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Abstract

The existing methods for relation classification (RC) pri-
marily rely on distant supervision (DS) because large-scale
supervised training datasets are not readily available. Al-
though DS automatically annotates adequate amounts of data
for model training, the coverage of this data is still quite
limited, and meanwhile many long-tail relations still suffer
from data sparsity. Intuitively, people can grasp new knowl-
edge by learning few instances. We thus provide a differ-
ent view on RC by formalizing RC as a few-shot learning
(FSL) problem. However, the current FSL models mainly fo-
cus on low-noise vision tasks, which makes them hard to di-
rectly deal with the diversity and noise of text. In this pa-
per, we propose hybrid attention-based prototypical networks
for the problem of noisy few-shot RC. We design instance-
level and feature-level attention schemes based on prototyp-
ical networks to highlight the crucial instances and features
respectively, which significantly enhances the performance
and robustness of RC models in a noisy FSL scenario. Be-
sides, our attention schemes accelerate the convergence speed
of RC models. Experimental results demonstrate that our
hybrid attention-based models require fewer training itera-
tions and outperform the state-of-the-art baseline models. The
code and datasets are released on https://github.com/thunlp/
HATT-Proto.

Introduction

Relation classification (RC) is an import task in information
extraction, aiming to classify the relation between two given
entities based on their related context. Due to the capability
of extracting textual information and benefiting many NLP
applications (e.g., information retrieval, dialog generation,
and question answering), RC appeals to many researchers.
Conventional supervised models have been widely explored
in this task (Zelenko, Aone, and Richardella 2003; Zeng et
al. 2014; Gormley, Yu, and Dredze 2015), however, their
performance heavily depends on the scale and quality of
training data. In practice, manual labeling of high-quality
data is time-consuming and human-intensive, which means
these supervised models usually suffer from scarce data and
are thus hard to generalize well.
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To construct large-scale data, Mintz et al. (2009) propose
a novel distant supervision (DS) mechanism to automati-
cally label training instances by aligning existing knowledge
graphs (KGs) with text. DS is a heuristic rule: for an en-
tity pair in KGs, those sentences mentioning both the en-
tities will be labeled with their relations in KGs. DS en-
ables RC models to work on large-scale training corpora and
thus becomes a primary approach for RC recently. Because
DS brings inevitable noise in itself, many efforts are de-
voted to further reducing noise (Wu, Bamman, and Russell
2017; Feng et al. 2018). Although these DS models achieve
promising results on common relations, their classification
performance still drops dramatically when there are only few
training instances for some relations. Empirically, adopting
DS can automatically annotate adequate amounts of training
data. However, this data usually just covers a limited part of
relations. Many relations are long-tail and still suffer from
data deficiency. The current DS models ignore the problem
of long-tail relations, which makes these models hard to ex-
tract comprehensive information from plain text.

It is intuitive that people can learn new knowledge after
being taught just few instances. Hence, we provide a differ-
ent view to formulate RC in a few-shot learning (FSL) sce-
nario, which requires models to handle classification tasks
with a handful of training instances. Note that there are also
some works attempting to handle RC in a zero-shot sce-
nario (Levy et al. 2017), incorporating extra information to
classify relations never appearing in training sets. Although
zero-shot RC is meaningful and has a strong academic ex-
ploring value, it is a little far away from real-world scenes.
In fact, even for people, it is hard to grasp new knowledge
without any examples but limited extra information.

Some efforts have also been devoted to FSL. The early
works (Caruana 1995; Bengio 2012) mainly focus on ap-
plying transfer learning methods to fine-tune pre-trained
models, which adopt latent information from the common
classes containing adequate instances. Then, metric learn-
ing methods (Koch, Zemel, and Salakhutdinov 2015) have
been proposed to learn the distance distributions among
classes. Recently, meta learning is proposed, which encour-
ages models to learn fast-learning abilities from previous ex-
perience and rapidly generalize to new concepts (Ravi and
Larochelle 2017; Munkhdalai and Yu 2017). Among these
models, prototypical networks (Snell, Swersky, and Zemel
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Figure 1: Architectures of our proposed models. Figure 1a shows the framework of hybrid attention-based Prototypical Net-
works. Figure 1(b) demonstrates the architectures of feature-level attention.

