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Abstract

Transcript disfluency detection (TDD) is an important com-
ponent of the real-time speech translation system, which
arouses more and more interests in recent years. This pa-
per presents our study on adapting neural machine transla-
tion (NMT) models for TDD. We propose a general training
framework for adapting NMT models to TDD task rapidly.
In this framework, the main structure of the model is imple-
mented similar to the NMT model. Additionally, several ex-
tended modules and training techniques which are indepen-
dent of the NMT model are proposed to improve the perfor-
mance, such as the constrained decoding, denoising autoen-
coder initialization and a TDD-specific training object. With
the proposed training framework, we achieve significant im-
provement. However, it is too slow in decoding to be prac-
tical. To build a feasible and production-ready solution for
TDD, we propose a fast non-autoregressive TDD model fol-
lowing the non-autoregressive NMT model emerged recently.
Even we do not assume the specific architecture of the NMT
model, we build our TDD model on the basis of Transformer,
which is the state-of-the-art NMT model. We conduct exten-
sive experiments on the publicly available set, Switchboard,
and in-house Chinese set. Experimental results show that the
proposed model significantly outperforms previous state-of-
the-art models.

Introduction

Disfluency is a characteristic of spontaneous speech which
makes it different from written text. Transcript disfluency
detection is a task of recognizing non-fluent word sequences
in spoken language transcripts or automatic speech recog-
nition (ASR) results (Lou and Johnson 2017; Wang et al.
2017). Disfluencies are informally defined as interruptions
in the normal flow of speech that occur in different forms,
including false starts, repairs, repetitions and filled pauses.
Frequent disfluencies introduce obstacles to many natural
language processing (NLP) tasks, such as dialogue sys-
tems, machine translation, natural language understanding
and so on. Therefore, it’s necessary to pre-process disflu-
encies in source corpus before passed to downstream NLP
tasks. As shown in Figure 1, standard annotation of dis-
fluency structure (Shriberg 1994) indicates the reparandum
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Figure 1: Sentence with disfluencies annotated in English
Switchboard corpus. RM=Reparandum, IM=Interregnum,
RP=Repair. The preceding RM is corrected by the follow-
ing RP.

(words that are discarded, or corrected by the following
words), where the interruption point (+) marking the end of
the reparandum, and the begin of the associated repair, or
an optional interregnum (filled pauses, discourse cue words,
etc). Some disfluencies are complicated and may contain di-
verse reparandums with arbitrary forms, varying in length,
location, and structure. In our experiments, we find that the
longest reparandum in the publicly available set, Switch-
board, has as long as 15 words. And there are large sim-
ilarities in syntax between the reparandum chunk and the
following repair chunk. However, the mainstream method in
this area is to view detecting disfluencies as a sequence la-
beling task which is usually good at capturing local context
information and weak in modeling long-range dependencies
(Lou and Johnson 2017; Wang et al. 2017).

In this paper, we investigate the long-range dependencies
in TDD by referring to NMT model. In contrast to previous
neural approaches, our approach treats TDD as a translation
task from a source sentence (the disfluent sentence) into a
target sentence (a fluent version in the same language as the
source). We propose a general training framework for adapt-
ing the NMT model to TDD task. In the proposed frame-
work, the main structure of our model is implemented simi-
lar to the NMT model. Note that we do not assume the spe-
cific architecture of the NMT model. Additionally, several
extended modules and training techniques are proposed to
improve the performance, including the constrained decod-
ing, denoising autoencoder initialization and a TDD-specific
training object. While we achieve substantial improvements
by adapting NMT model to TDD naively, the model is too
slow in decoding to be practical. To tackle this problem,
we extend the TDD model with non-autogressive decoding
based on the idea of non-autogressive NMT model. With



this extension, the decoding speed of the proposed model
is accelerated by 6 times, which is ready for production. We
conduct extensive experiments on the publicly available set,
Switchboard, and in-house Chinese set. Experimental results
show that our final model achieves a new state-of-the-art re-
sult.

To summarize, this paper makes the following contribu-
tions:

e To the best of our knowledge, we are among the first en-
deavors to employ the NMT model to the task of TDD.

We provide a new point of view for investigating TDD.

We propose a general training framework for adapting
NMT models to TDD task, which can be applied to any
NMT model. Apart from the significant improvement on
performance, our model achieves fast decoding speed
which enables it ready for production.

