrase pair,
we follow the strategy of (Gupta et al. 2018), i.e., randomly
removing one of the five image annotation, and combining
the other four image annotations into two different sentence
paraphrase pairs.

Wikipedia: Released by Coster and Kauchak (Coster and
Kauchak 2011) in 2011, this dataset consists of 137K of sen-
tences from Wikipedia and its simplified form.

Combined We further combined all the above five dif-
ferent sources of paraphrase datasets into a separate larger
group of paraphrase datasets for evaluation.

For each of the above six datasets, we randomly split the
dataset into training/development/testing, following the dis-
tribution of previous studies (Gupta et al. 2018; Patro et al.
2018). None of the data from the training, development, or

testing sets are observed to be the same. The trained models
are tuned based on the development dataset. For testing, we
combined all the test data of the dataset into a common test
set, and use it to test every trained model.

4.3 Non-Paraphrase Datasets
As mentioned in Section 3.4, we combined non-paraphrased
datasets with the paraphrased versions and use them to train
separate models for evaluation. Similar to Section 4.2, for
Quora and SNLI, we used the non-duplicate question pairs
(from Quora) and the question pairs marked as neutral or
contradiction (from SNLI). This accounts for approximately
60% of the total paraphrase sentence pairs. We randomly
sampled this negative set and combined with the positive set
(paraphrased sentences) for training. The sample size of the
negative set is the same as the positive set that is used for
training the paraphrase datasets (positive set).

For the other datasets, we generate the non-paraphrase
datasets (negative set) by randomly selecting two pairs of
original-paraphrase sentences and exchanging their para-
phrase sentences. We repeat this process until we have the
same size of (positive set) used to train each model.

4.4 Metrics and Baselines
We categorize metrics for measuring similarity (lexical, se-
mantic, and structural) and diversity. We note that there is
a tension between similarity/diversity measures and that no
single solution is the winner in all aspects (i.e., they are
closely dependent on one another).

Lexical Similarity BLEU (Papineni et al. 2002): This met-
ric quantifies the lexical similarity of the generated para-
phrases to the human references, by counting the common n-
grams. A low BLEU score indicates that the generated para-
phrase does not closely resemble the human-written ground-
truth paraphrase. However, the BLEU score may not per-
fectly represent semantic similarity, as “autumn leaves” and
“fall foliage” will get a low BLEU score, given the former
as a reference. We still use this metric due to its popularity.

Semantic Similarity Embedding Similarity: This metric
measures the word embedding differences between the gen-
erated and the ground-truth paraphrase sentences. Following
the work of (Xu et al. 2017), we also use average, extreme,
and greedy (A/E/G) embedding differences.
METEOR (Denkowski and Lavie 2014): This metric mea-
sures the alignment between the generated and the ground-
truth paraphrase sentences by exact, stem, synonym, and
paraphrase matches between words and phrases.

A high embedding similarity score in (A/E/G) and a high
METEOR score indicate that the generated paraphrases have
similar meaning when compared with the original sentence.

Structural Similarity Parse Tree Similarity: We follow
(Iyyer et al. 2018) in calculating the top two levels of parse
tree similarity among the generated paraphrases.
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Diversity (among generated paraphrases) Dist-n (Li et al.
2015): This metric measures the number of distinct n-grams
within the set of generated paraphrases, denoted as Dist-n.
Following previous studies (Xu et al. 2018; 2017), we use
Dist-1, 2, and 3. mBLEU (Fan et al. 2018): This metric com-
putes the dissimilarity of BLEU scores within the set of gen-
erated paraphrases. For example, each generated paraphrase
will be compared with other generated paraphrases in terms
of BLEU scores to compute an average BLEU score.

A high Dist-1/2/3 score and a low mBLEU score indi-
cate that the generated paraphrases are diverse among them-
selves.

Baselines We evaluate six different models in which each
of them is trained with six different datasets as described in
Sections 4.2 and 4.3. These models are Seq2Seq (with at-
tention and beam search), state-of-the-art model (Gupta et
al. 2018), and two of our models (one trained with positive
paraphrases only, and the other with both positive and neg-
ative paraphrases). We also incorporated a history module
that takes into consideration the previous generated para-
phrases, which are concatenated with the original input sen-
tence in the encoder, in Seq2Seq, and (Gupta et al. 2018)
for additional comparison. All models are configured con-
sistently to produce the top eight generated paraphrases 2.
Eight generated paraphrases are chosen for all models for
fair comparison. We compare eight generated paraphrases as
our model consists of lexical, structural, and history proper-
ties, and we enumerate and consider all possibilities among
the lexical, structural and history choices, while maintaining
the semantics.

