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Abstract

We introduce the task of automatic live commenting. Live
commenting, which is also called “video barrage”, is an
emerging feature on online video sites that allows real-time
comments from viewers to fly across the screen like bullets
or roll at the right side of the screen. The live comments
are a mixture of opinions for the video and the chit chats
with other comments. Automatic live commenting requires
Al agents to comprehend the videos and interact with human
viewers who also make the comments, so it is a good testbed
of an Al agent’s ability to deal with both dynamic vision
and language. In this work, we construct a large-scale live
comment dataset with 2,361 videos and 895,929 live com-
ments. Then, we introduce two neural models to generate live
comments based on the visual and textual contexts, which
achieve better performance than previous neural baselines
such as the sequence-to-sequence model. Finally, we provide
a retrieval-based evaluation protocol for automatic live com-
menting where the model is asked to sort a set of candidate
comments based on the log-likelihood score, and evaluated on
metrics such as mean-reciprocal-rank. Putting it all together,
we demonstrate the first “LiveBot”. The datasets and the
codes can be found at https://github.com/lancopku/livebot.

Introduction

The comments of videos bring many viewers fun and new
ideas. Unfortunately, on many occasions, the videos and the
comments are separated, forcing viewers to make a trade-
off between the two key elements. To address this problem,
some video sites provide a new feature: viewers can put
down the comments during watching videos, and the com-
ments will fly across the screen like bullets or roll at the right
side of the screen. We show an example of live comments in
Figure 2. The video is about drawing a girl, and the view-
ers share their watching experience and opinions with the
live comments, such as “simply hauntingly beautiful”. The
live comments make the video more interesting and appeal-
ing. Besides, live comments can also better engage viewers
and create a direct link among viewers, making their opin-
ions and responses more visible than the average comments
in the comment section. These features have a tremendously
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Figure 1: The relationship between vision and language in
different tasks.

positive effect on the number of users, video clicks, and us-
age duration.

Motivated by the advantages of live comments for the
videos, we propose a novel task: automatic live comment-
ing. The live comments are a mixture of the opinions for the
video and the chit chats with other comments, so the task
of living commenting requires Al agents to comprehend the
videos and interact with human viewers who also make the
comments. Therefore, it is a good testbed of an Al agent’s
ability to deal with both dynamic vision and language.

With the rapid progress at the intersection of vision and
language, there are some tasks to evaluate an AI’s ability
of dealing with both vision and language, including image
captioning (Donahue et al. 2017; Fang et al. 2015; Karpathy
and Fei-Fei 2017), video description (Rohrbach et al. 2015;
Venugopalan et al. 2015a; 2015b), visual question answer-
ing (Agrawal, Batra, and Parikh 2016; Antol et al. 2015),
and visual dialogue (Das et al. 2017). Live commenting is
different from all these tasks. Image captioning is to gener-
ate the textual description of an image, and video description
aims to assign a description for a video. Both the two tasks
only require the machine to see and understand the images
or the videos, rather than communicate with the human. Vi-
sual question answering and visual dialogue take a signifi-
cant step towards human-machine interaction. Given an im-
age, the machine should answer questions about the image
or conduct multiple rounds of a dialogue with the human.
Different from the two tasks, live commenting requires to



it's really pretty
its a girl

., Wouuuuu it's really Prettyyyy

& $ 2
So cool Thank you

M simply hauntingly beautiful

Figure 2: An example of live comments from a video streaming website ViKi.

understand the videos and share the opinions or watching
experiences, which is a more challenging task.

A unique challenge of automatic live commenting is the
complex dependency between the comments and the videos.
First, the live comments are related to both the videos and
the surrounding comments, and the surrounding comments
also depend on the videos. We summarize the comparison
of the dependency between live commenting and other tasks
in Figure 1. Second, the live comments are not only condi-
tioned on the corresponding frames that they appear on but
also the surrounding frames, because the viewers may com-
ment on either the upcoming video streaming! or the past.
More specifically, we formulate the live commenting task as:
given a video V, one frame in the video f, the time-stamp ¢
of the frame, and the surrounding comments C' (if any) and
frames I at around the time-stamp, the machine should make
a comment relevant to the clips or the other comments near
the frame f.