We build our model based on the newly emerged state-of-
the-art NMT model and conduct extensive experiments
on the publicly available test set Switchboard and in-
house Chinese test set. Experimental results show that our
model achieves the state-of-the-art performance on both
test sets. Additionally, we give deep analysis to investi-
gate the strength of our approach over previous methods.

Related Works
Transcript Disfluency Detection

Transcript disfluency detection has gained much attention
within NLP and ASR community recently, as the demand for
spoken cascaded systems combining ASR and NMT mod-
els increases and develops. Existing methods are mainly
divided into four types: sequence labeling, parsing-based,
noisy channel model, encoder-decoder model. The sequence
labeling method labels each word as fluent or not using
different model structures, including conditional random
fields (Ostendorf and Hahn 2013; Zayats, Ostendorf, and
Hajishirzi 2014), hidden Markov models (Liu et al. 2006;
Ferguson, Durrett, and Klein 2015), Recurrent Neural Net-
work (Hough and Schlangen 2015; Zayats, Ostendorf, and
Hajishirzi 2016) or others (Georgila 2009; Qian and Liu
2013). The parsing-based approaches joint the task of de-
tecting disfluencies and identifying the syntactic structure
of the sentence (Rasooli and Tetreault 2013; Honnibal and
Johnson 2014; Yoshikawa, Shindo, and Matsumoto 2016).
Noisy channel models use the similarity between reparan-
dum and repair as an indicator and language models as a
reranker to detect disfluency (Johnson and Charniak 2004;
Zwarts and Johnson 2011; Lou and Johnson 2017). The
encoder-decoder models regard TDD as a sequence-to-
sequence problem (Wang, Che, and Liu 2016). Recently,
researchers have used translation models to perform TDD.
Neubig et al. (Neubig et al. 2012) presented a monotonic
statistical machine translation approach for transforming
faithful transcripts to clean transcripts on Japanese. Cho et
al. (Cho et al. 2016) investigated a multilingual approach
for TDD on English and German multilingual speech tran-
scripts. Wang et al. (Wang et al. 2018) proposed a semi-
supervised approach to utilize large amounts of WMT2014
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unannotated data. The state of the art of TDD on Switch-
board without external data is achieved by sequence labeling
method (Wang et al. 2017). These models have compara-
ble performance, but have no power to solve the long-range
dependencies problem, which is essential to detect compli-
cated disfluencies with longer spans or distances. Works in
Wang et al. (Wang, Che, and Liu 2016) can capture long-
range dependencies by using an attention-based Recurrent
Neural Network (RNN), but can’t utilize chunk-level infor-
mation well at the cost of time complexity and computa-
tional complexity.

Neural Machine Translation

In the field of machine translation, the state of the art neu-
ral sequence-to-sequence methods have led to a paradigm
shift away from phrase-based statistical machine transla-
tion (SMT) to NMT. The most popular model for neural
machine translation is the attention-based encoder-decoder
model (Bahdanau, Cho, and Bengio 2014). The encoder
takes the source sentence as input and calculates a represen-
tation of each word in the source sentence. The decoder out-
puts a translation relying on the representations of the source
sentence. The encoder and decoder can be parametrized as
RNN, Convolutional Neural Networks (CNN) or hierarchi-
cal self-attention models (Vaswani et al. 2017). In this paper,
we experiment with Transformer, which achieved state-of-
the-art performance on WMT 2014 English-to-French trans-
lation task with markedly less training cost. Its fundamen-
tal module is self-attention, a mechanism relating all the
position-pairs of a sequence to extract a more expressive
sequence representation. The self-attention can draw the de-
pendencies between different positions through the position-
pair computation. Much of the recent state of the art models
in NMT are auto-regressive. When generating a sequence of
translation from left to right, predicting the arbitrary sym-
bol first requires generating all symbols before the current
symbol. During training, the ground truth is known, so con-
ditioning on previous symbols can be parallelized. But when
actually generating sequential output during inferring, their
autoregressive nature prevents these models from utilizing
parallel computation. Some recent works have attempted to
speed up decoding by training a non-autoregressive transla-
tion (NAT) model (Gu et al. 2017). The autoregressive con-
nection from an existing encoder-decoder model is directly
removed and a great speed increase has been achieved in
NAT.

