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Abstract

Short text matching often faces the challenges that there are
great word mismatch and expression diversity between the
two texts, which would be further aggravated in languages
like Chinese where there is no natural space to segment words
explicitly. In this paper, we propose a novel lattice based
CNN model (LCNs) to utilize multi-granularity information
inherent in the word lattice while maintaining strong ability
to deal with the introduced noisy information for matching
based question answering in Chinese. We conduct extensive
experiments on both document based question answering and
knowledge based question answering tasks, and experimental
results show that the LCNs models can significantly outper-
form the state-of-the-art matching models and strong base-
lines by taking advantages of better ability to distill rich but
discriminative information from the word lattice input.

Introduction

Short text matching plays a critical role in many natural
language processing tasks, such as question answering, in-
formation retrieval, and so on. However, matching text se-
quences for Chinese or similar languages often suffers from
word segmentation, where there are often no perfect Chi-
nese word segmentation tools that suit every scenario. Text
matching usually requires to capture the relatedness between
two sequences in multiple granularities. For example, in Fig-
ure 1, the example phrase is generally tokenized as “China
— citizen — life — quality — high”, but when we plan to match
it with “Chinese — live — well”, it would be more helpful to
have the example segmented into “Chinese — livelihood —
live” than its common segmentation. !

Existing efforts use neural network models to improve
the matching based on the fact that distributed represen-
tations can generalize discrete word features in traditional
bag-of-words methods. And there are also works fusing
word level and character level information, which, to some
extent, could relieve the mismatch between different seg-
mentations, but these solutions still suffer from the orig-
inal word sequential structures. They usually depend on
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"For clarity, “Italic” are examples organised in Chinese Pinyin
followed by its translation in English, and “~” represents a separa-
tor between Chinese words.
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Figure 1: A word lattice for the phrase “Chinese people have
high quality of life.”
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an existing word tokenization, which has to make seg-
mentation choices at one time, e.g., “ZhongGuo”(China)
and “ZhongGuoRen”(Chinese) when processing “Zhong-
GuoRenMin”(Chinese people). And the blending just con-
ducts at one position in their frameworks.

Specific tasks such as question answering (QA) could
pose further challenges for short text matching. In docu-
ment based question answering (DBQA), the matching de-
gree is expected to reflect how likely a sentence can an-
swer a given question, where questions and candidate an-
swer sentences usually come from different sources, and
may exhibit significantly different styles or syntactic struc-
tures, e.g. queries in web search and sentences in web
pages. This could further aggravate the mismatch problems.
In knowledge based question answering (KBQA), one of
the key tasks is to match relational expressions in ques-
tions with knowledge base (KB) predicate phrases?, such as
“ZhuCeDi” (place of incorporation). Here the diversity be-
tween the two kinds of expressions is even more significant,
where there may be dozens of different verbal expressions
in natural language questions corresponding to only one KB
predicate phrase. Those expression problems make KBQA a
further tough task. Previous works (Yih, He, and Meek 2014;
Yih et al. 2015) adopt letter-trigrams for the diverse expres-
sions, which is similar to character level of Chinese. And the
lattices are combinations of words and characters, so with
lattices, we can utilize words information at the same time.

Recent advances have put efforts in modeling multi-

There are usually not enough training data to build a relation
extractor for each predicate in a KB, thus the task of KB predicate
identification is often formulated as a matching task, which is to se-
lect predicates that match the given questions from the candidates.



granularity information for matching. (Seo et al. 2016;
Wang, Hamza, and Florian 2017) blend words and charac-
ters to a simple sequence (in word level), and (Chen et al.
2018) utilize multiple convoluational kernel sizes to capture
different n-grams. But most characters in Chinese can be
seen as words on their own, so combining characters with
corresponding words directly may lose the meanings that
those characters can express alone. Because of the sequen-
tial inputs, they will either lose word level information when
conducting on character sequences or have to make segmen-
tation choices.

In this paper, we propose a multi-granularity method for
short text matching in Chinese question answering which
utilizes lattice based CNNS to extract sentence level features
over word lattice. Specifically, instead of relying on charac-
ter or word level sequences, LCNs take word lattices as in-
put, where every possible word and character will be treated
equally and have their own context so that they can interact
at every layer. For each word in each layer, LCNs can cap-
ture different context words in different granularity via pool-
ing methods. To the best of our knowledge, we are the first to
introduce word lattice into the text matching tasks. Because
of the similar IO structures to original CNNs and the high
efficiency, LCNs can be easily adapted to more scenarios
where flexible sentence representation modeling is required.