2017) achieve the state-of-the-art results on several FSL
benchmarks, meanwhile are simple and effective. Though
FSL methods develop fast, most of these works concentrate
on image classification. There lacks systematic researches
about adopting FSL for NLP tasks. Different from images,
text is more diverse and noisy, which means these current
FSL models are hard to directly generalize to NLP applica-
tions, including the task of RC with noisy data.

To address these issues, we propose hybrid attention-
based prototypical networks for noisy few-shot RC. Simi-
lar to the vanilla prototypical networks, our methods also
adopt neural networks to embed all instances in a support
set and compute a feature vector (prototype) for each rela-
tion via these instance embeddings. Then, we classify the
relation between the entity pair mentioned in a query in-
stance by measuring the distance between the query instance
embedding and relation prototypes. For noisy few-shot RC,
both data and features are sparse. Little noise in the support
set may cause a huge deviation of relation features, and not
all dimensions of relation features in the space are discrim-
inative enough to support final classification. Our hybrid at-
tentions are specially designed to alleviate the influence of
noisy data and sparse features.

As illustrated in Figure 1(a), our models employ a hy-
brid attention consisting of an instance-level attention and
a feature-level attention. The instance-level attention mod-
ule is able to select more informative instances in the sup-
port set and denoise those noisy instances during training.
The feature-level attention module can highlight important
dimensions in the feature space and formulate specific dis-
tance functions for different relations, which enables our
model to alleviate the problem of feature sparsity. With the
hybrid attentions making the model focus more on those im-
portant instances and features, FSL models not only become
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more effective and robust, but also have fewer training con-
straints and converge more rapidly.

We conduct experiments on a real-world dataset whose
KGs are extracted from Wikidata and text is derived from
Wikipedia. Experimental results demonstrate that our hy-
brid attention-based prototypical networks significantly out-
perform other baseline methods. By adding different levels
of data noise, we validate the robustness of our model, and
prove our model is more suitable for handling the diversity
and noise of text as compared to the current FSL models.
Additionally, experiments also show that our hybrid atten-
tions accelerate the convergence speed during training.

Related Works

RC is an important task in NLP and many models have
been proposed for it. Conventional algorithms like ker-
nel methods (Zelenko, Aone, and Richardella 2003; Zhou
et al. 2005) and embedding methods (Gormley, Yu, and
Dredze 2015) are used. However, supervised learning re-
quires large amounts of data which are hard to acquire. To
alleviate this problem, DS mechanism (Mintz et al. 2009)
has been proposed for RC, which generates data automat-
ically by aligning KGs with text. Though DS makes large-
scale training data possible, it also brings the wrong labeling
problem. To solve this, Riedel, Yao, and McCallum (2010)
treat DS as a multi-instance single-label task. Then, multi-
instance multi-label setting is also proposed and has be-
come a common practice in this field (Hoffmann et al. 2011;
Surdeanu et al. 2012).

Neural networks have shown great power in supervised
tasks and been widely used in several NLP tasks. Many
works have explored the approaches to use neural net-
works in RC. Zeng et al. (2014) and Santos, Xiang, and
Zhou (2015) use convolutional neural networks for RC.



Those models are all trained on the sentence level and suffer
from insufficient data. Zeng et al. (2015) utilize DS and neu-
ral networks to perform at-least-one multi-instance learn-
ing, choosing only one instance of each entity pair for clas-
sification. Then, Lin et al. (2016) enhance it by adopting
selective attention over instances, which benefits from all
instances and meanwhile restrains the influence of wrong-
labeled ones. Many attention-based RC models have been
proposed to reduce noise caused by DS (Verga et al. 2016;
Verga and McCallum 2016; Liu et al. 2017; Huang and
Wang 2017) and introduce more extra information (Ji et al.
2017; Han, Liu, and Sun 2018), including some sophisti-
cated mechanisms, such as reinforcement learning (Feng et
al. 2018; Zeng et al. 2018) and adversarial training (Wu,
Bamman, and Russell 2017; Wang et al. 2018). These works
mainly adopt DS to make large-scale datasets and reduce the
noise caused by DS, regardless of the effect of long-tail re-
lations.

