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Abstract

Strategic diffusion encourages participants to take active roles
in promoting stakeholders’ agendas by rewarding successful
referrals. As social media continues to transform the way peo-
ple communicate, strategic diffusion has become a powerful
tool for stakeholders to influence people’s decisions or be-
haviors for desired objectives. Existing reward mechanisms
for strategic diffusion are usually either vulnerable to false-
name attacks or not individually rational for participants that
have made successful referrals. Here, we introduce a novel
multi-winner contests (MWC) mechanism for strategic diffu-
sion in social networks. The MWC mechanism satisfies sev-
eral desirable properties, including false-name-proofness, in-
dividual rationality, budget constraint, monotonicity, and sub-
graph constraint. Numerical experiments on four real-world
social network datasets demonstrate that stakeholders can sig-
nificantly boost participants’ aggregated efforts with proper
design of competitions. Our work sheds light on how to
design manipulation-resistant mechanisms with appropriate
contests.

Introduction
Strategic diffusion is the process of spreading informa-
tion among social media users to promote desired pri-
vate or social outcomes (Galeotti and Goyal 2009). As the
impact of social media on people’s daily lives continues
to grow, strategic diffusion has become a prominent tool
for stakeholders (e.g., individuals, companies, governments,
and NGOs) to influence people’s preferences, decisions or
behaviors (Jackson and Yariv 2011; Chaffey 2016). The vast
popularity of strategic diffusion in social networks is primar-
ily because it encourages participants to take active roles in
promoting stakeholders’ agendas in a word-of-mouth fash-
ion (i.e., in the forms of referrals). This viral marketing strat-
egy can reach a broader audience at a faster pace and are
usually more economically efficient than traditional adver-
tising such as newspapers, radios or televisions (Leskovec,
Adamic, and Huberman 2007; Galeotti and Goyal 2009).

To unleash the power of crowds, stakeholders usually re-
ward both direct and indirect referrals to encourage potential
participants to perform the tasks early and invite influential
players to participate. For example, if Alice refers Bob and
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Bob then refers Cathy, both Alice and Bob are rewarded for
Cathy’s purchases. However, Bob is typically given more re-
wards than Alice for his direct referral. Such referral mech-
anisms are often called the geometric reward mechanisms,
or the incentive tree mechanisms (Pickard et al. 2011). Ge-
ometric reward mechanisms are usually effective and easy
to implement (Tang et al. 2011). As a result, they have wit-
nessed a growing range of serious applications, including
product promotion (Drucker and Fleischer 2012), disaster
rescue (Rahwan et al. 2013), global manhunt (Rahwan et al.
2013), participatory sensing (Gao et al. 2015) and crowd-
funding (Naroditskiy et al. 2014b).

Despite the promising prospects of the geometric re-
ward mechanisms, they are usually vulnerable to manipula-
tions (Drucker and Fleischer 2012). Under many geometric
reward mechanisms, indirect referrals are rewarded (Pickard
et al. 2011). A strategic player may create multiple fake
accounts or identities on his behalf with one referring an-
other to increase his rewards. Players’ such malicious behav-
iors are often called false-name attacks. A false-name attack
refers to a strategy that a profit-maximizing agent utilizes to
gain benefits by creating multiple false identities (i.e., repli-
cas). False identities can be analogous to “free riders” in the
sense that they pay less than what they should have paid.
This free rider problem arises when genuine identities are
unfeasible or difficult to be recognized. Unfortunately, many
social network services lack effective methods to fully elim-
inate false identities (Ferrara et al. 2016).

False-name attacks severely impede stakeholders from
implementing desired individual or societal outcomes. On
the one hand, false-name attacks are undesirable because
they not only diminish stakeholders’ revenues but also re-
duce other truthful players’ payoffs (Drucker and Fleis-
cher 2012). On the other hand, prior research indicates that
false-name attacks are pervasive in social networks since
players may create false accounts with no or minimal ef-
forts if no interventions are given (Lorenz et al. 2011;
Naroditskiy et al. 2014a; Ferrara et al. 2016).

Despite that much research has been devoted to tackling
the false-name-attack problems in social networks (Conitzer
et al. 2010; Emek et al. 2011; Todo, Iwasaki, and Yokoo
2011; Brill et al. 2016), our work is most closely related
to the mechanism design problem for multi-level market-
ing (Drucker and Fleischer 2012). In their work, Drucker

6154



and Fleischer introduce a class of mechanisms by cap-
ping the rewards a player can get from indirect referrals.
They show that under their mechanisms false-name attacks
are unprofitable. While illuminating, their methods indicate
that some of the less influential players in the referral net-
works will receive no rewards for successful indirect re-
ferrals. For instance, players with ordinary or low capa-
bilities may have little or no incentives to participate in
the referral mechanisms. Ignoring these players is problem-
atic for stakeholders because the population of many on-
line platforms typically consist of a large portion of par-
ticipants with low or common capabilities (Ipeirotis 2010;
Dow et al. 2012). Besides, the implementation of their mech-
anisms is not based on graphs but rather on trees, it remains
unknown whether their mechanisms can be applied to large-
scale social networks consisting of thousands of participants
with different abilities.