We evaluate our LCNs models on two question answering
tasks, document based question answering and knowledge
based question answering, both in Chinese. Experimental
results show that LCNs significantly outperform the state-
of-the-art matching methods and other competitive CNN's
baselines in both scenarios. We also find that LCNs can
better capture the multi-granularity information from plain
sentences, and, meanwhile, maintain better de-noising ca-
pability than vanilla graphic convolutional neural networks
thanks to its dynamic convolutional kernels and gated pool-
ing mechanism.

Lattice CNNs

Our Lattice CNNs framework is built upon the siamese ar-
chitecture (Bromley et al. 1994), one of the most successful
frameworks in text matching, which takes the word lattice
format of a pair of sentences as input, and outputs the match-
ing score.

Siamese Architecture

The siamese architecture and its variant have been widely
adopted in sentence matching (Mitra, Diaz, and Craswell
2017; Wang, Hamza, and Florian 2017) and matching based
question answering (Yu et al. 2014; Yih, He, and Meek 2014;
Yu et al. 2017), that has a symmetrical component to ex-
tract high level features from different input channels, which
share parameters and map inputs to the same vector space.
Then, the sentence representations are merged and com-
pared to output the similarities.

For our models, we use multi-layer CNNs for sentence
representation. Residual connections (He et al. 2016) are
used between convolutional layers to enrich features and
make it easier to train. Then, max-pooling summarizes
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the global features to get the sentence level representa-
tions, which are merged via element-wise multiplication.
The matching score is produced by a multi-layer perceptron
(MLP) with one hidden layer based on the merged vector.
The fusing and matching procedure is formulated as follows:

s = O'(WQ ReLU(Wl(fqu © fcan) + b?) + bg) (D

where f,,, and f.., are feature vectors of question and can-
didate (sentence or predicate) separately encoded by CNNss,
o is the sigmoid function, Wo, Wy, b, bT are parameters,
and © is element-wise multiplication. The training objective
is to minimize the binary cross-entropy loss, defined as:

L=— Z [yilog(si) + (1 —y;)log(1 — s;)]

i=1

)

where y; is the {0,1} label for the i, training pair.

Note that the CNNs in the sentence representation com-
ponent can be either original CNNs with sequence input or
lattice based CNNs with lattice input. Intuitively, in an orig-
inal CNN layer, several kernels scan every n-gram in a se-
quence and result in one feature vector, which can be seen
as the representation for the center word and will be fed into
the following layers. However, each word may have differ-
ent context words in different granularities in a lattice and
may be treated as the center in various kernel spans with
same length. Therefore, different from the original CNNs,
there could be several feature vectors produced for a given
word, which is the key challenge to apply the standard CNNs
directly to a lattice input.

For the example shown in Figure 2, the word “citizen” is
the center word of four text spans with length 3: “China -
citizen - life”, “China - citizen - alive”, “country - citizen -
life”, “country - citizen - alive”, so four feature vectors will
be produced for width-3 convolutional kernels for “citizen”.

Word Lattice

As shown in Figure 1, a word lattice is a directed graph
G = (V,E), where V represents a node set and E rep-
resents a edge set. For a sentence in Chinese, which is
a sequence of Chinese characters S = c¢y.,, all of its
possible substrings that can be considered as words are
treated as vertexes, i.e. V = {¢;;|ci;j is word}. Then,
all neighbor words are connected by directed edges accord-
ing to their positions in the original sentence, i.e. £ =
{G(Ci;j,Cj;}g)IV’L',j7 k s.t. Ci:js Ci:k € V}

Here, one of the key issues is how we decide a sequence
of characters can be considered as a word. We approach this
through an existing lookup vocabulary, which contains fre-
quent words in BaiduBaike®. Note that most Chinese char-
acters can be considered as words on their own, thus are in-
cluded in this vocabulary when they have been used as words
on their own in this corpus.

However, doing so will inevitably introduce noisy words
(e.g., “middle” in Figure 1) into word lattices, which will
be smoothed by pooling procedures in our model. And the
constructed graphs could be disconnected because of a few

*https://baike.baidu.com
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Figure 2: An illustration of our LCN-gated, when “people” is being considered as the center of convolutional spans.

out-of-vocabulary characters. Thus, we append (unk) labels
to replace those characters to connect the graph.