The Approach
The Model Overview

In this paper, the task of TDD is formulated as a translation
task from the disfluent utterance to fluent utterance. That is,
the source sentences are transcripts said by a lecturer not
fully-prepared to give a speech and potentially contain dis-
fluencies, whereas the target sentences are the corrected flu-
ent sentences. As shown in Figure 2, the model is based on
the encoder-decoder architecture: the encoder transforms a
disfluent sequence X = (1, ..., z7) to a hidden representa-
tion h = (hy, ..., hr). Given h, the decoder then generates
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Figure 2: The architecture of our base model. Each sublayer inside the encoder and decoder also includes layer normalization
and a residual connection. “SM”=Softmax function and “SG”’=Sigmoid function. “Multi-Head Self/Inter/Positional-Attention”

is the core structures of Transformer.

an output fluent sequence Y = (y1, ..., yr). The distribution
over possible output sentence Y is:

T
par(Y|X;0) = Hp(yt|y0:t—1, z1.7;0)
=1

ey

We adopt Transformer (Vaswani et al. 2017) as our base
model structure, consisting of 6 complex attention/self-
attention blocks in the encoder and decoder.

The TDD task is different from machine translation. The
goal of the TDD task is to accurately label the disfluencies
in the source sentence. The goal of machine translation is
to reasonably interpret the target sentence corresponding to
the source sentence. In order to adapt the translation model
to the TDD task, we propose several extended modules and
training techniques, which will be discussed in the sections
below. These adaptations are implemented incrementally.

Constrained Decoding

We introduce constrained decoding to make the decoding
process effective for the TDD task (marked as “T-TDD”).
In order to ensure the consistency in the word order and to-
ken coverage of the output result and the source sentence,
we have adopted the idea of the copy neural network (Gu et
al. 2016). We control the word ordering problem during de-
coding by utilizing two softmax layers, named “Label Pre-
dictor” and “Translation Predictor” respectively, as can be
seen in Figure 2. When predicting the token y; at the current
step, we additionally predict a label z; using a softmax layer
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to decide whether to predict a “@dis”. “@dis” is a special
symbol that means the word is disfluent. When z; is equal
to “E”, the model predicts a “@dis”, otherwise the model
copies the current token from the source sentence. We intro-
duce a weighting factor « to balance the two softmax out-
puts. Then the loss function of the model is as follows:

L(z,y,2|0)
=(1—a)L(z,y|0) + aL(z, 2(0)

T
(1 — a)logp(yt|33vy<ta 0)
t=1
T
— ZalogP(Zt\l’,yQﬁ)

t=1

Deletion-Penalty MLE Objective

Because TDD is essentially a two-category annotation task,
it is to determine whether the current word is fluent or not.
Fluent sentences are obtained by deleting disfluencies. In
light of the actual needs of this task, the precision is more
important than the recall. The missing deletions will only
affect the semantic expression, but the wrong deletions will
impair the integrity of the semantics. Therefore, we modify
the training objective of the original NMT model by adding a
penalty factor for the deletion operations (marked as “+DP-
MLE”). Adopting the marking symbols of the translation
system, each token y; in target sentence is generated by the
token z; in the source sentence. The maximum likelihood

2



estimation (MLE) loss is scaled by a factor X if y; is equal to
the special token “@dis”. Therefore, the final loss of L(z, y)
in Equation 2 is calculated as follows:

T
L(z,y) ==Y _ f(u)logP(yelz,y<.9),

t=1
where f(y;) is determined by:

A if y, = “@dis”
1 otherwise

) = { @

DAE Initialization

Denoising autoencoder (DAE) is generally employed to ef-
fectively pre-train a deep neural network in low-resource
NMT. DAEs take a pair of noisy-clean data, and are forced
to learn a robust representation of the features. Thus they
can correctly recover the correct examples from their cor-
rupted counterparts. TDD can be treated as a denoising task
where disfluencies are corruptions that have to be deleted.
This is similar to the idea of DAE. So we use this method to
pre-train our model, called “DAE Initialization” (marked as
“+DAE”). Figure 3 shows the process of DAE initialization.

Figure 3: The architecture of the DAE initialization. x is the
fluent sentence, and z’ is the damaged sentence.

