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Abstract

Machine reading comprehension with unanswerable ques-
tions aims to abstain from answering when no answer can
be inferred. In addition to extract answers, previous works
usually predict an additional “no-answer” probability to de-
tect unanswerable cases. However, they fail to validate the
answerability of the question by verifying the legitimacy of
the predicted answer. To address this problem, we propose
a novel read-then-verify system, which not only utilizes a
neural reader to extract candidate answers and produce no-
answer probabilities, but also leverages an answer verifier to
decide whether the predicted answer is entailed by the in-
put snippets. Moreover, we introduce two auxiliary losses to
help the reader better handle answer extraction as well as no-
answer detection, and investigate three different architectures
for the answer verifier. Our experiments on the SQuAD 2.0
dataset show that our system obtains a score of 74.2 F1 on
test set, achieving state-of-the-art results at the time of sub-
mission (Aug. 28th, 2018).

Introduction
The ability to comprehend text and answer questions is
crucial for natural language processing. Due to the cre-
ation of various large-scale datasets (Hermann et al. 2015;
Nguyen et al. 2016; Joshi et al. 2017; Kočiskỳ et al. 2018),
remarkable advancements have been made in the task of ma-
chine reading comprehension. Nevertheless, one important
hypothesis behind current approaches is that there always
exists a correct answer in the context passage. Therefore, the
models only need to choose a most plausible text span based
on the question, instead of checking if there exists an answer
in the first place. Recently, a new version of Stanford Ques-
tion Answering Dataset (SQuAD), namely SQuAD 2.0 (Ra-
jpurkar, Jia, and Liang 2018), has been proposed to test the
ability of answering answerable questions as well as detect-
ing unanswerable cases. To deal with unanswerable cases,
systems must learn to identify a wide range of linguistic
phenomena such as negation, antonymy and entity changes
between the passage and the question.

Previous works (Levy et al. 2017; Clark and Gardner
2018; Kundu and Ng 2018) all apply a shared-normalization
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Question:  What is France a region of?

Passage: The Normans were the people who in 

the 10th and 11th centuries gave their name to 

Normandy, a region in France. They were ...

Read

Answer:  Normandy

Sentence:  The Normans … in France.

NA Prob:  0.4

Verify

NA Prob:  0.9 Final Prob:  0.65

No answer

Figure 1: An overview of our approach. The reader first ex-
tracts a candidate answer and produces a no-answer proba-
bility (NA Prob). The answer verifier then checks whether
the extracted answer is legitimate or not. Finally, the system
aggregates previous results and outputs the final prediction.

operation between a “no-answer” score and answer span
scores, so as to produce a probability that a question is unan-
swerable as well as output a candidate answer. However,
they have not considered further validating the answerability
of the question by verifying the legitimacy of the predicted
answer. Here, answerability denotes whether the question
has an answer, and legitimacy means whether the extracted
text can be supported by the passage and the question. Hu-
man, on the contrary, tends to first find a plausible answer
given a question, and then checks if there exists any contra-
dictory semantics.

To address the above issue, we propose a read-then-verify
system that aims to be robust to unanswerable questions in
this paper. As shown in Figure 1, our system consists of two
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components: (1) a no-answer reader for extracting candi-
date answers and detecting unanswerable questions, and (2)
an answer verifier for deciding whether or not the extracted
candidate is legitimate. The key contributions of our work
are three-fold.

First, we augment existing readers with two auxiliary
losses, to better handle answer extraction and no-answer de-
tection respectively. Since the downstream verifying stage
always requires a candidate answer, the reader must be able
to extract plausible answers for all questions. However, pre-
vious approaches are not trained to find potential candidates
for unanswerable questions. We solve this problem by in-
troducing an independent span loss that aims to concentrate
on the answer extraction task regardless of the answerabil-
ity of the question. In order to not conflict with no-answer
detection, we leverage a multi-head pointer network to gen-
erate two pairs of span scores, where one pair is normal-
ized with the no-answer score and the other is used for our
auxiliary loss. Besides, we present another independent no-
answer loss to further alleviate the confliction, by focus-
ing on the no-answer detection task without considering the
shared normalization of answer extraction.