In this work, we build a “LiveBot” to make live com-
ments for the videos. We construct a large-scale live com-
ment dataset with 2,361 videos and 895,929 comments from
a popular Chinese video streaming website called Bilibili.
In order to model the complex dependency described above,
we introduce two neural approaches to generate comments.
We also provide a retrieval-based evaluation protocol for live
commenting where the model is asked to sort a set of can-
didate answers based on the log-likelihood score, and evalu-
ated on metrics such as mean-reciprocal-rank. Experimental
results show that our model can achieve better performance
than the previous neural baselines in both automatic evalua-
tion and human evaluation.

The contributions of the paper are as follow:

To the best of our knowledge, we are the first to propose
the task of automatic live commenting for videos.

We construct a large-scale live comment dataset with
2,361 videos and 895,929 comments, so that the data-
driven approaches are possible for this task.

We introduce two neural models to jointly encode the vi-
sual content and the textual content, which achieve better

"For example, some viewers will turn back the videos and put
down the warning of upcoming surprising scenes.
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performance than the previous neural baselines such as
the sequence-to-sequence model.

We provide a retrieval-based evaluation protocol for live
commenting where the model is asked to sort a set of can-
didate answers and evaluated on metrics such as mean-
reciprocal-rank.

The Live Comment Dataset

In this section, we introduce our proposed Live Comment
Dataset. We first describe how we collect the data and split
the dataset. Then we analyze the properties of live com-
ments.

Collection of Videos and Live Comments

Here, we describe the Live Comment Dataset. The videos
are collected from a popular Chinese video streaming web-
site called Bilibili. In order to collect the representative
videos, we obtain the top representative queries from the
search engine, and crawl the top 10 pages of the video
search results. The queries cover 19 categories, including
pets, sports, animation, food, entertainment, technology and
more. We remove the duplicate and short videos, and filter
the videos with low quality or few live comments to main-
tain the data quality. As a result, we have 2,361 videos of
high quality in total.

On the video website, the live comments are naturally
paired with the videos. For each video, we collect all the live
comments appeared in the videos. We also crawl the time-
stamps when the comments appear, so that we can determine
the background (surrounding frames and comments) of the
given comments. We tokenize all comments with the popu-
lar python package Jieba. As a result, we have 895,929 live
comments paired with the videos and the time-stamps. We
also download the audio channels of the videos. We find it
intractable to align the segment of audio with the comments.
Therefore, we do not segment the audio, and reserve the en-
tire audio for the videos.

Table 3 shows an example of our data. The pictures above
are three selected frames to demonstrate a video about feed-
ing cats. The table below includes several selected live com-
ments with the corresponding time-stamps. It shows that the
live comments are related to the frames where the comments



(a) 0:48

(b) 1:52

(c) 3:41

Time Stamp Comments
0:48 P FiBED (Is the orange cat short leg?)
1:06 FRAASEA R 3 (Simply can’t stop)
1:09 R 4F 7] 22180 (Oh so cute)
1:52 KX 2%, KEF (OMG, so many kittens, what a paradise!)
1:56 X222 FUH (So many kittens!)
2:39 PAEAE AT 2 R 1H AT (I am wondering whether the catmint works for the tiger.)
2:41 JEELfTNS 2 R 78 F (Catmint also works for the tiger.)
3:41 TETSFANANSE (The cat lives even better than me)
3:43 PN IESK B — L T & (It's so cute that two heads are together)

Figure 3: A data example of a video paired with selected live comments in the Live Comment Dataset. Above are three selected
frames from the videos to demonstrate the content. Below is several selected live comments paired with the time stamps when

the comments appear on the screen.

appear. For example, the video describes an orange cat fed
with the catmint at 0:48, while the live comment at the same
frame is asking “is the orange cat short leg?”. The com-
ment is also related to the surrounding frames. For example,
the video introduces three cats playing on the floor at 1:52,
while the live comment at 1:56 is saying “So many kittens!”.
Moreover, the comment is related to the surrounding com-
ments. For example, the comment at 2:39 asks “whether the
catmint works for the tiger”, and the comment at 2:41 re-
sponds that “catmint also works for the tiger”.