FSL also enables models to learn high-quality features
with insufficient data, without adding large-scale data like
DS. Many works apply transfer learning methods to fine-
tune pre-trained models for FSL, which transfer latent in-
formation from the common classes containing adequate
instances to the uncommon classes with only few in-
stances (Caruana 1995; Bengio 2012; Donahue et al. 2014).
Then metric learning methods (Koch, Zemel, and Salakhut-
dinov 2015; Vinyals et al. 2016) have also been proposed
to learn the distance distributions among classes, and simi-
lar classes are adjacent in the distance space. Recently, the
idea of meta-learning is proposed, which encourages mod-
els to learn fast-learning abilities from previous experience
and rapidly generalize to new concepts (Ravi and Larochelle
2017; Santoro et al. 2016; Finn, Abbeel, and Levine 2017;
Munkhdalai and Yu 2017). Among these models, prototyp-
ical networks (Snell, Swersky, and Zemel 2017) is simple
to implement, fast to train and it achieves the state-of-the-
art results on several FSL tasks. It calculates the proto-
type for each class and classifies query instances by cal-
culating their Euclidean distances. Our proposed method is
based on prototypical networks. Though few-shot methods
develop fast in the recent years, most of these works concen-
trate on CV applications. Both of the popular FSL datasets
Omniglot (Lake, Salakhutdinov, and Tenenbaum 2015) and
mini-ImageNet (Vinyals et al. 2016) are designed for CV
applications. Yu et al. (2018) attempt to adopt FSL for text
classification and achieve promising results. However, there
are still few systematic researches about adopting FSL for
NLP tasks.

In this paper, we provide a different view to formulate RC
in a noisy FSL scenario. Due to the small amounts of sam-
ples, FSL are more easily to be affected by data noise, espe-
cially considering that human annotators are more likely to
make mistakes in language tasks than visual tasks. It is nec-
essary to consider the diversity and complicacy of seman-
tic information when designing FSL models for NLP appli-
cations, especially the task of RC. Thus FSL models with
not only high performance but also resistance to noisy data
is necessary, which are exactly the qualities that our hybrid
attention-based methods have.
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Methodology

In this section, we introduce the overall framework of our
hybrid attention-based prototypical networks, starting with
notations and definitions.

Notations and Definitions

Few-shot RC is defined as a task to predict the relation r
between the entity pair (h, ) mentioned in a query instance
x, given a relation set R and a support set S. S is defined as
follows,
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where (27,h?,¢] ;) means that the semantics of the in-

stance ;] indicates there is a relation r; between the entity
pair (h!,t]). The entities h] and ¢] are all mentioned in the
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instance z}. Each instance z] is denoted as a word sequence
{U}hwg, .. }

In a FSL scenario, the instance number n; of the relation
r; is usually quite small. Few-shot RC models have to learn
features from the few instances in the support set S and pre-
dict the relation r for any given query instance x. Following
the recent FSL setting, we adopt N way K shot for few-shot
RC as follows,

N=m=|R|,K=n1=...=nyy,. 2)

Framework

We introduce the overall framework of our proposed hybrid
attention-based prototypical networks in detail. As shown in
Figure 1(a), our model consists of three parts:

Instance Encoder. Given an instance and its mentioned
entity pair, we employ neural networks to encode the in-
stance semantics into an embedding. In this paper, we im-
plement the instance encoder with convolutional neural net-
works (CNN) in view of both model performance and time
efficiency. In fact, other neural architectures such as recur-
rent neural networks (RNN) can also be used as sentence
encoders.

Prototypical Networks. After computing instance em-
beddings, we adopt prototypical networks to compute a pro-
totype for each relation via instance embeddings in the sup-
port set. By comparing the distance between a query in-
stance embedding and each relation prototype, we can fi-
nally classify the relation between the entity pair mentioned
in the query instance.

Hybrid Attention. Based on prototypical networks, we
further propose a hybrid attention mechanism to enhance the
classification performance and convergence speed. Our hy-
brid attention mechanism includes two parts, the instance-
level attention module to help determine more query-related
instances to compute a better prototype for each relation,
and the feature-level attention module to alleviate the prob-
lem of feature sparsity and measure the space distance in
a more suitable way. Both parts cooperate with each other
during training.



