Consensus Adversarial Domain Adaptation


  • Han Zou University of California, Berkeley
  • Yuxun Zhou University of California, Berkeley
  • Jianfei Yang Nanyang Technological University
  • Huihan Liu University of California, Berkeley
  • Hari Prasanna Das University of California, Berkeley
  • Costas J. Spanos University of California, Berkeley



We propose a novel domain adaptation framework, namely Consensus Adversarial Domain Adaptation (CADA), that gives freedom to both target encoder and source encoder to embed data from both domains into a common domaininvariant feature space until they achieve consensus during adversarial learning. In this manner, the domain discrepancy can be further minimized in the embedded space, yielding more generalizable representations. The framework is also extended to establish a new few-shot domain adaptation scheme (F-CADA), that remarkably enhances the ADA performance by efficiently propagating a few labeled data once available in the target domain. Extensive experiments are conducted on the task of digit recognition across multiple benchmark datasets and a real-world problem involving WiFi-enabled device-free gesture recognition under spatial dynamics. The results show the compelling performance of CADA versus the state-of-the-art unsupervised domain adaptation (UDA) and supervised domain adaptation (SDA) methods. Numerical experiments also demonstrate that F-CADA can significantly improve the adaptation performance even with sparsely labeled data in the target domain.




How to Cite

Zou, H., Zhou, Y., Yang, J., Liu, H., Das, H. P., & Spanos, C. J. (2019). Consensus Adversarial Domain Adaptation. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 5997-6004.



AAAI Technical Track: Machine Learning