4.5 User Study
We sent an online advertisement to all graduate students
from a university, and 21 of them participated in our study.
The users were given a set of 20 randomly selected original
sentences, together with their eight generated paraphrases,
from the best of Seq2Seq and (Gupta et al. ’18), includ-
ing the ones with the history module, Ourspos, and Oursall
models (having the highest semantics similarity). The users
were required to choose the set of paraphrases that illustrates
the highest semantic similarity and diversity when compared
with the original sentence.

5 Results
5.1 Quantitative Analysis
Table 1 shows the quantitative evaluation of the different
models. The first and the second columns show the different
models used for evaluation and their lexical similarity, re-
spectively. Semantic similarity scores are shown in the third
and the fourth columns while structural similarity is shown
in the fifth column. Diversity scores are shown in the sixth
and the seventh columns. The lexical and semantic similar-
ity metrics are compared against the ground-truth paraphrase

2This covers eight combinations of three binary conditions for
with and without 1) generation history, 2) lexical debiasing, and 3)
syntax debiasing

sentences, while the structural similarity and diversity met-
rics are compared among the generated paraphrases.

In terms of diversity, our models perform better when
trained with Wikipedia and Quora datasets, using both posi-
tive paraphrase sentence pairs (Ourspos) and combined posi-
tive and negative paraphrase sentence pairs (Oursall) respec-
tively. We note that the diversity scores (Dist-n and mBLEU)
of our models outperform both SOTA and Seq2Seq mod-
els. Specifically, Oursall (Quora), our best model in terms of
diversity, surpassed the best SOTA (Gupta et al. ’18 (Wikipedia))
and Seq2Seq (Seq2Seq (SNLI)) models with mBLEU scores of
20.88 and 20.36, respectively. We also observed that adding
the history module in Seq2Seq and (Gupta et al. 2018) does
not help in enhancing their diversity.

For structural similarity, although Seq2Seq (Microsoft) has the
lowest parse tree similarity among all the generated para-
phrases (i.e., 0.39), we note that, on average, Seq2Seq has
the highest mean parse tree similarity score, followed by
(Gupta et al. ’18), Ourspos, and Oursall. We also observe that
Seq2Seq (Microsoft), despite having the lowest structural simi-
larity score, has the lowest semantic similarity scores.

There is a common pattern that all models trained ei-
ther with the Combined or MSCOCO dataset perform bet-
ter in terms of semantic (Embeddings and METEOR) and
lexical (BLEU) similarity. We believe this is due to its
larger dataset size. When comparing both semantic similar-
ity and diversity, i.e., models trained with the Combined or
MSCOCO dataset, our model, Oursall, has the best Dist-n
and mBLEU scores, outperforming Seq2Seq, (Gupta et al.
’18) and Ourspos by 0.7, 8.73 and 8.33, respectively. We fur-
ther note that for the Seq2Seq model, its semantic similarity
scores are much lower than Oursall, and for (Gupta et al. ’18)
and Ourspos, they have similar scores.

Overall, our best model, Oursall (MSCOCO), when compared
to all other models, including SOTA, has the highest seman-
tic similarity with the ground truth, and yet among its set of
eight generated paraphrases, they show the highest diversity.
In addition, on average, Oursall has the smallest structural
similarity score among its generated paraphrases.

5.2 Qualitative Analysis
In Table 3, we report the user study results. The first column
shows the different types of models that generate the para-
phrases, and the second and third columns show the percent-
age of users who select the set of generated paraphrases that
best describe the highest semantic similarity and diversity
when compared to the original sentence. A majority of the
users selected Oursall as the best model, followed by Ourspos,
Gupta et al. ’18history, Seq2Seqhistory, Seq2Seq and Gupta et
al. ’18.