Obviously, word lattices are collections of characters and
all possible words. Therefore, it is not necessary to make ex-
plicit decisions regarding specific word segmentations, but
just embed all possible information into the lattice and take
them to the next CNN layers. The inherent graph structure of
a word lattice allows all possible words represented explic-
itly, no matter the overlapping and nesting cases, and all of
them can contribute directly to the sentence representations.

Lattice based CNN Layer

As we mentioned in previous section, we can not directly ap-
ply standard CNNss to take word lattice as input, since there
could be multiple feature vectors produced for a given word.
Inspired by previous lattice LSTM models(Su et al. 2017;
Zhang and Yang 2018), here we propose a lattice based CNN
layers to allow standard CNNs to work over word lattice in-
put. Specifically, we utilize pooling mechanisms to merge
the feature vectors produced by multiple CNN kernels over
different context compositions.

Formally, the output feature vector of a lattice CNN layer
with kernel size n at word w in a word lattice G = (V, E)
can be formulated as Eq 3 :

Fw = g{f(Wc(Uw1 et ’an) + bZ)|

Vi, w; €V, (wi,le) S E,w[%ir‘ = w} @)

where f is the activation function, v,,, is the input vector
corresponding to word w; in this layer, (Vyy, : ... : Vg, )
means the concatenation of these vectors, and W, b, are
parameters with size [m’, n x m], and [m/'], respectively. m
is the input dim and m/’ is the output dim. g is one of the
following pooling functions: max-pooling, ave-pooling, or
gated-pooling, which execute the element-wise maximum,
element-wise average, and the gated operation, respectively.
The gated operation can be formulated as:

Qlyenny O = softmax{ngvl +bg,...,ngvt+bg} 4
n

gated-pooling{vy, ..., v} = Zai xv; (5)
i=1

where vy, b, are parameters, and «; are gated weights nor-
malized by a softmax function. Intuitively, the gates repre-
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sent the importance of the n-gram contexts, and the weighted
sum can control the transmission of noisy context words. We
perform padding when necessary.

For example, in Figure 2, when we consider ‘“citizen”
as the center word, and the kernel size is 3, there will be
five words and four context compositions involved, as men-
tioned in the previous section, each marked in different col-
ors. Then, 3 kernels scan on all compositions and produce
four 3-dim feature vectors. The gated weights are computed
based on those vectors via a dense layer, which can reflect
the importance of each context compositions. The output
vector of the center word is their weighted sum, where noisy
contexts are expected to have lower weights to be smoothed.
This pooling over different contexts allows LCNs to work
over word lattice input.

Word lattice can be seen as directed graphs and mod-
eled by Directed Graph Convolutional networks (DGCs)
(Marcheggiani and Titov 2017), which use poolings on
neighboring vertexes that ignore the semantic structure of n-
grams. But to some situations, their formulations can be very
similar to ours (See Appendix* for derivation). For example,
if we set the kernel size in LCNs to 3, use linear activations
and suppose the pooling mode is average in both LCNs and
DGCs, at each word in each layer, the DGCs compute the
average of the first order neighbors together with the cen-
ter word, while the LCNs compute the average of the pre
and post words separately and add them to the center word.
Empirical results are exhibited in Experiments section.

Finally, given a sentence that has been constructed into a
word-lattice form, for each node in the lattice, an LCN layer
will produce one feature vector similar to original CNNs,
which makes it easier to stack multiple LCN layers to obtain
more abstract feature representations.

Experiments

Our experiments are designed to answer: (1) whether multi-
granularity information in word lattice helps in match-
ing based QA tasks, (2) whether LCNs capture the multi-
granularity information through lattice well, and (3) how to
balance the noisy and informative words introduced by word
lattice.

“https://github.com/Erutan-pku/LCN-for-Chinese-
QA/blob/master/paper_appendix.pdf



Datasets

We conduct experiments on two Chinese question answering
datasets from NLPCC-2016 evaluation task (Duan 2016).

DBQA is a document based question answering dataset.
There are 8.8k questions with 182k question-sentence pairs
for training and 6k questions with 123k question-sentence
pairs in the test set. In average, each question has 20.6 candi-
date sentences and 1.04 golden answers. The average length
for questions is 15.9 characters, and each candidate sentence
has averagely 38.4 characters. Both questions and sentences
are natural language sentences, possibly sharing more sim-
ilar word choices and expressions compared to the KBQA
case. But the candidate sentences are extracted from web
pages, and are often much longer than the questions, with
many irrelevant clauses.