Dataset Split

To split the dataset into training, development and testing
sets, we separate the live comments according to the corre-
sponding videos. The comments from the same videos will
not appear solely in the training or testing set to avoid over-
fitting. We split the data into 2,161, 100 and 100 videos in
the training, testing and development sets, respectively. Fi-
nally, the numbers of live comments are 818,905, 42,405,
and 34,609 in the training, testing, development sets. Table 1
presents some statistics for each part of the dataset.

Data Statistics

Table 2 lists the statistics and comparison among dif-
ferent datasets and tasks. We will release more data in
the future. Our Bilibili dataset is among the large-scale
dataset in terms of videos (2,361) and sentences (895,929).
YouCook (Das et al. 2013), TACos-M-L (Rohrbach et al.
2014) are two popular action description datasets, which fo-
cus on the cooking domain. M-VAD (Torabi et al. 2015) and
MPII-MD (Rohrbach et al. 2015) are the movie description
datasets, while MovieQA (Tapaswi et al. 2016) is a popular
movie question answering dataset. MSVD (Chen and Dolan

6812

Statistic Train Test Dev Total
#Video 2,161 100 100 2,361
#Comment | 818,905 42,405 34,609 895,929
#Word 4,418,601 248,399 193,246 4,860,246
Avg. Words 5.39 5.85 5.58 5.42
Duration (hrs 103.81 5.02 5.01 113.84

Table 1: Statistics information on the training, testing, and
development sets.

2011) is a dataset for the task of paraphrasing, and MSR-
VTT (Xu et al. 2016) is for video captioning. A major limi-
tation for these datasets is limited domains (i.e. cooking and
movie) and small size of data (in terms of videos and sen-
tences). Compared with these datasets, our Bilibili dataset
is derived from a wide variety of video categories (19 cate-
gories), which can benefit the generalization capability of
model learning. In addition, the previous datasets are de-
signed for the tasks of description, question answering, para-
phrasing, and captioning, where the patterns between the
videos and the language are clear and obvious. Our dataset
is for the task of commenting, where the patterns and re-
lationship between the videos and the language are latent
and difficult to learn. In summary, our BiliBili dataset repre-
sents one of the most comprehensive, diverse, and complex
datasets for video-to-text learning.

Analysis of Live Comments

Here, we analyze the live comments in our dataset. We
demonstrate some properties of the live comments.

Distribution of Lengths Figure 4 shows the distribution
of the lengths for live comments in the training set. We



Dataset Task #Video  #Sentence
YouCook Action Description 88 2,668
TACos-M-L  Action Description 185 52,593
M-VAD Movie Description 92 52,593
MPII-MD Movie Description 94 68,375
MovieQA Question Answering 140 150,000
MSVD Paraphrasing 1,970 70,028
MSR-VTT Captioning 7,180 200,000
Bilibili Commenting 2,361 895,929

Table 2: Comparison of different video-to-text datasets.

Interval | Edit Distance TF-IDF Human
0-1s 11.74 0.048 4.3
1-3s 11.79 0.033 4.1
3-5s 12.05 0.028 3.9
5-10s 12.42 0.025 3.1
>10s 12.26 0.015 2.2

Table 3: The average similarity between two comments at
different intervals (Edit distance: lower is more similar; Tf-
idf: higher is more similar; Human: higher is more similar).

can see that most live comments consist of no more than 5
words or 10 characters. One reason is that 5 Chinese words
or 10 Chinese characters have contained enough informa-
tion to communicate with others. The other reason is that
the viewers often make the live comments during watching
the videos, so they prefer to make short and quick comments
rather than spend much time making long and detailed com-
ments.