Second, in addition to the standard reading phase, we in-
troduce an additional answer verifying phase, which aims at
finding local entailment that supports the answer by compar-
ing the answer sentence with the question. This is based on
the observation that the core phenomenon of unanswerable
questions usually occurs between a few passage words and
question words. Take Figure 1 for example, after comparing
the passage snippet “Normandy, a region in France” with
the question, we can easily determine that no answer exists
since the question asks for an impossible condition1. This
observation is even more obvious when antonym or mutual
exclusion occurs, such as the question asks for “the decline
of rainforests” but the passage mentions that “the rainforests
spread out”. Inspired by recent advances in natural language
inference (NLI) (Bowman et al. 2015), we investigate three
different architectures for the answer verifying task. The first
one is a sequential model that takes two sentences as a long
sequence, while the second one attempts to capture interac-
tions between two sentences. The last one is a hybrid model
that combines the above two models to test if the perfor-
mance can be further improved.

Lastly, we evaluate our system on the SQuAD 2.0
dataset (Rajpurkar, Jia, and Liang 2018), a reading com-
prehension benchmark augmented with unanswerable ques-
tions. Our best reader achieves a F1 score of 73.7 and 69.1
on the development set, with or without ELMo embed-
dings (Peters et al. 2018). When combined with the answer
verifier, the whole system improves to 74.8 F1 and 71.5 F1
respectively. Moreover, the best system obtains a score of
74.2 F1 on test set, achieving state-of-the-art results at the
time of submission (Aug. 28th, 2018).

1Impossible condition means that the question asks for some-
thing that is not satisfied by anything in the given passage.

Background
Existing reading comprehension models focus on answer-
ing questions where a correct answer is guaranteed to ex-
ist. However, they are not able to identify unanswerable
questions but tend to return an unreliable text span. Conse-
quently, we first give a brief introduction on the unanswer-
able reading comprehension task, and then investigate cur-
rent solutions.

Task Description
Given a context passage and a question, the machine needs
to not only find answers to answerable questions but also de-
tect unanswerable cases. The passage and the question are
described as sequences of word tokens, denoted as P =

{xpi }
lp
i=1 and Q = {xqj}

lq
j=1 respectively, where lp is the

passage length and lq is the question length. Our goal is to
predict an answer A, which is constrained as a segment of
text in the passage: A = {xpi }

lb
i=la

, or return an empty string
if there is no answer, where la and lb indicate the answer
boundary.

No-Answer Reader
To predict an answer span, current approaches first embed
and encode both of passage and question into two series
of fix-sized vectors. Then they leverage various attention
mechanisms, such as bi-attention (Seo et al. 2017) or reat-
tention (Hu et al. 2018a), to build interdependent repre-
sentations for passage and question, which are denoted as
U = {ui}

lp
i=1 and V = {vj}

lq
j=1 respectively. Finally, they

summarize the question representation into a dense vector
t, and utilize the pointer network (Vinyals, Fortunato, and
Jaitly 2015) to produce two scores over passage words that
indicate the answer boundary (Wang et al. 2017):

oj = wT
v vj , t =

lq∑
j=1

eoj∑lq
k=1 e

ok
vj

α, β = pointer network(U, t)

where α and β are the span scores for answer start and end
bounds.

In order to additionally detect if the question is unanswer-
able, previous approaches (Levy et al. 2017; Clark and Gard-
ner 2018; Kundu and Ng 2018) attempt to predict a special
no-answer score z in addition to the distribution over answer
spans. Concretely, a shared softmax function can be applied
to normalize both of no-answer score and span scores, yield-
ing a joint no-answer objective defined as:

Ljoint = − log

(
(1− δ)ez + δeαaβb

ez +
∑lp
i=1

∑lp
j=1 e

αiβj

)

where a and b are the ground-truth start and end positions,
and δ is 1 if the question is answerable and 0 otherwise. At
test time, a question is detected as being unanswerable once
the normalized no-answer score exceeds some threshold.
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Approach
In this section we describe our proposed read-then-verify
system. The system first leverages a neural reader to extract
a candidate answer and detect if the question is unanswer-
able. It then utilizes an answer verifier to further check the
legitimacy of the predicted answer. We enhance the reader
with two novel auxiliary losses, and investigate three differ-
ent architectures for the answer verifier.