Instance Encoder

Given an instance = {w1,...,w,} mentioning two enti-
ties, we apply convolutional neural networks to encode the
raw instance into a continuous low-dimensional embedding
X, aiming to capture the instance semantics. The instance en-
coder consists of an embedding layer and an encoding layer.

Embedding Layer The embedding layer is used to map
discrete words in the instance into continuous input embed-
dings. Given an instance x, we map each word w; in the
instance to a real-valued embedding w; € R% to express
semantic and syntactic meanings of the word. These em-
beddings are pre-trained via GloVe (Pennington, Socher, and
Manning 2014).

Because words closer to the entities show more impact
on the determination of relation, we adopt position embed-
dings following Zeng et al. (2014). For each word w;, we
embed its relative distances to the two entities into two d,,-
dimensional vectors, and then concatenate them as a unified
position embedding p; € R?* %,

We could achieve a final input embedding for each word
by concatenating its word embedding and position embed-
ding. By gathering all the input embeddings in the instance,
we have an embedding sequence ready for the encoding
layer as follows,

{el cee 7en} = {[W1§p1]a ceny [Wn§pn]}7

3
e; ERY d; = d, +d, x 2. )

Encoding Layer In the encoding layer, we select CNN to
encode the input embeddings {e; ..., e,} into the final in-
stance embedding x. CNN slides a convolution kernel with
the window size m over the input embeddings to get the d,-
dimensional hidden embeddings,

hi:CNN(ei_%,...,ei+mTfl)7 “
where CNN(-) is a convolution operation (Zeng et al. 2014).

A pooling operation is then applied over these hidden em-
beddings to output the final instance embedding x as fol-

lows,

], :max{[hl]j,...,[hn]j}, (5)

where [-]; is the j-th value of a vector.

For simplicity, we denote such an instance encoding oper-
ation, including both embedding and encoding layers, as the
following equation,

x = fo(x), 6)

where ¢ is the learnable parameters of the instance encoder.

Prototypical Networks

The main idea of prototypical networks is to use one vector,
also named prototype, to represent each relation. The vanilla
approach to compute the prototype is to average all the in-
stance embeddings in the support set for each relation,

n,
1
C;, = — E Xi’
n; “
J=1

)
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where c¢; is the prototype computed for the relation r; and
x? is an instance embedding of the relation 7; in the support

set S. There are n; instances of the relation r; in the support
set S.

In vanilla prototypical networks, all instances are taken
into consideration equally. However, in our hybrid attention-
based prototypical networks, the simple average mechanism
is replaced with our instance-level attention to highlight
those more related instances in the support set, which we
will discuss in the next part.

We can then compute the probabilities of the relations in
‘R for the query instance x as follows,

exp (—d(fy(x),c;))
Rl exp (— d(fy(),c)))’

j=1€XP

where d(-, -) is the distance function for two given vectors.

There are multiple choices for the distance function. Ac-
cording to Snell, Swersky, and Zemel (2017), Euclidean dis-
tance outperforms other distance functions. Hence, we adopt
Euclidean distance with feature-level attention in our net-
works, which can achieve better results than vanilla Eu-
clidean distance. We will also detailedly present our feature-
level attention in the next part.

po(y =rilx) = (8)

Hybrid Attention

Our hybrid attention consists of two modules, the instance-
level attention module to select more informative instances
in the support set, and the feature-level attention module to
highlight important dimensions in the distance function.

Instance-level Attention For each relation, the original
prototypical networks adopt the average vector of the in-
stances as the relation prototype. Due to the lack of sup-
port data in a FSL scenario, one instance with a representa-
tion far from other instances will cause a huge deviation of
the corresponding prototype. This often happens when data
is noisy or relations cover diverse semantics. Meanwhile,
the vanilla FSL model has never seen concrete query in-
stances before extracting features from support sets. Hence,
the vanilla model may extract some features that are not
helpful for query classification.

