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Abstract

In information theory, Fisher information and Shannon infor-
mation (entropy) are respectively used to quantify the uncer-
tainty associated with the distribution modeling and the un-
certainty in specifying the outcome of given variables. These
two quantities are complementary and are jointly applied to
information behavior analysis in most cases. The uncertainty
property in information asserts a fundamental trade-off be-
tween Fisher information and Shannon information, which
enlightens us the relationship between the encoder and the de-
coder in variational auto-encoders (VAEs). In this paper, we
investigate VAEs in the Fisher-Shannon plane, and demon-
strate that the representation learning and the log-likelihood
estimation are intrinsically related to these two information
quantities. Through extensive qualitative and quantitative ex-
periments, we provide with a better comprehension of VAEs
in tasks such as high-resolution reconstruction, and represen-
tation learning in the perspective of Fisher information and
Shannon information. We further propose a variant of VAEs,
termed as Fisher auto-encoder (FAE), for practical needs to
balance Fisher information and Shannon information. Our
experimental results have demonstrated its promise in im-
proving the reconstruction accuracy and avoiding the non-
informative latent code as occurred in previous works.

Introduction

The common latent variable models fit py(x, z)
po(z)pe(x|2) in order to model the data « with a latent vari-
able z as representation. Variational Autoencoders (VAEs)
(Kingma and Welling 2014), recently as one of the most
popular latent variable models, maximize the evidence lower
bound (ELBO) in an encoding/decoding mechanism.

E

x~data

L= E [logpe(z|z)] — Dki (g4(2]2)||p(2))

z~qy

where pg(x|z) and gg4(z|z) are encoder and decoder imple-
mented with neural networks parameterized by 6, ¢; Dy de-
notes the Kullback-Leibler divergence. The learning targets
of VAEs may be interpreted in the following two perspec-
tives. In the perspective of variational optimization (Cre-
mer, Li, and Duvenaud 2018), VAEs aim to learn a proper
model by maximum likelihood with py(x|z). In the per-
spective of representation learning (Bengio, Courville, and
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Vincent 2013), VAEs target to learn latent codes that are
sufficiently encoded with information about the input by
¢s(z|x). Several variants of VAEs (Van Oord, Kalchbren-
ner, and Kavukcuoglu 2016; Van den Oord et al. 2016;
Chen et al. 2017; Zhao, Song, and Ermon 2017) have been
developed based on above two perspectives in recent years.

In recent studies, it has been reported that VAEs are diffi-
cult to balance between the representation learning and like-
lihood maximizing. For instance, the latent variable gen-
erated by the encoder is approximately ignored when the
decoder is too expressive (Bowman et al. 2015). As dis-
cussed in (Alemi et al. 2018), the evidence lower bound
(ELBO) lacks a measure in the quality of the representa-
tion, since the KL divergence Dxy, (g4 (z|x)||p(%)) only con-
trols the way VAE encodes a representation. Several studies
in VAEs (Chen et al. 2017; Zhao, Song, and Ermon 2017)
have attempted to improve the balance between the learned
representation quality and ELBO maximization on the basis
of information theory. A Shannon entropy-based constraint
is introduced to assess the quality of representation learn-
ing when optimizing the ELBO, so as to guarantee that suf-
ficient information of the observation flows into the latent
code. For example, (Phuong et al. 2018) optimized ELBO
plus a mutual information regularizer to explicitly control
the information stored in latent codes. Although it is useful
to consider mutual information (a member of Shannon fam-
ily) in VAE encoding for representation learning, how these
information quantities affect VAEs has not yet been theoret-
ically analyzed so far. Besides, previous works mainly lever-
age the Shannon information, which usually suffers from the
intractability in computing, yielding an approximation sur-
rogate (Phuong et al. 2018).