Reader with Auxiliary Losses
Although previous no-answer readers are capable of jointly
learning answer extraction and no-answer detection, there
exists two problems for each individual task. For the answer
extraction, previous readers are not trained to find candidate
answers for unanswerable questions. In our system, how-
ever, the reader is required to extract a plausible answer that
is fed to the downstream verifying stage for all questions.
As for no-answer detection, a confliction could be triggered
due to the shared normalization between span scores and no-
answer score. Since the sum of these normalized scores is
always 1, an over-confident span probability would cause an
unconfident no-answer probability, and vice versa. There-
fore, inaccurate confidence on answer span, which has been
observed by Clark et al. (2018), could lead to imprecise pre-
diction on no-answer score. To address the above issues, we
propose two auxiliary losses to optimize and enhance each
task independently without interfering with each other.

Independent Span Loss This loss is designed to concen-
trate on answer extraction. In this task, the model is asked to
extract candidate answers for all possible questions. There-
fore, besides answerable questions, we also include unan-
swerable cases as positive examples, and consider the plau-
sible answer as gold answer2. In order to not conflict with
no-answer detection, we propose to use a multi-head pointer
network to additionally produce another pair of span scores
α̃ and β̃:

õj = w̃T
v vj , t̃ =

lq∑
j=1

eõj∑lq
k=1 e

õk
vj

α̃, β̃ = pointer network(U, t̃)

where multiple heads share the same network architecture
but with different parameters.

Then, we define an independent span loss as:

Lindep−I = − log

(
eα̃ãβ̃b̃∑lp

i=1

∑lp
j=1 e

α̃iβ̃j

)

where ã and b̃ are the augmented ground-truth answer
boundaries. The final span probability is obtained using
a simple mean pooling over the two pairs of softmax-
normalized span scores.

2In SQuAD 2.0, the plausible answer is annotated by human for
every unanswerable question. A pre-trained reader can also be used
to extract plausible answers if no annotation is provided.

Independent No-Answer Loss Despite a multi-head
pointer network being used to prevent the confliction prob-
lem, no-answer detection can still be weakened since the
no-answer score z is normalized with span scores. There-
fore, we consider exclusively encouraging the prediction on
no-answer detection. This is achieved by introducing an in-
dependent no-answer loss as:

Lindep−II = −(1− δ) log σ(z)− δ log(1− σ(z))

where σ is the sigmoid activation function. Through this
loss, we expect the model to produce a more confident
prediction on no-answer score z without considering the
shared-normalization operation.

Finally, we combine the above losses as follows:

L = Ljoint + γLindep−I + λLindep−II

where γ and λ are two hyper-parameters that control the
weight of two auxiliary losses.

Answer Verifier
After the answer is extracted, an answer verifier is used to
compare the answer sentence with the question, so as to
recognize local textual entailment that supports the answer.
Here, we define the answer sentence as the context sentence
that contains either gold answers or plausible answers. We
explore three different architectures, as shown in Figure 2:
(1) a sequential model that takes the inputs as a long se-
quence, (2) an interactive model that encodes two sentences
interdependently, and (3) a hybrid model that takes both of
the two approaches into account.

Model-I: Sequential Architecture In Model-I, we con-
vert the answer sentence and the question along with the
extracted answer into an ordered input sequence. Then we
adapt the recently proposed Generative Pre-trained Trans-
former (OpenAI GPT) (Radford et al. 2018) to perform the
task. The model is a multi-layer Transformer decoder (Liu et
al. 2018a), which is first trained with a language modeling
objective on a large unlabeled text corpus and then finetuned
on the specific target task.