To address these issues, we introduce a novel mechanism
called the Multi-Winner Contests (MWC) mechanism for
strategic diffusion in social networks. The MWC mecha-
nism distinguishes itself from existing methods in two as-
pects. First, it allocates virtual credits for each successful re-
ferrals by taking both diffusion contributions and verifiable
task efforts into account. Second, it determines the diffusion
rewards for each player according to the results of contests
that compare the virtual credits earned by the qualified play-
ers. We show that the mechanism is false-name-proof, indi-
vidually rational, budget-constrained, monotonic, subgraph-
constrained, and computationally efficient. We conducted
extensive experiments with four real-world social network
datasets. Experimental results demonstrate that false-name-
attacks are unprofitable under the MWC mechanism. Stake-
holders can significantly boost the aggregated efforts of
players when they select parameters of the MWC mecha-
nism appropriately. Our work casts light on how to integrate
competitions into the design of novel mechanisms to counter
manipulations.

Strategic Diffusion in Social Networks
This section first describes notations used for modeling
strategic diffusion in social networks. It then introduces
the mechanism design problem for strategic diffusion. Af-
ter defining the concept of false-name attacks, it presents the
solution concepts for the reward mechanism design problem.

Preliminaries
Strategic diffusion processes or referral networks are usually
modeled with directed acyclic graphs (DAGs). We consider
a referral DAG G = (V,E) (See Figure 1) where V denotes
the set of players that may contribute (i.e., nodes) and E de-
notes the set of referral relationships (i.e., edges). For any
nodes v, u ∈ G (v 6= u), if there is a directed edge from v to
u, then it means that u’s decision to contribute is partially a
result of v. In this case, we say u is a direct successor of v
and v is a direct predecessor of u. For each node v, the num-
ber of direct predecessors v has is its indegree deg−(v). The
number of direct successors it has is its outdegree, denoted
by deg+(v). A source node (i.e., a seed node) has a indegree
of 0, while a sink node has a outdegree of 0.
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Figure 1: A typical directed acyclic graph.

For any nodes v, u ∈ G (v 6= u), if a path leads from
v to u, then u is said to be a successor of v and reachable
from u, and v is said to be a predecessor of v. We write
the distance between v and u by dist(u, v). If there is no
path from v to u, then the distance between the two nodes
is infinity; that is dist(v, u) = ∞. The length from v to v
is 0, i.e., dist(v, v) = 0. Let κ+v be the set of all successors
of v, we have κ+v = {u ∈ V : 0 < dist(v, u) < ∞}.
Similarly, the set of v’s predecessors κ−v = {u ∈ V : 0 <
dist(u, v) < ∞}. Let Gv be the subgraph rooted at v, then
Gv = (V ′, E′), where V ′ = {v} ∪ κ+v and E′ ⊆ E.

In a DAG G = (V,E), if a player v ∈ V makes a contri-
bution to the designated tasks (e.g., making purchases, an-
swering questions, reporting software bugs), we say player
v exerts task efforts tv ∈ R≥0. Player v may either directly
or indirectly spread the information of the tasks to his suc-
cessors to maximize his profits. If one of his successors u
also contributes to the tasks, then we say v makes diffusion
contributions dv ∈ R≥0. In our model, we assume that the
task efforts are verifiable and available for the stakeholder.
For instance, a seller usually has the legitimate transactions
information about the products she sells to each buyer.

Each edge e = (vi, vj) ∈ E has a weight ωvivj (i.e., ωe).
The weight ωvivj represents the proportion of the credits as-
signed to vi when vj contributes to the designated tasks with
efforts tvj . Here, ωvivj = 1/deg−vj if vi 6= vj ; otherwise,
ωvivj = 1. Let Pvivj be the set of all paths from vi to vj
and p be a path in the set Pvivj . Path p’s weight ω(p) is
the product of the weights of all edges along the path. That
is, ω(p) =

∏
(vi,vj)∈p ωvivj . Here, the length of the path

|p| = dist(vi, vj).

Mechanism Design for Strategic Diffusion
We consider a principal (e.g., a seller, a task owner) employs
strategic diffusion to maximize the aggregated efforts on the
tasks she designates. Initially, the principal selects some par-
ticipants (i.e., seeds) S ⊆ V in a social network G = (V,E)
to perform the tasks that she specifies. The principal may
select the seed nodes randomly if she has no prior knowl-
edge of the social network. Alternatively, she may select
the seed nodes using the influence maximization approach
if the network structure and diffusion method are known a
priori (Kempe, Kleinberg, and Tardos 2003) .

Some of the seed participants then perform the tasks and
invite their neighbors in the social network to participate. If
a participant v exerts task efforts tv , he will receive a task
reward πt(v) from the principal. Participant v may spread
the information to his successors u ∈ κ+v to maximize his
profits. If a successor u exerts task efforts tu, the referrer v
will receive a diffusion reward πd(v, u). The total diffusion
rewards for v: πd(v) =

∑
u∈κ+

v
πd(v, u). Thus, the total re-
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wards for v are determined by: π(v) = πt(v) + πd(v).
The total contributions of v include both the task efforts

and the diffusion contributions. In strategic diffusion, the
task efforts are verifiable while the diffusion contributions
are difficult to verify because strategic players can generate
fake referrals with no or minimal efforts by creating multiple
false identities with one being referred by another. We thus
treat them separately. Let c(v) be the total contributions for
v, we have: c(v) = (tv, dv). Let Θv be the space of v’s total
contributions c(v), and Θ = (Θv)v∈V .