KBRE is a knowledge based relation extraction dataset.
We follow the same preprocess as (Lai et al. 2017) to clean
the dataset’® and replace entity mentions in questions to a
special token. There are 14.3k questions with 273k question-
predicate pairs in the training set and 9.4k questions with
156k question-predicate pairs for testing. Each question con-
tains only one golden predicate. Each question averagely
has 18.1 candidate predicates and 8.1 characters in length,
while a KB predicate is only 3.4 characters long on average.
Note that a KB predicate is usually a concise phrase, with
quite different word choices compared to the natural lan-
guage questions, which poses different challenges to solve.

The vocabulary we use to construct word lattices contains
156k words, including 9.1k single character words. In av-
erage, each DBQA question contains 22.3 tokens (words or
characters) in its lattice, each DBQA candidate sentence has
55.8 tokens, each KBQA question has 10.7 tokens and each
KBQA predicate contains 5.1 tokens.

Evaluation Metrics

For both datasets, we follow the evaluation metrics used in
the original evaluation tasks (Duan 2016). For DBQA, P@1
(Precision@1), MAP (Mean Average Precision) and MRR
(Mean Reciprocal Rank) are adopted. For KBRE, since only
one golden candidate is labeled for each question, only P@1
and MRR are used.

Implementation Details

The word embeddings are trained on the Baidu Baike web-
pages with Google’s word2vector®, which are 300-dim and
fine tuned during training. In DBQA, we also follow pre-
vious works (Fu, Qiu, and Huang 2016; Xie 2017) to con-
catenate additional 1d-indicators with word vectors which
denote whether the words are concurrent in both questions
and candidate sentences. In each CNN layer, there are 256,
512, and 256 kernels with width 1, 2, and 3, respectively.
The size of the hidden layer for MLP is 1024. All activation
are ReLU, the dropout rate is 0.5, with a batch size of 64.
We optimize with adadelta (Zeiler 2012) with learning rate
= 1.0 and decay factor = 0.95. We only tune the number

> About 3% of the questions in the original dataset are removed
for they can not link to correct entities/relations due to label errors.
Shttps://code.google.com/archive/p/word2vec/
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of convolutional layers from [1, 2, 3] and fix other hyper-
parameters. We sample at most 10 negative sentences per
question in DBQA and 5 in KBRE. We implement our mod-
els in Keras’ with Tensorflow® backend.

Baselines

Our first set of baselines uses original CNNs with character
(CNN-char) or word inputs. For each sentence, two Chinese
word segmenters are used to obtain three different word se-
quences: jieba (CNN-jieba)’, and Stanford Chinese word
segmenter'’ in CTB (CNN-CTB) and PKU (CNN-PKU)
mode.

Our second set of baselines combines different word
segmentations. Specifically, we concatenate the sentence
embeddings from different segment results, which gives
four different word+word models: jieba+PKU, PKU+CTB,
CTB+jieba, and PKU+CTB+jieba.

Inspired by previous works (Seo et al. 2016; Wang,
Hamza, and Florian 2017), we also concatenate word and
character embeddings at the input level. Specially, when the
basic sequence is in word level, each word may be con-
structed by multiple characters through a pooling operation
(Word+Char). Our pilot experiments show that average-
pooling is the best for DBQA while max-pooling after a
dense layer is the best for KBQA. When the basic se-
quence is in character level, we simply concatenate the char-
acter embedding with its corresponding word embedding
(Char+Word), since each character belongs to one word
only. Again, when the basic sequence is in character level,
we can also concatenate the character embedding with a
pooled representation of all words that contain this charac-
ter in the word lattice (Char+Lattice), where we use max
pooling as suggested by our pilot experiments.

DGCs (Marcheggiani and Titov 2017; Vashishth et al.
2018) are strong baselines that perform CNNs over directed
graphs to produce high level representation for each vertex
in the graph, which can be used to build a sentence represen-
tation via certain pooling operation. We therefore choose to
compare with DGC-max (with maximum pooling), DGC-
ave (with average pooling), and DGC-gated (with gated
pooling), where the gate value is computed using the con-
catenation of the vertex vector and the center vertex vector
through a dense layer.