We achieve our goal by damaging the fluent target sen-
tences in the original training data and then reconstructing
them. According to the section of Introduction, there are
high semantic and structural similarities between reparan-
dums and repairs in the disfluencies. Therefore, we add
the noise by randomly selecting several source words in
the fluent sentence x and then selecting the words in the
pre-trained word embeddings that are closest to the source
words as noise to be inserted at the preceding positions of
the source words to simulate reparandums. The number of
source words being selected is decided by the amount of
artificial data we need. The similarity of word embeddings
is measured using cosine similarity and noise words with a
similarity less than 0.8 will be discarded. The words in the
high-frequency set of interregnums are further randomly in-
serted between the two chunks above to simulate interreg-
nums. The pre-trained word embeddings are trained on the
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training source data using word2vec'. We pre-train our mod-
els with the artificial data until the loss function converges,
then we use the true training corpus to continue training.

Accelerating Decoding Speed

Although our model has achieved improved performance,
the general NMT model is limited by the slow decoding
speed, which seriously affects the practicality of our TTD
model. We adopt the idea of NAT to speed up the decod-
ing process of TDD models (marked as “+NAT”). NATs in-
troduce a sequence of discrete latent variables, which is de-
signed to model the alignment between the source and target
or capture the dependencies among target variables. The la-
tent variables sequence will be generated autoregressively,
and then each position in the target sequence from the latent
variables will be reconstructed in parallel. In NMT, NATs
may cause performance degradation due to lack of ground
truth input during decoding and destruction of the sequen-
tial essence.

Unlike general translation tasks, source and target sen-
tences belong to two different languages. In TDD task, a
fluent transcription and a disfluent transcription are actually
in the same language and there is a small editing distance
between them. In the settings of our model, the input and
output have strict one-to-one alignment and high similarity,
which can compensate for the alignment and dependencies
mentioned above. We introduce a continuous latent variable,
called “heredity”, to learn the inheritance relationship be-
tween the source and target. Therefore, we can automatically
learn the generated ground truth during training and infer-
ring. As can be seen in Figure 2, we directly generate the
input embeddings for the decoder in the translation process,
which is obtained by multiplying the heredity and embed-
ding input of the encoder element by element. We first ini-
tialize heredities with an all-ones matrix and then generate a
translation non-autoregressively conditioned on heredities.
Heredities are random variables between 0 and 1 for each
word in the source sentence to represent the conversion rela-
tion of embeddings from the encoder input to the decoder
input. The heredity predictor module models the heredity
p(h¢|z1.7) at each position independently using a one-layer
neural network with a sigmoid activation function on top of
the last encoder layer. The distribution over possible output
sentence Y = {y1, ..., yr } becomes:

pNAR(Y\X;G)

T
= afgglaXP(HMLT; 0) - [ [ p(vlzrr; 0, H)
=1
where H = hy.p; hy.r € [0,1]
4)

The heredity values are a property of each input word but
depend on information and context from the entire sentence,
so the module has the ability to exploit chunk-level features
and capture complicated disfluencies with longer spans or
distances.

'https://code.google.com/archive/p/word2vec



Experimental Setup
Dataset

To directly compare with previous state-of-the-art results
in the filed of TDD, we limit our training data strictly to
public resources. Our training data includes the Switch-
board disfluency-annotated corpus (Switchboard portion)
of the English Penn Treebank and an in-house Chinese
dataset. Firstly, we conduct our experiments on the En-
glish Switchboard corpus. Following the experiment set-
tings in (Charniak and Johnson 2001; Honnibal and John-
son 2014; Wu et al. 2015), we use directory 2 and 3 in
PARSED/MRG/SWBD as our training set and split direc-
tory 4 into test set, development set, and others. The de-
velopment data consists of all sw4[5-9]*.dps files, and test
data consists of all sw4[0-1]*.dps files. Based on whether
the repair is empty, the same as the reparandum or differ-
ent from the reparandum, respectively, the disfluencies can
further be divided into three types: restarts without repairs
(“restart”), repetitions (“repetition”), and restarts with re-
pairs (“repair”). The statistics on the training set, develop-
ment set, and test set in Switchboard can be seen in Table
1.

Dataset  Total Restart Repair Repetition
Train 169494 2726 15662 19519
Dev 9835 261 1354 1375
Test 7677 138 912 1165

Table 1: The statistics on the training set, development set,
and test set in Switchboard. Note that a sentence may contain
multiple kinds of disfluencies.