In our model, we assume that the valuation of a player
is linear in the rewards he receives and the cost he pays is
linear in the task efforts he has contributed. That is, there are
constants αv , βv , γv and ςv with βv > 0 and ςv > 0, such
that player v’s utility isU(v) := αv+βv ·π(v)−(γv+ςv ·tv).
Without loss of generality, let αv = γv and δv = ςv

βv
. We

have player v’s utility:

U(v) = π(v)− δv · tv , (1)

where δv > 0 is a private coefficient that determines the
player’s marginal cost for exerting extra unit effort. The
higher ability a player owns, the lower δv he has, and vice
versa. That is, there is a negative correlation between a
player’s ability and his cost coefficient.

We note that a player may incur costs on spreading the
information to his neighbors. We avoid explicitly including
players’ diffusion costs into the utility function for two con-
cerns. First, diffusion efforts are not directly verifiable for
the principal. The exact correlations between the costs on
task efforts and the diffusion costs may vary from player to
player, which are unknown to the principal. Second, a player
v can integrate his diffusion costs into the task efforts by
setting a higher cost coefficient δv . Similar techniques were
also used in literature (Shen et al. 2018).

In strategic diffusion, the principal is interested in a re-
ward mechanism π that determines the reward for each
player that has exerted efforts.

Definition 1. A reward mechanism π is a tuple of payments
for each player v ∈ V , where G = (V,E). That is, π =
(π(v))v∈V , where π(v) : Θ→ R.

False-Name Attacks
In a graph G = (V,E), we say a graph G′ = (V ′′, E′′) and
a set of replicas R ⊆ V ′ are a false-name attack by v in G if
when we collapse R into the single node with label v in G′
we get the graph G.

Definition 2 (False-Name Attack). Given a referral graph
G = (V,E), for any v ∈ V , let DSv , DPv be the sets of
node v’s direct successors and direct predecessors, respec-
tively. G′ = (V ′′, E′′) is obtained from G by a false-name
attack at v if:

• V ′′ = V \ {v} ∪ {r1, ..., rm}, m > 1. The set of nodes
R = {r1, ..., rm} is the set of replicas of v.

• The sum of the task efforts of v’s replicas is equal to v’s
task efforts. That is, tv =

∑
r∈R tr, where tr > 0.

• All replicas of v have at least one direct successor; that is
deg+(r) ≥ 1 for all r ∈ R.
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Figure 2: False-name attacks at node 2: nodes 21, 22, ..., 2m
are replicas of node 2.

• For all u ∈ DSv , Gu = G′u, where G′u is a subgraph of
G′ rooted at u.

• The direct predecessors of a replica of v are either repli-
cas of v, or the direct predecessors of v ∈ V , or null. That
is, DPr = R \ {r} ∪DPv ∪ ∅, where r ∈ R.

• ∀r ∈ R,∃ a replica r′ of v such that r ∈ κ+r′ .
In general, there are three types of false-name attacks:

type 1 (See Figure 2a), type 2 (See Figure 2b), and hybrid.
Type 1 false-name attacks occur in the form of a long referral
chain that consists of the replicas, while in type 2 attacks the
replicas operate in parallel. Hybrid attacks are combinations
of type 1 and type 2 attacks.

A false-name attack is profitable if the sum of the rewards
received by the replicas r ∈ R of v ∈ V are higher than the
reward v receives. That is,

∑
r∈R π(r) > π(v).

Solution Concepts
Since false-name attacks are harmful to both the stakehold-
ers and other truthful players, it is desirable that the reward
mechanism satisfies the false-name-proofness property. A
reward mechanism is false-name proof if false-name attacks
are unprofitable for every player in a social network. That is,
the total rewards that v ∈ G receives are at least the same
as the sum of the rewards received by the replicas of v in a
graph obtained from a split of G at node v.

Definition 3 (False-Name-Proofness). A reward mechanism
π is false-name-proof if for all v ∈ G: π(v) ≥

∑
r∈R π(r),

where R is the set of replicas due to a false-name attack at
node v.

According to Equations 1 and 4, if player v’s costs on task
efforts (i.e., δv · tv) are equal to or higher than the rewards
πt(v), then player v will have no incentives to participate in
the strategic diffusion without positive diffusion rewards. To
encourage potential players to participate, a reward mech-
anism needs to ensure that a player who has made success-
ful referrals receives positive (expected) rewards. Otherwise,
it would be not appealing to players with high marginal
costs (i.e., high δv). A reward mechanism satisfies individ-
ual rationality if its (expected) utility is positive and it al-
locates positive (expected) diffusion rewards to each player
that have made successful referrals.