We also implement several state-of-the-art matching mod-
els using the open-source project MatchZoo (Fan et al.
2017), where we tune hyper-parameters using grid search,
e.g., whether using word or character inputs. Arcl, Arc2,
CDSSM are traditional CNNs based matching models pro-
posed by (Hu et al. 2014; Shen et al. 2014). Arcl and
CDSSM compute the similarity via sentence representations
and Arc2 uses the word pair similarities. MV-LSTM (Wan
et al. 2016) computes the matching score by examining
the interaction between the representations from two sen-
tences obtained by a shared BiLSTM encoder. MatchPyra-

"https://keras.io

8https://www.tensorflow.org
*https://pypi.python.org/pypi/jieba/
"%https://nlp.stanford.edu/software/segmenter.shtml



DBQA KBRE
MAP MRR P@1 P@l1 MRR
MatchZoo
Arcl 4006 4011 22.39% | 32.18% 5144
Arc2 4780 4785 3047% | 76.07%  .8518
CDSSM 5344 5349  3645% | 68.90% .7974
MP 7715 7723 65.61% | 86.21% 9137
MV-LSTM 8154 8162 71.71% | 86.87% .9271
State-of-the-Art DBQA
(Fuetal. 2016) | .8586 .8592 79.06% | — —
(Xie 2017)* 8763 .8768 — — —
Single Granularity CNNs
CNN-jieba 8281 .8289  75.10% | 86.85% 9152
CNN-PKU 8339 8343 76.00% | 89.87%  .9370
CNN-CTB 8341 .8347 76.04% | 88.92%  .9302
CNN-char 8803 .8809 82.09% | 93.06% .9570
Word Combine CNNs
jieba+PKU 8486 .8490 77.62% | 90.57% 9417
PKU+CTB 8435 8440 77.09% | 90.48%  .9410
CTB+jieba 8499 8504 78.06% | 90.29%  .9399
PKU+CTB+jieba 8494 8498 78.04% | 91.16% .9450
‘Word+Char CNNs
Word+Char 8566 .8570 78.94% | 91.64%  .9489
Char+Word 8728 8735 80.76% | 92.78%  .9561
Char+Lattice 8810 .8815 81.97% | 93.12% .9582
DGCs
DGC-ave 8868 .8873 83.02% | 93.49%  .9602
DGC-max 8811 .8818 82.01% | 92.79%  .9553
DGC-gated 8790 .8795 81.69% | 92.88%  .9562
LCNs

LCN-ave 8864 .8869 83.14% | 93.60% .9609
LCN-max 8870 .8875 83.06% | 93.54%  .9604
LCN-gated 8895 .8902 83.24% | 93.32%  .9592

Table 1: The performance of all models on the two datasets.
The best results in each group are bolded. * is the best pub-
lished DBQA result.

mid(MP) (Pang et al. 2016) utilizes 2D convolutions and
pooling strategies over word pair similarity matrices to com-
pute the matching scores.

We also compare with the state-of-the-art models in
DBQA (Fu, Qiu, and Huang 2016; Xie 2017).

Results

Here, we mainly describe the main results on the DBQA
dataset, while we find very similar trends on the KBRE
dataset. Table 1 summarizes the main results on the two
datasets. We can see that the simple MatchZoo models
perform the worst. Although Arcl and CDSSM are also
constructed in the siamese architecture with CNN layers,
they do not employ multiple kernel sizes and residual con-
nections, and fail to capture the relatedness in a multi-
granularity fashion.

(Fu, Qiu, and Huang 2016) is similar to our word level
models (CNN-jieba/PKU/CTB), but outperforms our mod-
els by around 3%, since it benefits from an extra interaction
layer with fine tuned hyper-parameters. (Xie 2017) further
incorporates human designed features including POS-tag in-
teraction and TF-IDF scores, achieving state-of-the-art per-
formance in the literature of this DBQA dataset. However,
both of them perform worse than our simple CNN-char
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model, which is a strong baseline because characters, that
describe the text in a fine granularity, can relieve word mis-
match problem to some extent. And our best LCNs model
further outperforms (Xie 2017) by .0134 in MRR.

For single granularity CNNs, CNN-char performs better
than all word level models, because they heavily suffer from
word mismatching given one fixed word segmentation re-
sult. And the models that utilize different word segmenta-
tions can relieve this problem and gain better performance,
which can be further improved by the combination of words
and characters.