Table 2 shows the generated paraphrases of each model
that output the highest diversity (mBLEU) score. The first
two rows show the original sentence and the ground-truth
paraphrase, and the first column displays the different types
of models used. The second column lists the generated para-
phrases. Following previous studies (Gupta et al. 2018), we
list only the top three generated paraphrases. We observe
that for the generated paraphrases of Seq2Seq (SNLI), Gupta
et al. ’18 (Wikipedia), Seq2Seq (Quora history), Gupta et al. ’18 (Mi-
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Table 1: Quantitative evaluation of generated paraphrases. Our best models, Ourspos and Oursall, outperformed other baseline
models, including SOTA, in terms of diversity (Dist-1/2/3 and mBLEU). Specifically, the training of negative paraphrase sen-
tence pairs, which we introduced in our model (Oursall (Quora)) outperformed SOTA (Gupta et al. ’18 (Wikipedia)) and Seq2Seq
(Seq2Seq (SNLI)) by margins of 20.88 and 20.36, respectively, in the mBLEU score. Comparisons in both semantics and diver-
sity also reveal consistent outperformance vs. SOTA and Seq2Seq in terms of generating paraphrases with high semantic and
diversity scores.

Lexical Sim Semantic Sim Structural Sim Diversity
Model BLEU Embeddings METEOR Parse Tree Dist-1/2/3 mBLEU

(A/E/G) Sim
Seq2Seq (Quora) 1.58 .78/.84/.41 3.99 0.86 .0009/.009/.02 60.09

Seq2Seq (Microsoft) 0.03 .75/.78/.47 2.09 0.39 .00004/.0002/.0007 65.95
Seq2Seq (SNLI) 3.36 .85/.89/.47 8.92 0.78 .0007/.006/.01 54.67

Seq2Seq (MSCOCO) 5.96 .88/.91/.50 11.76 0.69 .0004/.002/.007 55.92
Seq2Seq (Wikipedia) 3.73 .82/.87/.43 7.47 0.72 .001/.03/.09 61.19
Seq2Seq (Combined) 5.66 .88/.90/.52 11.78 0.71 .0003/.002/.006 59.07

Gupta et al. ’18 (Quora) 6.49 .85/.88/.56 13.36 0.47 .001/.07/.24 62.28
Gupta et al. ’18 (Microsoft) 2.28 .84/.86/.48 8.85 0.67 .0008/.03/.12 74.51

Gupta et al. ’18 (SNLI) 33.77 .94/.95/.80 30.24 0.62 .001/.08/.26 57.41
Gupta et al. ’18 (MSCOCO) 44.86 .95/.96/.87 35.87 0.76 .001/.07/.22 63.95
Gupta et al. ’18 (Wikipedia) 10.62 .87/.89/.65 16.78 0.65 .001/.06/.22 55.19
Gupta et al. ’18 (Combined) 37.33 .96/.97/.89 37.21 0.78 .001/.07/.25 57.66

Seq2Seq (Quora history) 1.47 .76/.83/.4 4.00 0.63 .0006/.02/.07 60.67
Seq2Seq (Microsoft history) 0.01 .66/.62/.41 3.37 0.93 .0005/.005/.02 80.10

Seq2Seq (SNLI history) 6.13 .84/.87/.54 9.09 0.77 .002/.03/.09 71.57
Seq2Seq (MSCOCO history) 11.6 .89/.91/.61 16.02 0.80 .0007/.02/.08 70.52
Seq2Seq (Wikipedia history) 15.53 .85/.89/.51 15.99 0.83 .006/.07/.15 76.46
Seq2Seq (Combined history) 6.04 .88/.9/.57 12.66 0.84 .003/.06/.17 61.01

Gupta et al. ’18 (Quora history) 20.4 .88/.9/.62 18.80 0.75 .005/.10/.24 61.7
Gupta et al. ’18 (Microsoft history) 2.82 .8/.87/.5 9.4 0.65 .001/.03/.09 61.28

Gupta et al. ’18 (SNLI history) 28.18 .89/.92/.66 21.67 0.81 .004/.09/.22 65.8
Gupta et al. ’18 (MSCOCO history) 23.1 .87/.89/.64 21.35 0.80 .006/.11/.23 65.07
Gupta et al. ’18 (Wikipedia history) 22.83 .88/.9/.66 21.90 0.83 .006/.10/.23 65.05
Gupta et al. ’18 (Combined history) 39.57 .94/.94/.81 30.6 0.90 .004/.10/.22 70.92

Ourspos (Quora) 4.45 .83/.88/.55 11.18 0.47 .0008/.04/.16 56.33
Ourspos (Microsoft) 1.80 .83/.86/.48 7.80 0.58 .0004/.02/.10 64.32