Definition 4 (Individual Rationality). A reward mechanism
π is individually rational if for each player v ∈ V with dv >
0, we have: U(v) > 0, and πd(v, u) > 0, where u ∈ κ+v ,
and U(v) is determined by Equation 1.
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In practice, a reward mechanism should be budget con-
strained. If not, the mechanism will be economically unfea-
sible for deployment. In our setting, the total rewards dis-
tributed to the players should not exceed a fixed portion ϑ of
the total aggregated task efforts.
Definition 5 (Budget Constraint). A reward mechanism π is
budget constrained if:

∑
v∈G π(v) ≤ ϑ ·

∑
v∈G tv , where ϑ

is a positive constant.
Another important constraint is that a reward mecha-

nism should limit indirect referrals to restrict the formation
of long referral chains. This property is usually called the
monotonicity constraint. A reward mechanism is monotonic
if direct referrals receive higher diffusion rewards than or
at least the same rewards as indirect referrals. The mono-
tonicity property encourages participants to form short dif-
fusion chains by offering more rewards. As a result, it limits
the scope of indirect rewards, which is desirable in prac-
tice because many successful referral chains are usually
short (Leskovec, Adamic, and Huberman 2007).
Definition 6 (Monotonicity). A reward mechanism π is
monotonic If v2 is a successor of v1, adding a direct suc-
cessor vi to v2 increases v1’s diffusion rewards πd(v

′

1) at
least as much as the diffusion rewards πd(v

′′

1 ) by adding a
direct successor vj to a successor of v2 , where tvi = tvj ,
i.e., πd(v

′

1) ≥ πd(v
′′

1 ).
In strategic diffusion, players should not have incentives

to delay performing the tasks to wait for a referral with a
more rewarding position in a social network G. To satisfy
this constraint, a reward mechanism should determine the
rewards for each player v ∈ V based on the subgraph Gv
rooted at v.
Definition 7 (Subgraph Constraint). A reward mechanism π
is subgraph-constrained if π(v) only depends on the rooted
subgraph Gv .

Multi-Winner Contests Mechanism
We present a novel reward mechanism called the Multi-
Winner Contests (MWC) mechanism. It has two key in-
gredients. The mechanism first calculates the virtual cred-
its for the diffusion contributions of each player with suc-
cessful referrals. It then determines the diffusion rewards by
holding a contest among players that are in his rooted sub-
graph. The MWC mechanism is computationally efficient
and satisfies several desirable properties, including false-
name-proofness, individual rationality, budget constraint,
monotonicity, and subgraph constraint.

Virtual Credits for Diffusion Contributions
For each newly joined player v that has exerted task efforts
tv , the MWC mechanism pays πt(v) = µ · tv (µ > 0) for his
task contributions and allocates virtual credits η·(tv)2 for his
diffusion contributions. If v has either directly or indirectly
referred player u ∈ κ+v to participate (tu > 0), his virtual
credits bv are computed by:

bv = η · (tv)2 + tv ·
∑
u∈κ+

v

∑
p∈Pvu

tu · ω(p) · λ|p| , (2)

where 0 < λ < 1, η ≥ λ/2, and Pvu is the set of paths from
v to u.

The initial allowance of virtual credits η · (tv)
2 serves

dual purposes. First, it ensures that each player has a pos-
itive amount of virtual credits to enter into the contests and
receives a positive share of diffusion rewards. Second, it al-
lows the mechanism to significantly reduce a player’s virtual
credits if he splits his task efforts. This dedicated design is
an essential step that makes false-name attacks unprofitable.
Note that tu · λ|p| is a typical tree incentive mechanism (i.e.,
geometric reward mechanism). The MWC mechanism ex-
tends it to a reward mechanism that applies to social net-
works by introducing the weights w(p). To incentivize play-
ers to exert higher task efforts, the MWC mechanism ampli-
fies the virtual credits for diffusion contributions by multi-
plying the player’s task efforts tv .

Diffusion Rewards
The MWC mechanism performs multi-winner contests to
decide the diffusion rewards. In the contests, the winners are
chosen simultaneously by a contest success function (CSF)
that compares the virtual credits of each player. A CSF de-
termines each player’s probability of winning the contest in
terms of all players’ efforts (Skaperdas 1996).

In general, there are two types of contest success func-
tions: the ratio form and the difference form (Skaperdas
1996). In the ratio form, the winning probabilities depend
on the ratio of efforts exerted by each player. In the differ-
ence form, they are determined by the difference in efforts
that each player has exerted. The ratio form can be naturally
applied to large contests that consist of many players, while
extending the difference form to contests with more than two
players is usually non-trivial and difficult (Jia, Skaperdas,
and Vaidya 2013). Strategic diffusion in social networks typ-
ically involves a large number of players. It is thus desirable
to use the ratio form CSFs for analytical convenience.