Specifically, given an answer sentence S, a question Q
and an extracted answer A, we concatenate the two sen-
tences with the answer while adding a delimiter token in be-
tween to get [S;Q; $;A]. We then embed the sequence with
its word embedding as well as position embedding. Multiple
transformer blocks are used to encode the sequence embed-
dings as follows:

h0 = We[X] +Wp

hi = transformer block(hi−1),∀i ∈ [1, n]

where X denotes the sequence’s indexes in the vocab, We

is the token embedding matrix, Wp is the position embed-
ding matrix, and n is the number of transformer blocks.
Each block consists of a masked multi-head self-attention
layer (Vaswani et al. 2017) and a position-wise feed-forward
layer. Residual connection and layer normalization are used
after each layer.
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Figure 2: An overview of answer verifiers. (a) Input structures for running three different models. (b) Generative Pre-trained
Transformer proposed by Radford et al. (2018). Here, “Masked Multi Self Attention” refers to multi-head self-attention func-
tion (Vaswani et al. 2017) that only attends to previous tokens. “Add & Norm” indicates residual connection and layer normal-
ization. (c) Our proposed token-wise interaction model, which is designed to compare two sentences and aggregate the results
for verifying the answer.

The last token’s activation hlmn is then fed into a linear
projection layer followed by a softmax function to output
the no-answer probability y:

p(y|X) = softmax(hlmn Wy)

A standard cross-entropy objective is used to minimize
the negative log-likelihood:

L(θ) = −
∑
(X,y)

log p(y|X)

Model-II: Interactive Architecture In Model-II, we con-
sider an interactive architecture that aims to capture the in-
teractions between two sentences, so as to recognize their
local entailment relationships for verifying the answer. This
model consists of the following layers:
Encoding: We embed words using the GloVe embed-
ding (Pennington, Socher, and Manning 2014), and also em-
bed characters of each word with trainable vectors. We run a
bidirectional LSTM (BiLSTM) (Hochreiter and Schmidhu-
ber 1997) to encode the characters and concatenate two last
hidden states to get character-level embeddings. In addition,
we use a binary feature to indicate if a word is part of the
answer. All embeddings along with the feature are then con-
catenated and encoded by a weight-shared BiLSTM, yield-
ing two series of contextual representations:

si = BiLSTM([wordsi ; charsi ; feasi ]),∀i ∈ [1, ls]

qj = BiLSTM([wordqj ; charqj ; feaqj ]),∀j ∈ [1, lq]

where ls is the length of answer sentence, and [·; ·] denotes
concatenation.

Inference Modeling: An inference modeling layer is used
to capture the interactions between two sentences and pro-
duce two inference-aware sentence representations. We first
compute the dot products of all tuples< si, qj > as attention
weights, and then normalize these weights so as to obtain at-
tended vectors as follows:

aij = sTi qj ,∀i ∈ [1, ls],∀j ∈ [1, lq]

bi =

lq∑
j=1

eaij∑lq
k=1 e

aik
qj , cj =

ls∑
i=1

eaij∑ls
k=1 e

akj

si

Here, bi refers to the attended vector from questionQ for the
i-th word in answer sentence S, and vice versa for cj .

Next, in order to separately compare the aligned pairs
{(si, bi)}lsi=1 and {(qj , cj)}

lq
j=1 for finding local inference

information, we use a weight-shared function F to model
these aligned pairs as:

s̃i = F (si, bi) , q̃j = F (qj , cj)

F can have various forms, such as BiLSTM, multilayer
perceptron, and so on. Here we use a heuristic function
o = F (x, y) proposed by Hu et al. (2018a), which demon-
strates good performances compared to other options:

r = gelu (Wr[x; y;x ◦ y;x− y])

g = σ (Wg[x; y;x ◦ y;x− y])

o = g ◦ r + (1− g) ◦ x

where gelu is the Gaussian Error Linear Unit (Hendrycks
and Gimpel 2016), ◦ is element-wise multiplication, and the
bias term is omitted.
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Intra-Sentence Modeling: Next we apply an intra-sentence
modeling layer to capture self correlations inside each sen-
tence. The input are inference-aware vectors s̃i and q̃j ,
which are first passed through another BiLSTM layer for
encoding. We then use the same attention mechanism de-
scribed above, only now between each sentence and itself,
and we set aij = −inf if i = j to ensure that the word is
not aligned with itself. Another function F is used to pro-
duce self-aware vectors ŝi and q̂j respectively.
Prediction: Before the final prediction, we apply a concate-
nated residual connection and model the sentences with a
BiLSTM as:

s̄i = BiLSTM([s̃i; ŝi]) , q̄j = BiLSTM([q̃j ; q̂j ])

A mean-max pooling operation is then applied to sum-
marize the final representation of two sentences, namely s̄i
and q̄j . All summarized vectors are then concatenated and
fed into a feed-forward classifier that consists of a projection
sublayer with gelu activation and a softmax output sublayer,
yielding the no-answer probability. As before, we optimize
the negative log-likelihood objective function.