These phenomenons bring the problem of unsuitable pro-
totypes for final query classification. To enhance the abil-
ity of prototypical networks, we propose an instance-level
attention module to focus more attention on those query-
related instances and reduce the effect of noise. We argue
that not all instances are equal when given a query, each
instance representation is given a weight o, and Eq (7) is
replaced by the following formula,

ci =Y a;xl. 9)
j=1
o is defined as follows,
_exp(ej)
O = Sne
> k1 exp(ex) (10)

©g() }.

k
ej = sum{a(g(xg)



where g(-) is a linear layer, ® is element-wise production,
o(+) is an activation function and sum{-} means the sum of
all elements of the vector. In this paper, we choose tanh for
o(+) to produce results among [—1, 1].

Via instance-level attention, instances with features more
similar to queries gain higher weights, and final prototypes
are closer to those instances. Intuitively, the instances of a
given relation may be quite different, or even some of them
have been wrongly labeled. Query instances may be close to
only some of the instances of the relation. By giving differ-
ent weights for different instances, prototypes can be more
“typical” when compared to the original average vectors.

Feature-level Attention Snell, Swersky, and Zemel
(2017) demonstrate that selection of distance functions will
significantly affect the capacity of prototypical networks.
The original model uses simple Euclidean distance as the
distance function. Because there are only few instances in
the support set, the features extracted from the support set
suffer from the problem of data sparsity. Hence, some di-
mensions are more discriminative for classifying special re-
lations in the feature space. We propose a feature-level atten-
tion to alleviate the problem of feature sparsity and measure
the space distance in a more suitable way.

The feature-level attention will pay more attention to
those more discriminative feature dimensions when com-
puting space distance. Especially, we adopt a new distance
function instead of plain Euclidean distance,

d(s1,82) = 2; - (51 — s2)° (11)

where z; is the score vector for relation r; computed via our
feature-level attention extractor. The structure of the feature-
level attention extractor is shown in Figure 1(b).

The extractor calculates how linear separable each dimen-
sion of the feature is, based on the distribution of the sen-
tence representations of each relation. The more useful one
feature dimension is, the higher corresponding score it will
get. By multiplying the attention scores to the squared differ-
ences, we change the distance metrics to better fit the given
relations and support instances.

Experiments

In experiments, we will show that our hybrid attention-
based prototypical networks achieve better results on few-
shot RC tasks with both noisy data and clean data. We fur-
ther demonstrate that hybrid attention brings convergence
speeding up, and detailedly show how instance-level atten-
tion and feature-level attention work in the feature space re-
spectively.

Dataset and Evaluation Metrics

We evaluate our models on FewRel, a few-shot RC dataset
(Han et al. 2018) !. It has 64 relations for training, 16 re-
lations for validation and 20 relations for test. There are no
overlapping relations between training and test set. Each re-
lation has 700 instances in FewRel.

"https://github.com/thunlp/FewRel
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To demonstrate the robustness of our hybrid attention in
noisy data, we adopt four levels of random noisy settings:
no noisy data, 10% noisy data, 30% noisy data and 50%
noisy data. We assume that all the data in FewRel dataset
is correct, and during training and test, each instance in the
support set has a probability of rate to be corrupted with a
sentence whose relation is not the same as the original one,
where rate = 0%, 10%, 30%, 50%.

Parameter Settings

All the hyperparameters are shown in table 1. For CNN pa-
rameters, we follow the settings used in Zeng et al. (2014).
According to Snell, Swersky, and Zemel (2017), feeding
more classes than test settings during training leads to better
results, we thus randomly choose 20 classes for each batch
when training.

We tune all other hyperparameters of all models by grid
search using the validation set, especially for determining
the best initial learning rate and weight decay. For prototyp-
ical networks and our proposed model, we use step policy to
decay the learning rate. That is to say, the learning rate will
be multiplied by ~ every s steps. Due to the different con-
vergence speed, we adopt different s and total training steps
for different models. To be more specifically, we train pro-
totypical networks 30000 iterations with s = 20000, while
training hybrid attention-based model 15000 iterations with
s = 5000. All models are trained on the training set, then
the best epochs on the validation set are picked to be tested
on the test set.

We use the word embeddings pre-trained by GloVe (Pen-
nington, Socher, and Manning 2014) as our initial embed-
dings. In practice, we choose the embedding set (Wikipedia
2014 + Gigaword 5) which contains 6B tokens, 400K vo-
cabulary and word embeddings are of 50 dimensions.