We generate the fluent target corpus according to the dis-
fluency annotations in the Switchboard corpus by substitut-
ing the reparandum, interregnum, filled pauses, discourse
markers and so on with the disfluency tag “@dis”, not mak-
ing a distinction among different kinds of disfluencies. By
this way, we can get a one-to-one parallel corpus of equal
length, which can partially solve the over-translation and
under-translation. Following previous works (Johnson and
Charniak 2004; Honnibal and Johnson 2014), we remove
all punctuations and partial words®. Instead of lowercasing
all training and test data, we may also want to keep most
words in their natural case, and escape special characters us-
ing scripts included in Moses 3.

Since no public Chinese corpus is available now, for our
Chinese experiments, we collect about 30k spoken sentences
from personal statement transcriptions and annotate them
with only disfluency annotations according to the guideline
similar to Switchboard (Meteer et al. 1995). We respectively
select about 1k sentences for development and testing. The
rest are used for training. The details for our Chinese TDD
dataset and our annotation rules is available online *.

words are recognized as partial words if they are tagged as
“XX” or end with “-”

3https://github.com/moses-smt/mosesdecoder

*https://github.com/dqqcasia/Translation_Disfluency_Detection
/tree/master/data/chinese_disfluency
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Following previous works (Wang et al. 2017; Lou and
Johnson 2017), token-based precision (P), recall (R), and F-
score (F) are used as the evaluation metrics.

Training Details

Our models are implemented with TensorFlow’. We use
the hyperparameter settings of the base Transformer model
described in Vaswani et al. (2017) for encoder stack and
decoder stack. We share encoder and decoder word em-
beddings during training and inference. For Switchboard
dataset, all the sentences are tokenized using Moses and we
use a shared word-level vocabulary of 20000. For Chinese
corpus, we use a shared character-level vocabulary of 3000
for modeling without word segmentation. We also try exper-
iments using a word-level vocabulary, but the result is far
inferior to the character-level model. The main reason may
be that the word segmentation for Chinese spoken text is
very poor. Sentence pairs are batched together by approxi-
mate sequence length. Each batch contains a set of sentence
pairs with approximately 7000 source tokens and target to-
kens. Our models are trained for a max 200000 steps on 2
NVIDIA Titan-X GPUs.

Results and Analysis

We conduct experiments on both the commonly used En-
glish Switchboard test set and a set of in-house annotated
Chinese data. The following is the results:

Effects of o

We conduct experiments to find the optimal values of av. Ex-
perimental results on Switchboard are shown in Table 2. In
following experiments, the value of « is set to 0.2 on Switch-
board, and set to 0.3 on Chinese data.

Value of Dev Test
o P R F P R F
0.05 84.0 873 856 842 863 853
0.10 89.7 852 874 89.2 84.2 86.6
0.15 90.8 852 879 90.2 84.2 87.1
0.20 93.3 844 88.7 92.5 835 878
0.25 912 849 879 914 842 876
0.30 90.8 853 879 904 847 875

Table 2: Performance on Switchboard data with different
values of .

Effects of \

A affects the precision/recall trade-off and requires tuning
for specific tasks. Experimental results on Switchboard can
be seen in Table 3. In our experiments, the optimal value of
A is 1.5 on Switchboard and 2 on Chinese data respectively.

Effects of artificial data size

Table 4 shows the relationship between the performance of
the method and the size of the artificial data®. An appropri-

>https://github.com/dqqcasia/Translation_Disfluency_Detection
SWe try to do experiments with more artificial data, but the per-
formance of the model no longer increases.



Value of Dev Test
A P R F P R F
0.5 90.7 86.3 884 90.3 849 875
1 933 844 88.7 925 835 87.8
1.5 93.8 843 88.8 932 834 88.0
2 91.5 86.1 88.7 90.7 84.6 87.5

Table 3: Performance on Switchboard data with different
values of .

ate amount of artificial data can increase the recall rate and
F-score of our model, but it will cause a certain degree of
accuracy reduction due to the unreality of the artificial data.
We also try to mix the artificial training samples directly into
the real training samples, but there’s a performance degra-
dation for F-score, which may be due to the artificial data
destroying the distribution of real data. Relatively speaking,
the DAE initialization method is more robust. The optimal
size of artificial data on Chinese data is 50k.

Size of Dev Test
artificial data P R F P R F
Ok 93.8 843 88.8 932 834 88.0
50k 88.8 879 833 89.2 87.1 88.1
150k 912 872 89.1 90.7 86.4 88.5
300k 89.4 88.5 89.0 89.3 88.1 88.7

Table 4: Performance on Switchboard data with different
sizes of artificial data.