Ourspos (SNLI) 16.12 .93/.94/.78 28.28 0.58 .001/.08/.27 59.33
Ourspos (MSCOCO) 40.12 .95/.96/.86 35.91 0.78 .001/.06/.22 63.55
Ourspos (Wikipedia) 14.29 .88/.90/.65 17.91 0.65 .002/.09/.27 50.32
Ourspos (Combined) 22.72 .93/.93/.76 22.75 0.80 .0006/.03/.16 66.17

Oursall (Quora) 7.66 .85/.89/.60 13.06 0.44 .001/.08/.33 34.31
Oursall (Microsoft) 3.06 .85/.87/.50 9.63 0.59 .0008/.03/.15 64.83

Oursall (SNLI) 26.30 .90/.92/.76 25.78 0.56 .001/.06/.26 59.33
Oursall (MSCOCO) 43.22 .94/.95/.86 31.06 0.73 .001/.07/.25 55.22
Oursall (Wikipedia) 7.70 .85/.88/.59 12.45 0.63 .001/.06/.23 51.07
Oursall (Combined) 33.02 .95/.95/.85 33.26 0.84 .001/.05/.17 69.92
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Table 2: Examples of generated paraphrases of each model that outputs the highest diversity (mBLEU) score.
Original Sentence: what are some of the best ways to lose 5 pounds in 2 weeks ?
Ground Truth Paraphrase: what are some alternative ways to lose 5 pounds in 2 weeks ?
Model Generated Paraphrase

S1: there is a person in front of a painting of art .
Seq2Seq (SNLI) S2: there is a person in front of a painting of stairs .

S3: there is a person in the picture of a painting
S1: robinson are some unusual down to receive 5 manufactured in 2 weeks ?

Gupta et al. ’18 (Wikipedia) S2: robinson are some written period to get 5 manufactured in 2 players ?
S3: robinson are some better period to receive 5 manufactured in 3 players ?
S1: what are the good the to face 5 and self the ?

Seq2Seq (Quora history) S2: what are the of the to face 5 and self the ?
S3: what are the of the to get 5 and self the and time ?
S1: there are these UNK to UNK operating rates in recent years .

Gupta et al. ’18 (Microsoft history) S2: there are these UNK to UNK 2.7 losses in recent years .
S3: there are these UNK to UNK billion sales in 2 years .
S1: what are some big power to achieve 5 feet in 2 weeks ?

Ourspos (Wikipedia) S2: what are some on power to achieve 5 sauce in 2 weeks ?
S3: what are some on power to achieve 5 length in 2 weeks ?
S1: what are some benefits ways to lose 5 pounds in 2 weeks ?

Oursall (Quora) S2: what are some opinion ways to lose 5 pounds in 2 weeks ?
S3: what are some alternative ways to lose 5 pounds in 2 weeks ?

Table 3: User study result for a set of 20 original sentences
randomly sampled from the test dataset. Each of them under-
went inference to produce eight generated paraphrases from
the best models described in Section 4.5. The majority of the
users have chosen our model, Oursall, which illustrates the
highest semantics similarity and diversity among the gener-
ated paraphrase sentences from the 20 questions.

Model Semantic Similarity Diversity
Seq2Seq 9.09 % 11.81 %

Gupta et al. ’18 7.73 % 7.72 %
Seq2Seqhistory 15 % 8.63 %

Gupta et al. ’18history 15.45 % 9.55 %
Ourspos 19.54 % 25.45 %
Oursall 33.18 % 36.81 %

crosoft history), and Ourspos (Wikipedia), although they do not contain
the same paraphrases within the set, their semantic mean-
ings are different from the original sentence and its refer-
ence paraphrase. We further observe that the generated para-
phrases from Oursall (Quora) do not only contain different sen-
tences, but their semantic meanings are comparable to that
of the original sentence and the ground truth. In addition,
we note that the third generated paraphrase has the exact
sentence structure as the ground-truth paraphrase.

6 Conclusion
In this study, we analyze the challenges of using style trans-
fer to generate diverse paraphrases, and propose a novel con-
trolled latent vector z′, which enables the training of coun-
terfactual debiased instances.

We compared our approach to different baselines, in-
cluding the state-of-the-art, and our experiments show that
our proposed approach generates more diverse paraphrases

(having similar or higher semantics), both quantitatively and
qualitatively.
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