The ratio form CSFs typically predict contest outcomes
from the ratio of the efforts that each player has devoted.
For each node v ∈ G, the MWC mechanism holds a contest
for each subgraph Gv = (V ′, E′) rooted at v. If player v’s
virtual credits bv ≥ η · (tv)2, he will be allowed to enter into
the contests. Otherwise, player v makes no contributions and
receives 0 rewards. If v is allowed to enter into the contest,
his probability of winning is determined by a contest success
function: prob(v) = (bv)

σ∑
u∈V ′ (bu)

σ , where 0 < σ ≤ 1, and

bv ≥ η · (tv)2.
The parameter σ can be interpreted as the “noise” of a

contest. It captures the marginal increase in the probability
of winning caused by a higher effort and is crucial to the
outcomes of the contest (Jia, Skaperdas, and Vaidya 2013).
Contests with low σ can be regarded as poorly discriminat-
ing or “noisy” contests. That is, players with different efforts
may have a similar level of chance to win. Contests with
high σ can be regarded as highly discriminating in the sense
that players with higher efforts have a greater chance to win.
The contest success functions are imperfectly discriminat-
ing in the sense that with all of them, the prize at stake is
awarded probabilistically to one of the players with higher
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virtual credits leading to a higher probability of winning the
prize.

In the contest success function, each player’s probability
of success does not depend on his identity or the identities of
his opponents, but just on the efforts (i.e., virtual credits) of
the players. This property indicates that if in some cases two
players have identical efforts then their probabilities of suc-
cess must be equal and if all players were to exert identical
efforts, then each one of them would have a probability of
success equal to 1/n. Besides, a player’s probability of suc-
cess is independent of agents who have not exerted efforts.

The total rewards for diffusion contributions are πd = φ ·∑
u∈V ′ tu

deg−Gv (u)

deg−(u) , where φ > 0, and deg−Gv (u) denotes the
number of direct predecessors of u in Gv = (V ′, E′). Here,
deg−Gv (u) ≤ deg−(u). The diffusion rewards of v are thus
determined as:

πd(v) =
(bv)

σ∑
u∈V ′(bu)σ

· φ ·
∑
u∈V ′

tu ·
deg−Gv (u)

deg−(u)
. (3)

The MWC mechanism utilizes the probability of winning
to determine the proportion of the total diffusion rewards
for each player. This is because empirical evidence shows
that proportional-prize contests exert higher aggregated ef-
forts than winner-take-all contests (Cason, Masters, and
Sheremeta 2010; Sheremeta 2011). Besides, proportional-
prize contests also limit the degree of biases that discour-
age low-ability players without altering the performance
of stronger players (Cason, Masters, and Sheremeta 2010;
2018).

The MWC Mechanism
The MWC mechanism π = (π(v))v∈G uses a post-price
mechanism πt(v) = µ · tv to reward a player that exerts tv
task efforts. The total reward for player v includes both the
task rewards πt(v) and the diffusion rewards πd(v). Thus,
we have the total reward for player v:

π(v) =

{
µ · tv + πd(v) if bv ≥ η · (tv)2
0 otherwise ,

(4)

where µ ∈ R>0 is the reward parameter that characterizes
to what extent the principal values agents’ efforts, and bv ,
πd(v) are defined by Equations 2 and 3, respectively.

The MWC mechanism π (See Algorithm 1 for an im-
plementation) is computationally efficient. The social net-
workG = (V,E) can be implemented using adjacency lists,
where each node maintains a list of all its adjacent edges. It
takesO(|V |2+ |V | · |E|)) time to compute the virtual credits
(See Lines 1–6). Computing the total rewards (See Lines 7–
9) also takes O(|V |2 + |V | · |E|)) time. Therefore, the time
complexity for the MWC mechanism isO(|V |2+|V |·|E|)).

The MWC mechanism achieves false-name-proofness by
introducing an initial allowance ηv · (tv)2 of virtual credits
for each player v that has exerted non-zero task efforts. If
the task efforts reduce, the allowance will decrease quadrat-
ically. False-name-attacks are not profitable because split-
ting task efforts into smaller pieces causes a larger degree
of reduction than the degree of increase in virtual credits.

Algorithm 1 Multi-Winner Contests Mechanism

Input: G- a social network; S-seed nodes
Output: π-payment for each node v ∈ G
Initialize: π(v) = 0 for all v ∈ G

1: for each newly joined player v ∈ G and tv > 0 do
2: bv ← η · (tv)2
3: for each vi ∈ κ−v and tvi > 0 do
4: bvi ← bvi + tvi · tv ·

∑
p∈Pviv

w(p) · λ|p|

5: end for
6: end for
7: for each vj in Gv do
8: Compute the rewards π(vj) by Equation 4
9: end for

10: return π

This elegant design of the virtual credits enables the MWC
mechanism to be manipulation-resistant to all the three types
of false-name attacks. We postpone all the proofs to the Ap-
pendix.

Theorem 1 (False-Name-Proofness). The MWC mechanism
π is false-name-proof.

The MWC mechanism employs a post-price mechanism
πt to determine the rewards for players’ task efforts. For the
diffusion rewards, each player that has made successful re-
ferrals is guaranteed to receive a positive amount of rewards.
Thus, it follows that the MWC mechanism satisfies the indi-
vidual rationality property.

Theorem 2 (Individual Rationality). The MWC mechanism
π is individually rational.

The MWC mechanism is budget-constrained because it
allocates a fixed portion of rewards (i.e., µ·

∑
v∈G tv) for the

task efforts and a fixed number of rewards (i.e., φ ·
∑
v∈G tv)

for diffusion rewards.