Model-III: Hybrid Architecture To explore how the fea-
tures extracted by Model-I and Model-II can be integrated
to obtain better representation capacities, we investigate the
combination of the above two models, namely Model-III.
We merge the output vectors of two models into a single
joint representation. An unified feed-forward classifier is
then applied to output the no-answer probability. Such de-
sign allows us to test whether the performance can benefit
from the integration of two different architectures. In prac-
tice we use a simple concatenation to merge the two sources
of information.

Experimental Setup
Dataset
We evaluate our approach on the SQuAD 2.0 dataset (Ra-
jpurkar, Jia, and Liang 2018). SQuAD 2.0 is a new ma-
chine reading comprehension benchmark that aims to test
the models whether they have truely understood the ques-
tions by knowing what they don’t know. It combines answer-
able questions from the previous SQuAD 1.1 dataset (Ra-
jpurkar et al. 2016) with 53,775 unanswerable questions
about the same passages. Crowdsourcing workers craft these
questions with a plausible answer in mind, and make sure
that they are relevant to the corresponding passages.

Training and Inference
Our no-answer reader is trained on context passages, while
the answer verifier is trained on oracle answer sentences.
Model-I follows a procedure of unsupervised pre-training
and supervised fine-tuning. That is, the model is first opti-
mized with a language modeling objective on a large unla-
beled text corpus to initialize its parameters. Then it adapts
the parameters to the answer verifying task with our super-
vised objective. For Model-II, we directly train it with the
supervised loss. Model-III, however, consists of two differ-
ent architectures that require different training procedures.

Therefore, we initialize Model-III with the pre-trained pa-
rameters from both of Model-I and Model-II, and then fine-
tune the whole model until convergence.

At test time, the reader first predicts a candidate answer as
well as a passage-level no-answer probability. The answer
verifier then validates the extracted answer along with its
sentence and outputs a sentence-level probability. Following
the official evaluation setting, a question is detected to be
unanswerable once the joint no-answer probability, which is
computed as the mean of the above two probabilities, ex-
ceeds some threshold. We tune this threshold to maximize
F1 score on the development set, and report both of EM
(Exact Match) and F1 metrics. We also evaluate the per-
formance on no-answer detection with an accuracy metric
(ACC), where its threshold is set as 0.5 by default.

Implementation
We use the Reinforced Mnemonic Reader (RMR) (Hu et al.
2018a), one of the state-of-the-art reading comprehension
models on the SQuAD 1.1 dataset, as our base reader. The
reader is configurated with its default setting, and trained
with the no-answer objective with our auxiliary losses.
ELMo (Embeddings from Language Models) (Peters et al.
2018) is exclusively listed in our experimental configura-
tion. We run a grid search on γ and λ among [0.1, 0.3, 0.5,
0.7, 1, 2]. Based on the performance on development set,
we set γ as 0.3 and λ to be 1. As for answer verifiers, we
use the original configuration from Radford et al. (2018) for
Model-I. For Model-II, the Adam optimizer (Kingma and
Ba 2014) with a learning rate of 0.0008 is used, the hidden
size is set as 300, and a dropout (Srivastava et al. 2014) of
0.3 is applied for preventing overfitting. The batch size is 48
for the reader, 64 for Model-II, and 32 for Model-I as well
as Model-III. We use the GloVe (Pennington, Socher, and
Manning 2014) 100D embeddings for the reader, and 300D
embeddings for Model-II and Model-III. We utilize the nltk
tokenizer3 to preprocess passages and questions, as well as
split sentences. The passages and the sentences are truncated
to not exceed 300 words and 150 words respectively.

Evaluation
Main Results
We first submit our approach on the hidden test set of
SQuAD 2.0 for evaluation, which is shown in Table 1. We
use Model-III as the default answer verifier, and only report
the best result. As we can see, our system obtains state-of-
the-art results by achieving an EM score of 71.7 and a F1
score of 74.2 on the test set. Notice that SLQA+ has reached
a comparable result compared to our approach. We argue
that its promising result is largely due to its superior perfor-
mance compared to our base reader4.