Convolutional Window Size m 3
Word Embedding Dimension d,, 50
Position Embedding Dimension d,, 5
Hidden Layer Dimension d, 230
Batch Size 4
Training Classes for One Batch 20
Initial Learning Rate 0.1
Weight Decay 10-°
Learning Rate Decay 0.1

Table 1: Parameter settings.

Overall Evaluation Results

Table 2 reports the accuracy of prototypical networks with
and without hybrid attentions on the test set under differ-
ent experiment settings. We name the vanilla prototypical
networks “proto”. “proto-IATT”,“proto-FATT”,and “proto-
HATT” are models with instance-level, feature-level and hy-
brid attentions respectively. From the table, we can find that
our hybrid attention-based prototypical networks are more
robust when facing noisy data. As the noise rate rising, the
advantages of our proposed models become more obvious.



Noise Rate | Model | 5 Way 5 Shot | 5Way 10 Shot | 10 Way 5 Shot | 10 Way 10 Shot
Proto 89.05 £ 0.09 90.79 £ 0.08 81.46 £0.13 84.01 +£0.13
Proto-HATT | 90.12 4+ 0.04 | 92.06 £0.06 | 83.05+0.05 | 85.97+0.08
Proto 87.63 £0.10 90.15 £ 0.08 79.39 +£0.14 83.05 £0.12
Proto-HATT | 88.744+0.06 | 91.45+0.05 | 81.09 +£0.08 | 85.08 +0.07
Proto 82.45£0.09 87.64 £0.07 72.43 £0.12 79.31 £0.11
Proto-HATT | 84.71 +0.07 | 89.59 +0.05 | 75.68 £ 0.11 | 82.43 +0.07
Proto 7291 £0.15 81.71 £0.10 61.11 £0.17 71.29£0.14
Proto-HATT | 76.57 +0.07 | 85.17+0.09 | 65.97+0.11 76.42 £0.13

Table 2: Accuracy comparison between prototypical networks with or without the hybrid attentions (%). Noise rate indicates the
probability of an instance in the support set to be wrong-labeled. As shown in the table, our attention methods largely improve
the performance under both clean and noisy data.

Model | 5 Way 5 Shot | 10 Way 5 Shot
Finetune* 68.66 + 0.41 55.04 + 0.31
KNN* 68.77 +0.41 55.87 +0.31
Meta Network® | 80.57 4 0.48 69.23 + 0.52
GNN* 81.28 +£0.62 64.02 +£0.77
SNAIL* 79.40 £+ 0.22 68.33 £0.25
Proto* 84.79 +0.16 75.55 £0.19
Proto 89.05 £ 0.09 81.46 =0.13
Proto-IATT 89.63 £+ 0.08 82.16 =0.13
Proto-FATT 89.70 +0.03 82.45 £ 0.05
Proto-HATT 90.124+0.04 | 83.05+ 0.05

Table 3: Accuracy comparison between different models
(%). Results with * are reported in Han et al. (2018).

By using the hybrid attentions and giving different scores
to instances and features, our models know which instances
and which parts of features to focus on when training, and
meanwhile capture the correct paths for backpropagation.
This helps models to resist the adverse effects of data noise.
Our models even outperform the baselines a lot on clean
data, which proves that hybrid attentions are also useful in
few-shot tasks with clean data. We also compare our meth-
ods with other FSL and RC models. For RC models, we con-
duct comprehensive evaluations of RC models with simple
few-shot strategies such as finetune or kKNN. For FSL mod-
els, we compare with Meta Network (Munkhdalai and Yu
2017), GNN (Garcia and Bruna 2018), and SNAIL (Mishra
et al. 2018), which are all current state-of-the-art FSL mod-
els. The evaluation results are shown in Table 3. As shown
in the table, our two attention modules both make contribu-
tions to improve the performance, and our proposed hybrid
attention-based methods achieve the best results.

Convergence Speed

We compare our hybrid attention-based models with the
original one on model convergence speed. Hybrid attention-
based prototypical models converge faster than the original
one and this phenomenon is more obvious with data noise.
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Figure 2: Loss of different models on the training set.

Accuracy on Val Set
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Figure 3: Accuracy of different models on the validation set.