In information theory, the uncertainty property (Dembo,
Cover, and Thomas 1991; Vignat and Bercher 2003) has
revealed a trade-off between Fisher information and Shan-
non information, which quantify the uncertainty associated
with distribution modeling and the entropy in the predicted
values of variables respectively (Rosso, Olivares, and Plas-
tino 2015). Fisher-Shannon (FS) information plane (Vignat
and Bercher 2003) is proposed to analyze the complemen-
tarity between Fisher information and Shannon information.
In this paper, based on the uncertainty property, we attempt
to investigate VAEs in FS information plane, which illus-
trates a novel insight to perform a theoretical analysis with



VAESs and show that representation learning with latent vari-
able models via Maximum likelihood estimation is intrinsi-
cally related to the trade-off between Fisher information and
Shannon entropy. Based on the above findings, we propose
a family of VAEs regularized by Fisher information, named
Fisher auto-encoder (FAE), to control the information qual-
ity during encoding/decoding. Finally, we perform a range
of experiments to analyze a variety of VAE models in the
FS information plane to empirically validate our findings. In
addition, FAE is shown to not only provide a novel insight
in the information trade-off, but can also improve the recon-
struction accuracy and the representation learning.

Related work

Information uncertainty: Fisher information and Shannon
information are considered important tools to describe the
informational behavior in information systems respectively
in the distribution modeling view and in the variable view
(Brunel and Nadal 1998). The generalization of Heisen-
berg Uncertainty Principle (Schrodinger 1930) into infor-
mation system demonstrates that Fisher information and
Shannon information are intrinsically linked, with the un-
certainty property, where higher Fisher information will re-
sult in lower Shannon information and vice versa (Dembo,
Cover, and Thomas 1991). With this property, Fisher in-
formation and Shannon information are considered comple-
mentary aspects and be widely used in solving dual problem
when one aspect is intractable (Martin, Pennini, and Plas-
tino 1999). To better take advantage of this property, (Vignat
and Bercher 2003) construct the Fisher-Shannon informa-
tion plane for signal analysis in joint view of Fisher-Shannon
information.

VAEs in information perspective: Variational autoen-
coders (Kingma and Welling 2014), with a auto-encoding
form, can be regarded as an information system serves two
goals. On one hand, we expect a proper distribution esti-
mation to maximize the marginal likelihood; on the other
hand, we hope the latent code can provide sufficient infor-
mation of data point so as to serve downstream tasks. To
improve the log-likelihood estimation, several works, such
as PixelCNN and PixelRNN (Van Oord, Kalchbrenner, and
Kavukcuoglu 2016; Van den Oord et al. 2016) model the
dependencies among pixels with autoregressive structure to
achieve an expressive density estimator. As for the latent
code, plenty of works address it in the perspective of Shan-
non information (Chen et al. 2017). Mutual information, an
member of Shannon family, is applied to measure the mutual
dependence between datapoint = and latent code z (Zhao,
Song, and Ermon 2017; Alemi et al. 2018). The leverage of
mutual information is achieved with Maximum-Mean Dis-
crepancy (Zhao, Song, and Ermon 2017) and Wasserstein
distance (Tolstikhin et al. 2018). More generally, (Phuong et
al. 2018) regularize the mutual information in VAE’s objec-
tive to control the information in latent code.

Effects of Fisher information and Shannon informa-
tion: Fisher information and Shannon information (typically
we call entropy), as complementary aspects, possess their
properties. In (Rosso, Olivares, and Plastino 2015), the en-
tropy is explained as a measure of “global character” that
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is invariant to strong changes in the distribution, while the
Fisher information is interpreted as a measure of the abil-
ity to model a distribution, which corresponds to the “lo-
cal” characteristics. The characteristics of these two sides
have been taken into advantages of several existing works,
e.g., entropy has been introduced in improving deep neu-
ral networks on tasks like classification (Silva, de S4, and
Alexandre 2005; Saxe et al. 2018); FI has been introduced
to to evaluate neural network’s parameter estimation (Tu et
al. 2016; Desjardins et al. 2015). To better understand how
these two perspectives affect the mechanism of VAEs, we
study VAE:s in the Fisher-Shannon information plane to pro-
vide a complete understanding of VAEs in a joint view of
Fisher information and Shannon information.

Fisher-Shannon Information Plane

In this section, we first present the information uncertainty
property to link the Fisher information and the Shannon in-
formation (Dembo, Cover, and Thomas 1991) of the random
variable. After that, a Fisher-Shannon information plane (Vi-
gnat and Bercher 2003) is constructed to jointly analyze
the characteristics of the random variable on its distribution.
This provides the simple basics to understand VAEs with the
Fisher-Shannon information plane.