Ablation Study
Next, we do an ablation study on the SQuAD 2.0 develop-
ment set to show the effects of our proposed methods for

3https://www.nltk.org/
4SLQA+ achieves 87.0 F1 on the SQuAD 1.1 test set, while

RMR reaches 86.6.
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Model Dev Test
EM F1 EM F1

BNA1 59.8 62.6 59.2 62.1
DocQA2 61.9 64.8 59.3 62.3
DocQA + ELMo 65.1 67.6 63.4 66.3
ARRR† - - 68.6 71.1
VS3−Net† - - 68.4 71.3
SAN3 - - 68.6 71.4
FusionNet++(ensemble)4 - - 70.3 72.6
SLQA+5 - - 71.5 74.4
RMR + ELMo + Verifier 72.3 74.8 71.7 74.2

Human 86.3 89.0 86.9 89.5

Table 1: Comparison of different approaches on the SQuAD
2.0 test set, extracted on Aug 28, 2018: Levy et al. (2017)1,
Clark et al. (2018)2, Liu et al. (2018b)3, Huang et al. (2018)4
and Wang et al. (2018)5. † indicates unpublished works.

Configuration HasAns All NoAns
EM F1 EM F1 ACC

RMR 72.6 81.6 66.9 69.1 73.1
- indep-I 71.3 80.4 66.0 68.6 72.8
- indep-II 72.4 81.4 64.0 66.1 69.8
- both 71.9 80.9 65.2 67.5 71.4

RMR + ELMo 79.4 86.8 71.4 73.7 77.0
- indep-I 78.9 86.5 71.2 73.5 76.7
- indep-II 79.5 86.6 69.4 71.4 75.1
- both 78.7 86.2 70.0 71.9 75.3

Table 2: Comparison of readers with different auxiliary
losses.

each individual component. Table 2 first shows the ablation
results of different auxiliary losses on the reader. Removing
the independent span loss (indep-I) results in a performance
drop for all answerable questions (HasAns), indicating that
this loss helps the model in better identifying the answer
boundary. Ablating independent no-answer loss (indep-II),
on the other hand, causes little influence on HasAns, but
leads to a severe decline on no-answer accuracy (NoAns
ACC). This suggests that a confliction between answer ex-
traction and no-answer detection indeed happens. Finally,
deleting both of two losses causes a degradation of more
than 1.5 points on the overall performance in terms of F1,
with or without ELMo embeddings.

Table 3 details the results of various architectures for the
answer verifier. Model-III outperforms all of other competi-
tors, achieving a no-answer accuracy of 76.2. This illustrates
that the combination of two different architectures can bring
in further improvement. Adding ELMo embeddings, how-
ever, does not boost the performance. We hythosize that the
bytepair encoding (Sennrich, Haddow, and Birch 2016) from
Model-I and the word/character embeddings from Model-II
have provided enough representation capacities.

Configuration NoAns ACC

Model-I 74.5
Model-II 74.6
Model-II + ELMo 75.3
Model-III 76.2
Model-III + ELMo 76.1

Table 3: Comparison of different architectures for the an-
swer verifier.

Configuration All NoAns
EM F1 ACC

RMR 66.9 69.1 73.1
+ Model-I 68.3 71.1 76.2
+ Model-II 68.1 70.8 75.6
+ Model-II + ELMo 68.2 70.9 75.9
+ Model-III 68.5 71.5 77.1
+ Model-III + ELMo 68.5 71.2 76.5

RMR + ELMo 71.4 73.7 77.0
+ Model-I 71.8 74.4 77.3
+ Model-II 71.8 74.2 78.1
+ Model-II + ELMo 72.0 74.3 78.2
+ Model-III 72.3 74.8 78.6
+ Model-III + ELMo 71.8 74.3 78.3

Table 4: Comparison of readers with different answer veri-
fiers.