Theorem 3 (Budget Constraint). The MWC mechanism π is
budget-constrained.

Under the MWC mechanism, players with direct referrals
are given more virtual credits than if they have indirect refer-
rals. This is achieved by introducing the discounting factor
λ < 1. For the same level of task efforts, the virtual credits
for diffusion rewards decrease as the distance of path be-
tween the referrer and the successor increases.

Theorem 4 (Monotonicity). The MWC mechanism π is
monotonic.

Since the diffusion rewards are determined by a contest
among players in a subgraph rooted at player v, it follows
that the MWC mechanism is subgraph constrained.

Theorem 5 (Subgraph Constraint). The MWC mechanism π
satisfies the subgraph constraint.

Experiments
Before describing the results, we introduce the experimental
settings.
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Experimental Settings
We used four publicly available datasets: Twitter (Hodas
and Lerman 2014), Flickr (Cha, Mislove, and Gummadi
2009), Flixster (Goyal, Bonchi, and Lakshmanan 2011), and
Digg (Hogg and Lerman 2012). These datasets included
anonymized timestamps that could be used to estimate the
influence probabilities needed for simulating the diffusion
process of social networks (Goyal, Bonchi, and Lakshmanan
2010). For each dataset, we first estimated the influence dif-
fusion probabilities for each node using the learning algo-
rithms by Goyal, Bonchi, and Lakshmanan (2010) with the
Bernoulli distribution under the static model. We then simu-
lated the influence diffusion process with the general thresh-
old model (Kempe, Kleinberg, and Tardos 2003) based on
the estimated diffusion probabilities. After preprocessing,
each dataset produced a largest weakly connected compo-
nent. See Table 1 for dataset configuration.

Dataset #Nodes #Edges #Seeds M.D. A.D.

Twitter 323,185 2,148,717 1,715 8,822 52

Flickr 145,305 2,149,882 768 6,731 34

Flixster 95,969 484,865 502 3,109 27

Digg 17,817 128,587 107 1,375 20

Table 1: Dataset configuration: M.D. – maximum degree,
A.D. – average degree.

We modeled players’ abilities with the simulation method
by Burnap et al. (2013). We considered four groups of play-
ers: homogeneous (HO)-players with similar levels of abili-
ties; heterogeneously low (HL)-players with different level
of abilities, and the average abilities are low; heteroge-
neously high (HH)-players with different level of abilities,
and the average abilities are high; and distinct (DI)- a por-
tion of players with low average abilities, the other portion
with high average abilities. Each player’s ability was gen-
erated according to a Gaussian distribution with means that
follow the probability density function (See Figure 3). Let ρv
be player v’s ability, then his cost coefficient δv = 1− ρv .

In our experiments, we set λ = 0.5 as it was standard
in many geometric reward mechanisms. In practice, a stake-
holder usually sets ϕ ≤ 1 to make profits, but ϕ should be
as close to 1 as possible to encourage players to participate.
We let ϕ = 1. To encourage players to join, we set µ = 0.9,
and φ = ϕ − µ = 0.1. Note that η ≥ λ/2 = 0.25, we set
η = 0.25. For each group of players in each dataset, we var-
ied the noise factors from 0 to 1 with an increment of 0.05.
For each result (i.e., a data point) obtained, we ran the re-
spective experiment 20 times. We ran all the experiments on
the same 3.7GHz 6-core Linux machine with 32GB RAM.

Results
For each dataset, we compared the total aggregated task ef-
forts by each group of players as the noise factor σ varied
(See Figure 4). Figure 4a shows that the total contributions
were quite low ( ≤ 2, 000) when the noise factor was zero.
The main reason is that players had no incentives to make
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Figure 3: Probability density function of the means of play-
ers’ abilities by four different groups: HO, HL, HH and DI.

extra diffusion contributions (See Figure 5a) since the diffu-
sion rewards were determined by a random lottery with no
dependence upon the efforts of players when σ = 0.

As σ began to increase, the total contributions experi-
enced a significant growth, which was largely due to the in-
crease of players (See Figure 5a). The growth continued un-
til it reached the peak where the total contributions began to
shrink gradually (See Figure 4). The decline continued un-
til it started to level off when the noise factor exceeded 0.8
(See Figure 4). An explanation for this trend is that when
σ increased, the MWC mechanism values higher diffusion
efforts more. When σ is low, the reward mechanism favors
players with average abilities. These players usually take up
a large portion of the population. When σ reached a point,
the mechanism no longer leaned toward these players. It be-
came more appealing to high-ability players than the low-
ability or ordinary-ability players (See Figure 5b). However,
all groups except the HH group included a small portion of
high-ability players. That also explains why the HH group
experienced a slighter decline than the other groups. Similar
observations were found in social networks.