The DGCs and LCNs, being able to work on lattice in-
put, outperform all previous models that have sequential in-
puts, ' indicating that the word lattice is a more promising
form than a single word sequence, and should be better cap-
tured by taking the inherent graph structure into account. Al-
though they take the same input, LCNs still perform better
than the best DGCs by a margin, showing the advantages of
the CNN kernels over multiple n-grams in the lattice struc-
tures and the gated pooling strategy.

To fairly compare with previous KBQA works, we com-
bine our LCN-ave settings with the entity linking results of
the state-of-the-art KBQA model(Lai et al. 2017). The P@1
for question answering of single LCN-ave is 86.31%, which
outperforms both the best single model (84.55%) and the
best ensembled model (85.40%) in literature.

Analysis and Discussions

Effectiveness of Multi-Granularity information As
shown in Table 1, the combined word level models (e.g.
CTB+jieba or PKU+CTB) perform better than any word
level CNNs with single word segmentation result (e.g.
CNN-CTB or CNN-PKU). The main reason is that there
are often no perfect Chinese word segmenters and a sin-
gle improper segmentation decision may harm the matching
performance, since that could further make the word mis-
matching issue worse, while the combination of different
word segmentation results can somehow relieve this situa-
tion.

Furthermore, the models combining words and charac-
ters all perform better than PKU+CTB+jieba, because they
could be complementary in different granularities. Specifi-
cally, Word+Char is still worse than CNN-char, because
Chinese characters have rich meanings and compressing
several characters to a single word vector will inevitably
lose information. Furthermore, the combined sequence of
Word+Char still exploits in a word level, which still suffers
from the single segmentation decision. On the other side,
the Char+Word model is also slightly worse than CNN-
char. We think one reason is that the reduplicated word em-
beddings concatenated with each character vector confuse
the CNNs, and perhaps lead to overfitting. But, we can still
see that Char+Word performs better than Word+Char, be-
cause the former exploits in a character level and the fine-
granularity information actually helps to relieve word mis-
match. Note that Char+Lattice outperforms Char+Word,

""The best LCN models can reduce the error rates (= 1 - P@1)
over Char+Lattice by 7.04% in DBQA and 6.98% in KBRE.



and even slightly better than CNN-char. This illustrates that
multiple word segmentations are still helpful to further im-
prove the character level strong baseline CNN-char, which
may still benefit from word level information in a multi-
granularity fashion.

In conclusion, the combination between different se-
quences and information of different granularities can help
improve text matching, showing that it is necessary to con-
sider the fashion which considers both characters and more
possible words, which perhaps the word lattice can provide.

Poolings in DGCs and LCNs For DGCs with different
kinds of pooling operations, average pooling (DGC-ave)
performs the best, which delivers similar performance with
LCN-ave. While DGC-max performs a little worse, be-
cause it ignores the importance of different edges and the
maximum operation is more sensitive to noise than the av-
erage operation. The DGC-gated performs the worst. Com-
pared with LCN-gated that learns the gate value adaptively
from multiple n-gram context, it is harder for DGC to learn
the importance of each edge via the node and the center node
in the word lattice. It is not surprising that LCN-gated per-
forms much better than GDC-gated, indicating again that n-
grams in word lattice play an important role in context mod-
eling, while DGCs are designed for general directed graphs
which may not be perfect to work with word lattice.

For LCNs with different pooling operations, LCN-max
and LCN-ave lead to similar performances, and perform
better on KBRE, while LCN-gated is better on DBQA. This
may be due to the fact that sentences in DBQA are relatively
longer with more irrelevant information which require to fil-
ter noisy context, while on KBRE with much shorter predi-
cate phrases, LCN-gated may slightly overfit due to its more
complex model structure. Overall, we can see that LCNs per-
form better than DGCs, thanks to the advantage of better
capturing multiple n-grams context in word lattice.

How LCNs utilizes Multi-Granularity To investigate
how LCNs utilize multi-granularity more intuitively, we
analyze the MRR score against granularities of overlaps
between questions and answers in DBQA dataset, which
is shown in Figure 3. It is demonstrated that CNN-char
performs better than CNN-CTB impressively in first few
groups where most of the overlaps are single characters
which will cause serious word mismatch. With the grow-
ing of the length of overlaps, CNN-CTB is catching up
and finally overtakes CNN-char even though its overall per-
formance is much lower. This results show that word in-
formation is complementary to characters to some extent.
The LCN-gated is approaching the CNN-char in first few
groups, and outperforms both character and word level mod-
els in next groups, where word level information becomes
more powerful. This demonstrates that LCNs can effectively
take advantages of different granularities, and the combi-
nation will not be harmful even when the matching clues
present in extreme cases.