As shown in Figure 2 and Figure 3, the speed of both
loss decrease and accuracy increase, becomes lower when
adding data noise. Vanilla prototypical networks must spend
almost twice the time of the hybrid attention models to re-
duce the loss by 40%, while under 50% noise rate, this gap
is even bigger. In the figure, convergence speed decreases
when training with noisy data, and this problem is alleviated
by using hybrid attention.



(a) Features with lower scores.

(b) Features with higher scores.

(c) Emb trained without HATT.
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Figure 4: Comparison between features with different feature-level attention scores (Figure 4(a) and Figure 4(b)). Points with
different colors (indicating different classes) in Figure 4b(b) are more separable than in Figure 4(a); Comparison between
instance embeddings trained with or without hybrid attentions (Figure 4(c) and Figure 4(d)). Points in Figure 4(d) are easier to

classify while those in Figure 4(c) just lump together.

Support Set

Sentences
(1) In 2001, he also published the "Khaki Shad-
ows” that recounted the military history of Pak-

Relation
(A) facet of

istan during the cold war.

(2) However, critics have questioned the univer-
sal applicability of this model outside Singapore’s
communitarian political system and coordinated
urban planning program.

(1) (Got the highest attention score) ”Crying Out
Loud” is the twenty-third episode of the sixth sea-

(B) series

son of the American sitcom "Modern Family”, and
the series’ 143rd episode overall.
(2) The novel is the fourth in Moorcock’s four book
The History of the Runestaff series, and the nar-
rative follows on immediately from the preceding
novel "the Sword of the Dawn”.

Query Sentence

(A) or (B) The song appeared on the first episode of the fourth

season of the American adult animated sitcom

“American Dad!”.

Table 4: Case study of instance-level attention. Words with
color blue are head entities and those with red are tail en-
tities. Sentence (1) of relation (B) got the highest instance-
level attention score for its close connection with the query
instance.

Effect of Instance-Level Attention

By studying the cases that prototypical networks fail but our
model predicts correctly, we show that our instance-level at-
tention is able to locate the instances that have most simi-
larity to the query ones. As shown in Table 4, models need
to predict whether the query instance is an instance of the
relation “facet of” or “series”. It is quite challenging since
those two relations both express the meaning of subordina-
tion. The query one is an instance of ’series”, but prototyp-
ical networks predict it wrongly into “facet of”’. By using
instance-level attention, sentence (1) of the relation “series”
was given the highest attention score, for it is semantically
and syntactically closer to the query instance, and thus our
model is able to classify the query instance into the correct
relation.
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Effect of Feature-Level Attention

To show the effect of feature-level attention, we sort all 230
features of hidden embeddings by their feature-level atten-
tion scores and select the highest 20 features and the low-
est 20 ones, and map them to 2D points by using Principal
Component Analysis (PCA)?. Comparing those two plots in
Figure 4(a) and Figure 4b(b), it is quite obvious that those
features with higher attention scores are easier to be classi-
fied.

Comparing Encoder Capacity

We find out that our hybrid attention mechanism not only
works out fine by focusing on relative instances and captur-
ing effective features, but it also helps encoders to learn bet-
ter embeddings due to it gives different weights to instances
and features during backpropagation. We draw the results of
the encoders with and without hybrid attention by PCA. In
Figure 4(c) and Figure 4(d), it is easy to find that embed-
dings trained with attention are better since those points are
more linear separable. Actually, if we train the model with
hybrid attention and test without attention, it can still achieve
better results than the baselines.

Conclusion and Future Work

In this paper, we propose hybrid attention-based prototypical
networks for noisy few-shot relation classification task. Our
hybrid attentions consist of two modules, an instance-level
attention which highlights those query-related instances, and
a feature-level attention which alleviates the problem of fea-
ture sparsity. In our experiments, we evaluate our models
with several random noise settings and few-shot settings,
which demonstrate that our hybrid attentions significantly
improve the robustness and efficiency of the FSL models.
Our models not only achieve the state-of-the-art results and
perform better in noisy data, but also converge a lot faster
when training. In the future, we will explore to incorporate
our hybrid attention schemes with other FSL models and
adopt more neural encoders to make our model more gen-
eral.

There are different feature-level attention scores for different
relations. For plotting points of different relations in the one figure,
we simply average the scores over relations here.
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