After doing separate ablations on each component, we
then compare the performance of the whole system, as
shown in Table 4. The combination of base reader with
any answer verifier can always result in considerable per-
formance gains, and combining the reader with Model-III
obtains the best result. We find that the improvement on no-
answer accuracy is significant. This metric raises from 73.1
to 77.1 after adding Model-III to RMR, increasing by 4 ab-
solute points. Similar observation can be found when ELMo
embeddings are used, demonstrating that the gains are con-
sistent and stable.

In order to investigate how the readers affect the overall
performance, we fix the answer verifier as Model-III and
use DocQA (Clark and Gardner 2018) as the base reader
instead of RMR, as shown in Table 5. We find that the ab-
solute improvements are even larger: the no-answer accu-
racy roughly increases by 6 points when adding Model-III
to DocQA (from 69.1 to 75.2), and 5.5 points when adding
Model-III to DocQA + ELMo (from 70.6 to 76.1).

Finally, we plot the precision-recall curves of F1 score on
the development set in Figure 3. We observe that RMR +
ELMo + Verifier achieves the best precision when the recall
is less than 80. After the recall exceeds 80, the precision of
RMR + ELMo becomes slightly better. Ablating two auxil-
iary losses, however, leads to an overall degradation on the
curve, but it still outperforms the baseline by a large margin.

6534



Configuration All NoAns
EM F1 ACC

DocQA 61.9 64.8 69.1
+ Model-III 66.5 69.2 75.2

DocQA + ELMo 65.1 67.6 70.6
+ Model-III 68.0 70.7 76.1

Table 5: Comparison of different readers with fixed answer
verifier.

Error Analysis
To perform error analysis, we first categorize all examples
on the development set into 5 classes:
• Case1: the question is answerable, the no-answer proba-

bility is less than the threshold, and the answer is correct.
• Case2: the question is unanswerable, and the no-answer

probability is larger than the threshold.
• Case3: almost the same as case1, except that the predicted

answer is wrong.
• Case4: the question is unanswerable, but the no-answer

probability is less than the threshold.
• Case5: the question is answerable, but the no-answer

probability is larger than the threshold.
We then show the percentage of each category in Table

6. As we can see, the base reader trained with auxiliary
losses is notably better at case2 and case4 compared to the
baseline, implying that our proposed losses help the model
mainly improve upon unanswerable cases. After adding the
answer verifier, we observe that although the system’s per-
formance on unanswerable cases slightly decreases, the re-
sults on case1 and case5 have been improved. This demon-
strates that the answer verifier does well on detecting an-
swerable question rather than unanswerable one. Besides,
we find that the error of answer extraction is relatively small
(6.5% for Case3 in RMR + ELMo + Verifier). However, the
classification error on no-answer detection is much larger.
More than 20% of examples are misclassified even with our
best system (10.3% for Case4 and 10.9% for Case5 in RMR
+ ELMo + Verifier). Therefore, we argue that the main per-
formance bottleneck lies in no-answer detection instead of
answer extraction.

Next, to understand the challenges our approach faces, we
manually investigate 50 incorrectly predicted unanswerable
examples (based on F1) that are randomly sampled from the
development set. Following the types of negative examples
defined by Rajpurkar et al. (2018), we categorize the sam-
pled examples and show them in Table 7. As we can see,
our system is good at recognize negation and antonym. The
frequency of negation decreases from 9% to 0% and only
4 antonym examples are predicted wrongly. We think that
this is because the two types are relatively easier to iden-
tify. Both of negation and antonym only require to detect
one single word in the question, such as “never” or “not” for
negation and “increase” to “decrease” for antonym. How-
ever, impossible condition and other neutral types roughly
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Figure 3: Precision-Recall curves of F1 score.

acount for 46% of the error set, indicating that our system
performs less effectively on these more difficult cases.