How to Create Word Lattice In previous experiments,
we construct word lattice via an existing lookup vocabu-
lary, which will introduce some noisy words inevitably. Here
we construct from various word segmentations with differ-
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~~CNN-char --CNN-CTB —--LCN-gated

1 2 3 4 5 6 7 8 9

Group ID

10 1 12

Figure 3: MRR score against granularities of overlaps be-
tween questions and answers, which is the average length of
longest common substrings. About 2.3% questions are ig-
nored for they have no overlaps and the rests are separated
in 12 groups orderly and equally. Group 1 has the least aver-
age overlap length while group 12 has the largest.

| MRR  P@I l.qu lcan
CNN-char 8809 82.09% 159 384
LCN-C+2& | .8851 82.41% 19.9 48.0
LCN-C+2 8874 82.89% 204 49.5
LCN-C+20 | .8869 82.81% 214 51.0
LCN-gated 8902 83.24% 223 558

Table 2: Comparisons of various ways to create word lattice.
l.qu and l.sen are the average token numbers in questions
and sentences respectively. The 3 models in the middle con-
struct lattices by adding words to CNN-char. +2& considers
the intersection of words of CTB and PKU mode while +2
considers the union. +20 uses the top 10 results of the two
segmenters.

ent strategies to investigate the balance between the noisy
words and additional information introduced by word lat-
tice. We only use the DBQA dataset because word lattices
here are more complex, so the construction strategies have
more influence. Pilot experiments show that word lattices
constructed based on character sequence perform better, so
the strategies in Table 2 are based on CNN-char.

From Table 2, it is shown that all kinds of lattice are bet-
ter than CNN-char, which also evidence the usage of word
information. And among all LCN models, more complex
lattice produces better performance in principle, which in-
dicates that LCNs can handle the noisy words well and the
influence of noisy words can not cancel the positive infor-
mation brought by complex lattices. It is also noticeable that
LCN-gated is better than LCN-C+20 by a considerable mar-
gin, which shows that the words not in general tokenization
(e.g. “livelihood” in Fig 1) are potentially useful.

Parameters and Efficiency LCNs only introduce inap-
preciable parameters in gated pooling besides the increasing
vocabulary, which will not bring a heavy burden. The train-
ing speed is about 2.8 batches per second, 5 times slower
than original CNNs, and the whole training of a 2-layer
LCN-gated on DBQA dataset only takes about 37.5 min-



Question: 212013F 12K 4 I AX Btac606% KA FAL

3, 2013, 4, 12, A, A, 5V, A, &, ¥, tao, 606, LR, Mik, F4
By Dec. 2013, how many people were navigated by the tao606
seller website

Word: 201359 RRIME1#Eta0606 % K ML FAL

2013, 4, 9, A, %k, A, 412, tao, 606, LK, Wik, Fi

In Sep. 2013, Huang Chengshun created tao606 seller website
Character: tao6062E A& Ki# % £ 5 & A0 MIEFAR, Yhﬁi]/{é:\//\\ﬁiﬁi
JRF 201349 A €] ...

tao,606,% B, 7,8, %, 4,2, %, 8,5 0,60, R0, 5 40, 8,448 A,
¥k, IR, T, 2013,%,9,A 41, 7-...

Tao606 is the first website navigation for Taobao sellers in China,
which is founded by its founder Huang Chengshun in Sep. 2013...
Lattice: 2013F12A4, %%MQEIJQQW

2013, %, 12, A, W55, &, A, 7, &, 3|, i, 2, 7, 2013%, 124,
20, Wb, Ap, &3], 27

In Sep. 2013, the total number of users of the website reached
nearly 20,000.

Figure 4: Example, a question (in word) and 3 sentences se-
lected by 3 systems. Bold means exactly sequence match
between question and answer. Words with wave lines are
mentioned in Section Case Study.

utes'?. The efficiency may be further improved if the net-
work structure builds dynamically with supported frame-
works. The fast speed and little parameter increment give
LCNs a promising future in more NLP tasks.