Players in the HH and HO groups typically performed
better than the other two groups. As the noise factor σ in-
creased, the HO groups experienced the highest degree of
growth in total task efforts. Two factors contributed to this
phenomenon. First, HO groups mainly consisted of players
with normal abilities (See Figure 3a). Second, when σ in-
creased to a point, the contests favored players with com-
mon abilities. Figure 4 shows that the total contributions of
the DI groups were the most invariant to the noise factors.
This is because the DI groups lacked a population mass of
players with ordinary abilities (See Figure 3d). The obser-
vations applied to all the three datasets (See Figure 4). De-
spite that the optimal noise factors differed in populations
and network structures, there were “sweet spots” for stake-
holders to maximize the total efforts. In our experiments, all
the optimal noise factors fell within the range between 0.45
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(c) Flixster.
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Figure 4: A comparison of total contributions with different
noise factors.
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Figure 5: A comparison of number of participants and aver-
age contributions per player on Twitter.

and 0.65 (See Figure 4), which suggested that medium noise
factors were typically superior than the others.

To study how false-name attacks affect players’ rewards,
we measured the total rewards earned by a player that had
created different numbers of false identities. For each net-
work, we considered a population consisting of the same
percentage (25%) of players from each of the four groups:
HO, HL, HH, and DI. We compared four noise factors: 0.4,
0.5, 0.6, and 0.7 with all the four networks.

Results show that the rewards earned by each player re-
duced significantly as the number of false identities in-
creased from zero. The decline then slowed down until the
rewards remained almost steady (See Figure 6). These trends
were observed on all the groups of experiments that were
given different noise factors and different network struc-
tures. An explanation is that when a player created a small
number of false identities, his task efforts would be diluted
to each false identity. This substantially reduced the player’s
virtual credits and his diffusion rewards. When the number
of false identities continued to increase, there was little room
to reduce. This consistent results further echoed our theoret-
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Figure 6: Rewards (normalized) obtained by a player that
creates different number of false identities for groups with
different noise factors.

ical analysis that the MWC mechanism is false-name-proof.
In summary, experimental results indicate that stakehold-

ers can maximize the total task contributions by selecting ap-
propriate (typically moderate) noise factors for the contests.
It further demonstrates that players will not gain by creating
false identities. The results also show that the MWC mech-
anism can scale to large social networks with hundreds of
thousands of nodes.

Conclusion
In this paper, we have introduced a novel multi-winner con-
tests mechanism for strategic diffusion in social networks.
The mechanism is false-name-proof and individual ratio-
nal for players with successful referrals. It is computation-
ally efficient, budget-constrained, monotonic, and subgraph-
constrained. Experiments on four real-world social network-
ing datasets show that stakeholders can boost the perfor-
mance of players by selecting proper noise factors. They fur-
ther indicate that the MWC mechanism is both false-name-
proof and scalable. Our work demonstrates the promising
prospects of bringing contests to mechanism design.

Our work opens several exciting avenues for future re-
search. In our model, agents do not discount the future and
do not have uncertainties about the delivery of the rewards.
In many real-world activities (e.g., crowdfunding, and in-
vestments), however, agents need to consider future risks
when they make decisions. Another fertile area is to de-
velop novel methods to automatically select optimal noise
factors of MWC mechanisms for different concerns (e.g.,
profit maximization). We also find it very rewarding to inte-
grate contests into the design of truthful mechanisms (Shen,
Lopes, and Crandall 2016; Zhao et al. 2018).
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Appendix
Proof of Theorem 1
Proof. By Definition 2, the task rewards for player v
remain unchanged even if he creates replicas. To prove
π(v) ≥

∑
r∈R π(r), it suffices that if the v’s diffusion

rewards are greater than or equal to the sum of diffusion
reward of her false identities. That is, πd(v) ≥

∑
r∈R πd(r).

To prove this condition holds, we first show that the vir-
tual credits earned by v are strictly greater than the sum
of the virtual credits earned by the replicas R. That is,
bv >

∑
r∈R br. There are three scenarios according the

types of false-name attacks: type 1 attacks, type 2 attacks,
and hybrid attacks. We prove each case in turn:

• Type 1 attacks: By Equation 2, the virtual credits of origi-
nal node v: bv = η ·(tv)2 + tv ·

∑
u∈κ+

v

∑
p∈Pvu tu ·ω(p) ·

λ|p|. For simplicity, we let b(v) = η · (tv)2 + tv · C(v).
Note that node v shares the same successors with the
replica rm. Therefore, we have the virtual credits for
replica rm: brm = η · (trm)2 + trm ·

∑
u∈κ+

r

∑
p∈Pru tu ·

ω(p)·λ|p| = η·(trm)2+trm ·
∑
u∈κ+

v

∑
p∈Pvu tu ·ω(p)·λ|p|

= η · (trm)2 + trm · C(v).

Similarly, we have rm−1: brm−1 = η · (trm−1)2 +

trm−1

∑
u∈κ+

rm−1

∑
p∈Prm−1u

tu · ω(p) · λ|p| =

η ·(trm−1
)2+trm−1

·
∑
u∈κ+

rm−1

∑
p∈Prm−1u

tu ·ω(p)·λ|p|

= η·(trm−1)2+λtrm−1 ·
∑
u∈κ+

rm

∑
p∈Prmu

tu·ω(p)·λ|p|+
λtrm−1

· trmη · (trm−1
)2 +λtrm−1

·C(v) +λ · trm−1
· trm .