Related Work
Reading Comprehension Datasets. Various large-scale
reading comprehension datasets, such as cloze-style
test (Hermann et al. 2015), answer extraction bench-
mark (Rajpurkar et al. 2016; Joshi et al. 2017) and answer
generation benchmark (Nguyen et al. 2016; Kočiskỳ et al.
2018), have been proposed. However, these datasets still
guarantee that the given context must contain an answer. Re-
cently, some works construct negative examples by retriev-
ing passages for existing questions based on Lucene (Tan et
al. 2018) and TF-IDF (Clark and Gardner 2018), or using
crowdworkers to craft unanswerable questions (Rajpurkar,
Jia, and Liang 2018). Compared to automatically retrieved
negative examples, human-annotated examples are more dif-
ficult to detect for two reasons: (1) the questions are relevant
to the passage and (2) the passage contains a plausible an-
swer to the question. Therefore, we choose to work on the
SQuAD 2.0 dataset in this paper.
Neural Networks for Reading Comprehension. Neural
reading models typically leverage various attention mecha-
nisms to build interdependent representations of passage and
question, and sequentially predict the answer boundary (Seo
et al. 2017; Hu et al. 2018a; Wang et al. 2017; Yu et al. 2018;
Hu et al. 2018b). However, these approaches are not de-
signed to handle no-answer cases. To address this problem,
previous works (Levy et al. 2017; Clark and Gardner 2018;
Kundu and Ng 2018) predict a no-answer probability in ad-
dition to the distribution over answer spans, so as to jointly
learn no-answer detection as well as answer extraction. Our
no-answer reader extends existing approaches by introduc-
ing two auxiliary losses that enhance these two tasks inde-
pendently.
Recognizing Textual Entailment. Recognizing textual en-
tailment (RTE) (Dagan et al. 2010; Marelli et al. 2014), or
known as natural language inference (NLI) (Bowman et al.
2015), requires systems to understand entailment, contra-
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Configuration Case1 3 Case2 3 Case3 7 Case4 7 Case5 7

RMR - both 27.8% 37.3% 6.5% 12.7% 15.7%
RMR 27% 39.9% 5.9% 10.2% 17%
RMR + Verifier 30.3% 38.2% 8.4% 11.8% 11.3%
RMR + ELMo - both 31.5% 38.3% 5.6% 11.8% 12.8%
RMR + ELMo 31.2% 40.2% 5.5% 9.9% 13.2%
RMR + ELMo + Verifier 32.5% 39.8% 6.5% 10.3% 10.9%

Table 6: Percentage of five categories. Correct predictions are denoted with 3, while wrong cases are marked with 7.

Phenomenon Percentage
All Error

Negation 9% 0%
Antonym 20% 8%
Entity Swap 21% 24%
Mutual Exclusion 15% 16%
Impossible Condition 4% 14%
Other Neutral 24% 32%
Answerable 7% 6%

Table 7: Linguistic phenomena exhibited by all negative ex-
amples (statistics from Rajpurkar et al. (2018)) and sampled
error cases of RMR + ELMo + Verifier.

diction or semantic neutrality between two sentences. This
task is strongly related to no-answer detection, where the
machine needs to understand if the passage and the ques-
tion supports the answer. To recognize entailment, various
branches of works have been proposed, including encoding-
based approach (Bowman et al. 2016; Mou et al. 2015),
interaction-based approach (Parikh et al. 2016; Chen et al.
2016) and sequence-based approach (Radford et al. 2018).
In this paper we investigate the last two branches and further
propose a hybrid architecture that combines both of them
properly.
Answer Validation. Early answer validation task (Magnini
et al. 2002) aims at ranking multiple candidate answers to
return a most reliable one. Later, the answer validation exer-
cise (Rodrigo, Peñas, and Verdejo 2008) has been proposed
to decide whether an answer is correct or not according to a
given supporting text and a question, but the dataset is too
small for neural network-based approaches. Recently, Tan et
al. (2018) propose to validate the candidate answer for de-
tecting unanswerable questions, by comparing the question
with the passage. Our answer verifier, on the contrary, de-
noises the passage by comparing questions with answer sen-
tences, so as to focus on finding local entailment that sup-
ports the answer.

Conclusion
We proposed a read-then-verify system that is able to ab-
stain from answering when a question has no answer given
the passage. We first introduce two auxiliary losses to help
the reader concentrate on answer extraction and no-answer

detection respectively, and then utilize an answer verifier to
validate the legitimacy of the predicted answer, in which
three different architectures are investigated. Our system has
achieved state-of-the-art results on the SQuAD 2.0 dataset at
the time of submission (Aug. 28th, 2018). Looking forward,
we plan to design new structures for answer verifiers to han-
dle questions with more complicated inferences.
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