Case Study

Figure 4 shows a case study comparing models in differ-
ent input levels. The word level model is relatively coarse
in utilizing informations, and finds a sentence with the
longest overlap (5 words, 12 characters). However, it does
not realize that the question is about numbers of people,
and the “DaoHang”(navigate) in question is a verb, but
noun in the sentence. The character level model finds a
long sentence which covers most of the characters in ques-
tion, which shows the power of fine-granularity matching.
But without the help of words, it is hard to distinguish the
“Ren”(people) in “DuoShaoRen”(how many people) and
“ChuangShiRen” (founder), so it loses the most important
information. While in lattice, although overlaps are limited,
“WangZhan” (website, “Wang” web, “Zhan” station) can
match “WangZhi”(Internet addresses, “Wang” web, “Zhi”
addresses) and also relate to “DaoHang”(navigate), from
which it may infer that “WangZhan”(website) refers to
“tao606 seller website navigation”(a website name). More-
over, “YongHu” (user) can match “Ren”(people). With co-
operations between characters and words, it catches the key
points of the question and eliminates the other two candi-
dates, as a result, it finds the correct answer.

Related Work

Deep learning models have been widely adopted in natural
language sentence matching. Representation based models
(Shen et al. 2014; Yu et al. 2014; Yih, He, and Meek 2014,
Yu et al. 2017) encode and compare matching branches in

2Environment: CPU, 2*XEON E5-2640 v4. GPU: 1*NVIDIA
GeForce 1080Ti
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hidden space. Interaction based models (Pang et al. 2016;
Wan et al. 2016; Wang, Hamza, and Florian 2017) incorpo-
rates interactions features between all word pairs and adopts
2D-convolution to extract matching features. Our models are
built upon the representation based architecture, which is
better for short text matching.

In recent years, many researchers have become interested
in utilizing all sorts of external or multi-granularity informa-
tion in matching tasks. (Yin and Schiitze 2015) exploit hid-
den units in different depths to realize interaction between
substrings with different lengths. (Wang, Hamza, and Flo-
rian 2017) join multiple pooling methods in merging sen-
tence level features, (Chen et al. 2018) exploit interactions
between different lengths of text spans. For those more sim-
ilar to our work, (Wang, Hamza, and Florian 2017) also
incorporate characters, which is fed into LSTMs and con-
catenate the outcomes with word embeddings, and (Yu et
al. 2017) utilize words together with predicate level tokens
in KBRE task. However, none of them exploit the multi-
granularity information in word lattice in languages like
Chinese that do not have space to segment words naturally.
Furthermore, our model has no conflicts with most of them
except (Wang, Hamza, and Florian 2017) and could gain fur-
ther improvement.

GCNs(Bruna et al. 2014; Defferrard, Bresson, and Van-
dergheynst 2016) and graph-RNNs(Peng et al. 2017; Song et
al. 2018) have extended CNNs and RNNs to model graph in-
formation, and DGCs generalize GCNs on directed graphs in
the fields of semantic-role labeling (Marcheggiani and Titov
2017), document dating (Vashishth et al. 2018), and SQL
query embedding(Xu et al. 2018). However, DGCs control
information flowing from neighbor vertexes via edge types,
while we focus on capturing different contexts for each word
in word lattice via convolutional kernels and poolings.

Previous works involved Chinese lattice into RNNs for
Chinese-English translation(Su et al. 2017), Chinese named
entity recognition(Zhang and Yang 2018), and Chinese word
segmentation(Yang, Zhang, and Liang 2018). To the best of
our knowledge, we are the first to conduct CNNs on word
lattice, and the first to involve word lattice in matching tasks.
And we motivate to utilize multi-granularity information in
word lattices to relieve word mismatch and diverse expres-
sions in Chinese question answering, while they mainly fo-
cus on error propagations from segmenters.

Conclusions

In this paper, we propose a novel neural network matching
method (LCNs) for matching based question answering in
Chinese. Rather than relying on a word sequence only, our
model takes word lattice as input. By performing CNNs over
multiple n-gram context to exploit multi-granularity infor-
mation, LCNs can relieve the word mismatch challenges.
Thorough experiments show that our model can better ex-
plore the word lattice via convolutional operations and rich
context-aware pooling, thus outperforms the state-of-the-art
models and competitive baselines by a large margin. Further
analyses exhibit that lattice input takes advantages of word
and character level information, and the vocabulary based



lattice constructor outperforms the strategies that combine
characters and different word segmentations together.
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