Correlation between Neighboring Comments We also
validate the correlation between the neighboring comments.
For each comment, we select its 20 neighboring comments
to form 20 comment pairs. Then, we calculate the sentence
similarities of these pairs in terms of three metrics, which are
edit distance, tf-idf, and human scoring. For human scoring,
we ask three annotators to score the semantic relevance be-
tween two comments, and the score ranges from 1 to 5. We
group the comment pairs according to their time intervals:
0-1s, 1-3s, 3-5s, 5-10s, and more than 10s. We take the av-
erage of the scores of all comment pairs, and the results are
summarized in Table 3. It shows that the comments with a
larger interval are less similar both literally and semantically.
Therefore, it concludes that the neighboring comments have
higher correlation than the non-neighboring ones.

Approaches to Live Commenting

A challenge of making live comments is the complex depen-
dency between the comments and the videos. The comments
are related to the surrounding comments and video clips, and
the surrounding comments also rely on the videos. To model
this dependency, we introduce two approaches to generate
the comments based on the visual contexts (surrounding
frames) and the textual contexts (surrounding comments).
The two approaches are based on two popular architectures
for text generation: recurrent neural network (RNN) and
transformer. We denote two approaches as Fusional RNN
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Figure 4: Distribution of lengths for comments in terms of
both word-level and character-level.

Model and Unified Transformer Model, respectively.

Problem Formulation

Here, we provide the problem formulation and some nota-
tions. Given a video V/, a time-stamp ¢, and the surrounding
comments C' near the time-stamp (if any), the model should
generate a comment y relevant to the clips or the other com-
ments near the time-stamp. Since the video is often long
and there are sometimes many comments, it is impossible
to take the whole videos and all the comments as input.
Therefore, we reserve the nearest m frames? and n com-
ments from the time-stamp ¢. We denote the m frames as
I={nL,1I,--,I,}, and we concatenate the n comments
as C = {C1,Cy,- -+ ,Cy}. The model aims at generating a
comment y = {y1,ya2, - ,Yx}, where k is the number of
words in the sentence.

Model I: Fusional RNN Model

Figure 5 shows the architecture of the Fusional RNN model.
The model is composed of three parts: a video encoder, a
text encoder, and a comment decoder. The video encoder en-
codes m consecutive frames with an LSTM layer on the top
of the CNN layer, and the text encoder encodes m surround-
ing live comments into the vectors with an LSTM layer. Fi-
nally, the comment decoder generates the live comment.

Video Encoder In the video encoding part, each frame I;
is first encoded into a vector v; by a convolution layer. We
then use an LSTM layer to encode all the frame vectors into
their hidden states h;:

v; = CNN(I;) (1)
hi = LSTM(’U“ hifl) (2)

Text Encoder In the comment encoding part, each sur-

rounding comment C; is first encoded into a series of word-

level representations, using a word-level LSTM layer:
rl = LSTM(C,rI™h)

PRE

3)

We use the last hidden state riL(i) as the representation for
C; denoted as ;. Then we use a sentence-level LSTM layer

2We set the interval between frames as 1 second.
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Figure 5: An illustration of Fusional RNN Model.

with the attention mechanism to encode all the comments
into sentence-level representation g;:

gi = LSTM (4, 9i—1) 4)
gi = Attention(g;, h) (5)
With the help of attention, the comment representation con-

tains the information from videos.