Effects of the “heredity”

We design two sets of non-autoregressive experiments. To
prove the validity of the “heredity”, We also do experiments
with models without the “heredity”, where the embedding
input of the decoder is set to be 0 (marked as “w/o Hered-
ity”). It can be seen from the experimental results in Table 5
that models with the “heredity” (marked as “w/ Heredity”)
are superior to models without the “heredity”, with a perfor-
mance improvement of 0.9 point.

+NAT Dev Test

model P R F P R F
w/o Heredity 93.8 83.8 88.5 934 826 877
w/ Heredity 92.0 86.4 89.1 945 84.1 89.0

Table 5: Performance on Switchboard data of models with
or without the “heredity”.

Because there was no publicly available analysis on speed
in prior works related to TDD, no comparison is given
against prior work. We compare the parameters and speed
between “T-TDD” and “+NAT” model, as shown in Table
6. The “T-TDD” model has 87.5M parameters. The “+NAT”
model using heredity introduces additional 0.26M parame-
ters, which is quite small compared to the number of param-
eters in the base model. Introducing the non-autoregressive
property slows down the training speed, but acceptably and
not significantly. When running on two Titan-X GPU de-
vices, the speed of the “T-TDD” model is 0.0012s per token,
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and the speed of the “+NAT” model is 0.0002s per token,
which is almost six times faster. Speed is measured using
the average decoding speed of a batch. “+NAT” model can
better satisfy the real-time requirements in speech transla-
tion system.

Method Parameters Train Time Speed
T-TDD 87.5M 12h 0.0012s/token
+NAT 87.7TM 20h 0.0002s/token

Table 6: Comparison on parameters and speed on Switch-
board data.

Repetitions vs non-repetitions

In order to better understand our model’s performance,
we evaluate our model for detecting repetition and non-
repetition reparandum, as shown in Table 7. And we obtain
the same conclusion: it is much easier to detect repetitions
than non-repetitions. Our model is better at detecting non-
repetitions than the previous systems, and achieves a 78.3%
F-score. It proves that our model can not only capture the
features of the local chunk level, but also capture the global
features and long-distance dependencies, which is necessary
to correctly detect the repairs and restarts. Detecting non-
repetitions still needs more powerful models.

Method Repetitions Non-repetitions Either
CRF 93.8 61.4 82.6
Bi-LSTM 93.1 65.3 85.8
Transition-based 93.3 68.7 87.5
+NAT 93.6 78.3 89.0

Table 7: F-score of different types of reparandums on the
test set of English Switchboard. Results of non-translation
models come from Wang et al. (2017).

Main results

Switchboard corpus Table 8 shows some examples of the
predictions of our model for Switchboard. We compare our
best model to seven previous top performing systems as
shown in Table 9. Our model outperforms the state-of-the-
art work by 1.5 points, and achieves an 89.0% F-score. Our
model achieves 3.9 points improvements over UBT (Wu et
al. 2015), which is the best syntax-based method for TDD.
Our model obtains a 3.6 points improvement compared to
the best performance by linear statistical sequence label-
ing methods leveraging prosodic features (Ferguson, Dur-
rett, and Klein 2015). Our model also achieves 2.3 points
improvement over the attention-based model (Wang, Che,
and Liu 2016), which also regards TDD as a sequence-to-
sequence problem using RNN. Our model surpasses the best
noisy channel models (Lou and Johnson 2017) by 2.2 points.
We attribute the success to our model’s strong ability to learn
global chunk-level features and the effective state represen-
tation.

Chinese corpus Table 10 shows TDD results of Chinese.
Our best model obtains a 1.7 points improvement compared



Source:

Huh well um you know I guess it ’s pretty deep feelings uh

Ref: @dis @dis @dis @dis @dis I guess it ’s pretty deep feelings @dis

Model: @dis @dis @dis @dis @dis I guess it ’s pretty deep feelings @dis

Source: I mean you know in retrospect um was it was it Mondale or Dukakis that said you know 1’11 I "1l tell you