Likewise, we have: brm−2
= η · (trm−2

)2 + λ2trm−2
·

C(v)+λ2trm−2
·trm+λtrm−1

trm−2
, ..., bv′1 = η ·(tr1)2+

λm−1tr1 ·C(v)+λtr1 ·tr2+λ2·tr1 ·tr3+...+λm−1tr1 ·trm .

Now we have the sum of the virtual credits for all replicas:∑
r∈R

br = br1 + ...+ brm−1 + bbm

= η · [(tr1 )
2 + ...+ (trm−1 )

2 + (trm )2]

[λm−1tr1 + λm−2tr2 + ...+ λtrm−1 + trm ] + trm ·

C(v) + λtr1 · tr2 + λ2 · tr1 · tr3 + ...+ λtrm−1 · trm
< η · [(tr1 )

2 + ...+ (trm−1 )
2 + (trm )2] + [tr1+

tr2 + ...+ trm ] · C(v) + tr1 · tr2 + ...+ trm−1 · trm
= η[tr1 + tr2 + ...+ trm ]2 + tv · C(v)+

(λ− 2η)[tr1 · tr2 + ...+ trm−1 · trm ]

≤ η(tv)
2 + tv · C(v)

= b(v) .

The first inequality holds since 0 < λ < 1. The second
inequality holds because λ ≥ η/2. Thus, bv >

∑
r∈S br.

• Type 2 attacks: Note that replicas r1, ..., rm share the
same successors with node v:

brj = η · (trj )2 + trj ·
∑
u∈κ+

rj

∑
p∈Prju

tu · ω(p) · λ|u|

= η · (trj )2 + trj ·
∑
u∈κ+

v

∑
p∈Pvu

tu · ω(p) · λ|p|

= η · (trj )2 + trj · C(v) .

Thus, we have:∑
r∈R

br = η · [(tr1)2 + ...+ (trm−1)2 + (trm)2]+

[tr1 + tr2 + ...+ trm ] · C(v)

< η · [tr1 + tr2 + ...+ trm ]2 + tv · C(v)

= bv .

The inequality is by Multinomial Theorem. Thus,
bv >

∑
r∈R br.

• Hybrid attacks: Since hybrid attacks are combinations of
type 1 attacks, and type 2 attacks, it is trivial to know that
under hybrid attacks bv >

∑
r∈R br.

To prove πd(v) ≥
∑
r∈R πd(r), it suffices if the following

inequality holds:

(bv)
σ∑

u∈VGv
(bu)σ

>
∑
r∈R

(br)
σ∑

u∈VGr
(bu)σ

. (5)

Note that Gr = Gv \ {v} ∪ R. Let x = (bv)
σ , y =∑

u∈VGv
(bu)σ , z =

∑
r∈R(bu)σ , and q =

∑
u∈VGr

(bu)σ ,
we have 0 < x

y < 1, x > z > 0, and y > q > 0. Equation 5
is equivalent to: xy >

z
q . Since 0 < x

y < 1, we have:

z

q
/
x

y
=
x− d
y − d

/
x

y
=

(x− d)y

x(y − d)
=

1− d/x
1− d/y

< 1 . (6)

Thus, x
y > z

q . Therefore, πd(v) ≥
∑
r∈RS πd(r). Now it

follows that the reward mechanism π is false-name proof.

Proof of Theorem 2
Proof. By Equations 1 and 4 , we have player v’s expected
utility: U(v) = µ·tv+πd(v)−δv ·tv = (µ−δv)·tv+πd(v).
Since the parameter µ is known to the player in advance,
µ− δv ≥ 0. Since πd(v) > 0 if player has exerted diffusion
contributions, we have U(v) > 0 for all players that have
exerted both task efforts and diffusion contributions.

Proof of Theorem 3

Proof. By Equation 4,
∑
v∈G π(v) =

∑
v∈G(µ·tv+πd(v)).

By Equation 3,
∑
v∈G πd(v) ≤ φ

∑
v∈G tv . Thus, we have∑

v∈G π(v) ≤ (µ + φ)
∑
v∈G. Let ϑ = µ + φ, we have∑

v∈G π(v) ≤ ϑ
∑
v∈G.
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Proof of Theorem 4
Proof. Consider that the virtual credits of v1 is bv1 = B
when no successor is added. Now adding a direct successor
vi to v2, v1’s virtual credits bv′1 = B+

∑
p∈Pv1vi

λ|p|·tv1 ·tvi ·
ω(p). Similarly, if adding a direct successor of a successor of
v2, we have v1’s virtual credits: bv′′1 = B +

∑
p∈Pv1vj

λ|p| ·
tv1 · tvj · ω(p). Note that dist(v1, vi) < dist(v1, vj), and
tvi = tvj , it suffices to show that b′v1 > b′′v1 . Following the
same method shown in Equation 6, we have the diffusion
rewards: πd(v

′

1) ≥ πd(v
′′

1 ).

Proof of Theorem 5
Proof. According to Equation 3, player v virtual credits and
consequentially the diffusion rewards are determined by a
contest among players in the graph rooted at v, Gv . It fol-
lows that the MWC mechanism satisfies the subgraph con-
straint.
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