Comment Decoder The model generates the comment
based on both the surrounding comments and frames. There-
fore, the probability of generating a sentence is defined as:

T

p(y()v 7yT|h7g) = Hp(yt|y07 o Yt—1, h7g)
t=1

(6)

More specifically, the probability distribution of word w; is
calculated as follows,

8; = LSTM (yi—1,5i-1) @)
s; = Attention(s;, h,g) ®)
p(w;|wo, ..., wi—1, h) = Softmaz(Ws;) O]

Model II: Unified Transformer Model

Different from the hierarchical structure of Fusional RNN
model, the unified transformer model uses a linear structure
to capture the dependency between the comments and the
videos. Similar to Fusional RNN model, the unified trans-
former model consists of three parts: the video encoder, the
text encoder, and the comment decoder. Figure 6 shows the
architecture of the unified transformer model. In this part, we
omit the details of the inner computation of the transformer
block, and refer the readers to the related work (Vaswani et
al. 2017).

Video Encoder Similar to Fusional RNN model, the video
encoder first encodes each frame [; into a vector v; with a
convolution layer. Then, it uses a transformer layer to encode
all the frame vectors into the final representation h;:

h; = Transformer(v;,v)

(10)
(11)

Inside the transformer, each frame’s representation v; at-
tends to a collection of the other representations v
{Ulv Vo, 7UTYL}~
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Figure 6: An illustration of Unified Transformer Model.

Text Encoder Different from Fusion RNN model, we
concatenate the comments into a word sequence e
{e1,ea, -+ ,er} as the input of text encoder, so that each
words can contribute to the self-attention component di-
rectly. The representation of each words in the comments
can be written as:

gi = Transformer(e;, e, h) (12)

Inside the text encoder, there are two multi-head attention
components, where the first one attends to the text input e
and the second attends to the outputs h of video encoder.

Comment Decoder We use a transformer layer to gener-
ate the live comment. The probability of generating a sen-
tence is defined as:

T

p(yOa cey yT|hag) = Hp(wt|w0; ey We—1, hvg)
t=1

13)

More specifically, the probability distribution of word y; is
calculated as:

s; = Transformer(y;,y,h,g) (14)

p(yi|y07"'7yi*17hag) = Softmax(Wsl) (15)

Inside the comment decoder, there are three multi-head at-
tention components, where the first one attends to the com-
ment input y and the last two attend to the outputs of video
encoder h and text encoder g, respectively.

Evaluation Metrics

The comments can be various for a video, and it is in-
tractable to find out all the possible references to be com-
pared with the model outputs. Therefore, most of the
reference-based metrics for generation tasks like BLEU and
ROUGE are not appropriate to evaluate the comments.



Model #I #C | Recall@l Recall@5 Recall@10 MR MRR

S2S-1 5 0 4.69 19.93 36.46 21.60 0.1451

Video Only SZS.—IC 5 0 5.49 20.71 38.35 20.15 0.1556
Fusional RNN 5 0 10.05 31.15 48.12 19.53 0.2217

Unified Transformer | 5 0 11.40 32.62 50.47 18.12 0.2311

S2S-C 0 5 9.12 28.05 44.26 19.76  0.2013

Comment Only SZS.-IC 0 5 10.45 3091 46.84 18.06 0.2194
Fusional RNN 0 5 13.15 34.71 52.10 17.51 0.2487

Unified Transformer | 0 5 13.95 34.57 51.57 17.01 0.2513

S2S-1C 5 5 12.89 33.78 50.29 17.05 0.2454

Both Fusional RNN 5 5 17.25 37.96 56.10 16.14 0.2710
Unified Transformer | 5 5 18.01 38.12 55.78 16.01 0.2753

Table 4: The performance of the baseline models and the proposed models. (#1: the number of input frames used at the testing
stage; #C: the number of input comments used at the testing stage; Recall@k, MRR: higher is better; MR: lower is better)

Model Fluency Relevance Correctness
S2S-IC 4.07 2.23 291
Fusion 4.45 2.95 3.34
Transformer 4.31 3.07 3.45
Human 4.82 3.31 4.11

Table 5: Results of human evaluation metrics on the test set
(higher is better). All these models are trained and tested
give both videos and surrounding comments.