Ref: @dis @dis @dis @dis in retrospect @dis was it @dis @dis Mondale or Dukakis that said @dis @dis I ’1l @dis @dis tell you
Model: @dis @dis @dis @dis in retrospect @dis was it @dis @dis Mondale or Dukakis that said @dis @dis 1’1l @dis @dis tell you
Source:  Um do you think I mean do you think our the investment in lives and money was worth it

Ref: @dis do you think @dis @dis @dis @dis @dis @dis the investment in lives and money was worth it

Model:  @dis do you think @dis @dis @dis @dis @dis our @dis investment in lives and money was worth it

Source:  And one of the things we discussed was you know where our where the budget how the budget situation just got out of hand
Ref: @dis one of the things we discussed was @dis @dis @dis @dis @dis @dis @dis how the budget situation just got out of hand
Model:  @dis one of the things we discussed was @dis @dis where our @dis @dis budget how the budget situation just got out of hand

Table 8: Examples of the results of our model for Switchboard test data. Underlined words indicate disfluencies in the source
sentence, and words in bold indicate where our model predicts incorrectly.

Method P R F
M?N (Qian and Liu, 2013) - - 84.1
UBT (Wu et al., 2015) 90.3 80.5 85.1
semi-CRF (Ferguson et al., 2015) 90.0 812 854
Bi-LSTM (Zayats et al., 2016) 91.8 80.6 859
Attention-based (Wang et al., 2016) 91.6 823 86.7
LSTM-NCM (Lou and Johnson, 2017) - - 86.8
Transition-based (Wang et al., 2017) 91.1 84.1 875
OURS 945 84.1 89.0

Table 9: Comparison with previous state-of-the-art methods
on the test set of English Switchboard.

with the baseline “T-TDD” model with a best 52.8% F-
score. The performance on Chinese is much lower than that
on English Switchboard. Due to the high cost of data anno-
tation, the Chinese training set is of small magnitude. Hence
the training of the model is not sufficient. Meanwhile, con-
sistent with previous researches (Wang et al. 2017), we find
Chinese disfluencies have more complicated structure, and
the proportion of repair type disfluency and restart type dis-
fluency is much higher, which increases the difficulty of de-
tection. In addition, the performance of Chinese spoken lan-
guage segmentation is poor. However, using the character
modeling unit loses the very strong chunk-level features in-
side words. The fitting ability of the model declines with
a relatively small vocabulary. So the gap between the per-
formance on Chinese and English Switchboard does make
sense.

Our Dev Test
Methods P R F P R F
T-TDD 824 424 56.0 782 379 5l1.1
+DP-MLE 862 419 564 86.2 373 520
+DAE 73.5 476 57.8 72.0 40.8 52.1
+NAT 76.6 469 582 772 40.1 52.8

Table 10: Performance on Chinese annotated data.

Our model achieves consistent performance in both Chi-
nese and English experiments. The results of the base “T-
TDD” model have significantly exceeded the current best
system. This proves the superiority of the translation mech-
anism in the sequence modeling task. We add penalties to
the loss of the deletion operation, making the model a bias

6357

towards precision, hence an increase in precision and a drop
in recall. Thus we can flexibly adjust the precision, recall,
and f-value according to the actual scene. DAE initializa-
tion can improve the model’s performance notably on En-
glish Switchboard. This shows that the damaged sentences
we build can better simulate the phenomenon of transcript
disfluencies. The introduction of the “heredity” leads to non-
autoregressive models, and the experimental results show
that the performance of the “+NAT” model has significantly
improved compared to the base model. We conjecture it ben-
efits from the consistency of training and inferring processes
in the non-autoregressive model, which is inconsistent in au-
toregressive model.

Conclusion

We propose a general training framework for adapting the
NMT model to TDD task. Several extended modules and
training techniques are proposed to improve the perfor-
mance, including the constrained decoding, denoising au-
toencoder initialization and a TDD-specific training object.
And we extend the TDD model with non-autogressive de-
coding based on the idea of non-autogressive NMT model.
Our models achieve the state-of-the-art F-scores on both
the commonly used English Switchboard test set and an in-
house annotated Chinese data set. Experiments show that
translation models have an advantage over all published
methods for TDD. We plan to test different NMT models
in the proposed training framework, and investigate how the
ability of the NMT model correlates with final TDD per-
formance. Besides, we will investigate the effects of other
NMT techniques on TDD for further research. We believe
our models are applicable to other similar sequence correc-
tion tasks, such as grammar error correction, word reorder-
ing, and so on.
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