Inspired by the evaluation methods of dialogue mod-
els (Das et al. 2017), we formulate the evaluation as a rank-
ing problem. The model is asked to sort a set of candi-
date comments based on the log-likelihood score. Since the
model generates the comments with the highest scores, it
is reasonable to discriminate a good model according to its
ability to rank the correct comments on the top of the candi-
dates. The candidate comment set consists of the following
parts:

e Correct: The ground-truth comments of the correspond-

ing videos provided by the human.

Plausible: The 50 most similar comments to the title of
the video. We use the title of the video as the query to re-
trieval the comments that appear in the training set based
on the cosine similarity of their tf-idf values. We select
the top 30 comments that are not the correct comments as
the plausible comments.

Popular: The 20 most popular comments from the
dataset. We count the frequency of each comment in
the training set, and select the 20 most frequent com-
ments to form the popular comment set. The popular com-
ments are the general and meaningless comments, such
as “2333”, “Great”, “hahahaha”, and “Leave a comment”.
These comments are dull and do not carry any informa-
tion, so they are regarded as incorrect comments.

Random: After selecting the correct, plausible, and pop-
ular comments, we fill the candidate set with randomly
selected comments from the training set so that there are
100 unique comments in the candidate set.

Following the previous work (Das et al. 2017), We mea-
sure the rank in terms of the following metrics: Recall@k
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(the proportion of human comments found in the top-k rec-
ommendations), Mean Rank (the mean rank of the human
comments), Mean Reciprocal Rank (the mean reciprocal
rank of the human comments).

Experiments

Settings

For both models, the vocabulary is limited to the 30,000
most common words in the training dataset. We use a shared
embedding between encoder and decoder and set the word
embedding size to 512. For the encoding CNN, we use a
pretrained resnet with 18 layers provided by the Pytorch
package. For both models, the batch size is 64, and the
hidden dimension is 512. We use the Adam (Kingma and
Ba 2014) optimization method to train our models. For the
hyper-parameters of Adam optimizer, we set the learning
rate a = 0.0003, two momentum parameters 5; = 0.9 and
B2 = 0.999 respectively, and € = 1 x 1078,

Baselines

S2S-I (Vinyals et al. 2015) applies the CNN to encode the
frames, based on which the decoder generates the target
live comment. This model only uses the video as the input.

S2S-C (Sutskever, Vinyals, and Le 2014) applies an
LSTM to make use of the surrounding comments, based
on which the decoder generates the comments. This
model can be regarded as the traditional sequence-to-
sequence model, which only uses the surrounding com-
ments as input.

S2S-IC is similar to (Venugopalan et al. 2015a) which
makes use of both the visual and textual information. In
our implementation, the model has two encoders to en-
code the images and the comments respectively. Then, we
concatenate the outputs of two encoders to decode the out-
put comments with an LSTM decoder.

Results

At the training stage, we train S2S-IC, Fusional RNN, and
Unified Transformer with both videos and comments. S2S-
I is trained with only videos, while S2S-C is trained with
only comments. At the testing stage, we evaluate these mod-
els under three settings: video only, comment only, and both



video and comment. Video only means that the model only
uses the images as inputs (5 nearest frames), which simu-
lates the case when no surrounding comment is available.
Comment only means that the model only takes input of the
surrounding comments (5 nearest comments), which simu-
lates the case when the video is of low quality. Both de-
notes the case when both the videos and the surrounding
comments are available for the models (5 nearest frames and
comments).

Table 4 summarizes the results of the baseline models and
the proposed models under three settings. It shows that our
proposed models outperform the baseline models in terms
of all evaluation metrics under all settings, which demon-
strates the effectiveness of our proposed models. Moreover,
it concludes that given both videos and comments the same
models can achieve better performance than those with only
videos or comments. Finally, the models with only com-
ments as input outperform the models with only videos as
input, mainly because the surrounding comments can pro-
vide more direct information for making the next comments.

Human Evaluation

The retrieval evaluation protocol evaluates the ability to dis-
criminate the good comments and the bad comments. We
also would like to evaluate the ability to generate human-
like comments. However, the existing generative evaluation
metrics, such as BLEU and ROUGE, are not reliable, be-
cause the reference comments can be various. Therefore, we
conduct human evaluation to evaluate the outputs.

We evaluate the generated comments in three aspects:
Fluency is designed to measure whether the generated live
comments are fluent setting aside the relevance to videos.
Relevance is designed to measure the relevance between the
generated live comments and the videos. Correctness is de-
signed to synthetically measure the confidence that the gen-
erated live comments are made by humans in the context of
the video. For all of the above three aspects, we stipulate the
score to be an integer in {1,2,3,4,5}. The higher the bet-
ter. The scores are evaluated by three human annotators and
finally we take the average of three raters as the final result.

We compare our Fusional RNN model and Unified Trans-
former model with the strong baseline model S2S-IC. All
these models are trained and tested give both videos and
surrounding comments. As shown in Table 5, our models
achieve higher scores over the baseline model in all three
degrees, which demonstrates the effectiveness of the pro-
posed models. We also evaluate the reference comments in
the test set, which are generated by the human. It shows that
the comments from human achieve high fluency and cor-
rectness scores. However, the relevance score is lower than
the fluency and correctness, mainly because the comments
are not always relevant to the videos, but with the surround-
ing comments. According to the table, it also concludes that
the comments from unified transformer are almost near to
those of real-world live comments. We use Spearman’s Rank
correlation coefficients to evaluate the agreement among the
raters. The coefficients between any two raters are all near
0.6 and at an average of 0.63. These high coefficients show
that our human evaluation scores are consistent and credible.
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Related Work

Inspired by the great success achieved by the sequence-
to-sequence learning framework in machine translation
(Sutskever, Vinyals, and Le 2014; Cho et al. 2014; Bah-
danau, Cho, and Bengio 2014), Vinyals et al. (2015) and
Mao et al. (2014) proposed to use a deep convolutional neu-
ral network to encode the image and a recurrent neural net-
work to generate the image captions. Xu et al. (2015) further
proposed to apply attention mechanism to focus on certain
parts of the image when decoding. Using CNN to encode the
image while using RNN to decode the description is natural
and effective when generating textual descriptions.

One task that is similar to live comment generation is im-
age caption generation, which is an area that has been stud-
ied for a long time. Farhadi et al. (2010) tried to generate
descriptions of an image by retrieving from a big sentence
pool. Kulkarni et al. (2011) proposed to generate descrip-
tions based on the parsing result of the image with a sim-
ple language model. These systems are often applied in a
pipeline fashion, and the generated description is not cre-
ative. More recent work is to use stepwise merging network
to improve the performance (Liu et al. 2018).

Another task which is similar to this work is video cap-
tion generation. Venugopalan et al. (2015a) proposed to use
CNN to extract image features, and use LSTM to encode
them and decode a sentence. Similar models(Shetty and
Laaksonen 2016; Jin et al. 2016; Ramanishka et al. 2016;
Dong et al. 2016; Pasunuru and Bansal 2017; Shen et al.
2017) are also proposed to handle the task of video caption
generation. Das et al. (2017) introduce the task of Visual
Dialog, which requires an Al agent to answer a question
about an image when given the image and a dialogue history.
Moreover, we are also inspired by the recent related work of
natural language generation models with the text inputs (Ma
et al. 2018; Xu et al. 2018).

Conclusions

We propose the tasks of automatic live commenting, and
construct a large-scale live comment dataset. We also in-
troduce two neural models to generate the comments which
jointly encode the visual contexts and textual contexts. Ex-
perimental results show that our models can achieve better
performance than the previous neural baselines.
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