Fisher-Shannon Information Uncertainty property

In information theory, considering a random variable X,

whose probability density function is denoted as f(x), the

Fisher information' for X and its Shannon entropy can be
dx

formulated as:
P 2
[(Ger) 56 "

Shannon Entropy: H(X) = —/f(x) log f(x)dx

Fisher Information:

J(X)

Above two information quantities are respectively related to
the precision that the model fits in observed data and the un-
certainty in the outcome of the random variable. For conve-
nience to use in deduction, Shannon entropy is usually trans-
formed to the following quantity which is called the entropy
power (Stam 1959):

exp(2H(X))

N(X) = 2mexp(1)

2
The measure of A(X) and J(X) verifies a set of resem-
bling inequalities in information theory (Stam 1959). Specif-
ically, one of the inequalities connecting the two quantities
and being tightly related to the phenomena studied in VAEs,
is the uncertainty inequality (Dembo, Cover, and Thomas
1991), which is formulated as:

NX)T(X) =1 3)

"Note that, we follow the non-parametric Fisher information
definition that differentiates on random variables, which can be

transformed with a translation of parameter from parametric ver-
sion (Stam 1959).



where the equality holds when the random variable X
is a Gaussian variable. Note that this inequality pos-
sesses several versions; in the case of a random vector
X = (X1, Xo,...,X,), the corresponding Fisher informa-
tion turns into a n X n dimensional Fisher information matrix
and we need to compute the trace of this matrix tr(J (X))
(see (Dembo 1990)) and we have N (X) - tr(J (X)) > n.

When the distribution of given variable is fixed, the prod-
uct of the Fisher information ¢r(J (X)) and the entropy
power A/ (X) is a constant that is greater or equal to 1, which
depends on the distribution form, the dimension of the ran-
dom vector, efc. We can further formulate this property as
follow:

N(X) - tr(T (X)) = K @

where K is a constant number and K > 1. Eq. (3) and (4)
indicate the measure of Fisher information and Shannon in-
formation exists a trade-off between these two quantities.

Fisher-Shannon Information Plane

To facilitate the analysis of above two information quantities
together, an information plane based on the Fisher informa-
tion and the Shannon entropy power is proposed in (Vignat
and Bercher 2003) and we generalize it as follows,

D ={(N(X), tr(T(X))) | N(X) > 0,tr(T (X)) > 0and

N(X) - tr(T (X)) > 1}. (%)

where D denotes a region C R2, which is limited by
the Gaussian case. This plane consists of several Fisher-
Shannon (FS) curves NV (X) - tr(J (X)) = K, which char-
acterizes the random variable with different distributions.
As discussed in (Alemi et al. 2018), the quality of la-
tent variable is hard to measure in maximizing ELBO, and
various VAEs, like (Chen et al. 2017; Higgins et al. 2017)
have been proposed to balance the trade-off between repre-
sentation learning and optimization. In the FS plane, differ-
ent VAEs can be analyzed jointly with Fisher information
and Shannon information. By observing their location in FS
plane, we can identify the characteristic of this VAE model.
In addition, from the uncertainty property between Fisher
information and Shannon information, these two quantities
are shown tightly connected. As shown in Eq. (4), when the
distribution of given random variable is fixed, the Fisher in-
formation and Shannon entropy power’s product is a con-
stant, where the trade-off exists. We can take advantage
of this trade-off to avoid the intractability in Shannon in-
formation computing. In this paper, we propose a family
of VAEs that control the Fisher information, named Fisher
Auto-Encoder (FAE), which allows a more accurate descrip-
tion in situations where the Shannon information shows lim-
ited dynamics (Martin, Pennini, and Plastino 1999) in VAEs.
The details of FAE will be discussed in the next section.

The Fisher Auto-Encoder

As shown in the previous section, one can apply either Fisher
information or Shannon entropy power to control the trade-
off between the likelihood estimation p(z) and the depen-
dence between data x and the latent code z. In this section,
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we come up with a family of VAEs that takes advantage of
the Fisher information, named Fisher Autoencoder (FAE),
and analyze its characteristics in this section.

Fisher Information Control in VAE

The Fisher AutoEncoder aims to to control the Fisher in-
formation quantity in the objective. Thus, the objective be-
comes to maximize the evidence lower bound (ELBO) with
constraint of Fisher information and we reformulate the
VAE’s objective as follows:

mix B | B llogp(el, )] - D (4l 9)lo(2)
s.t. tr(J)(x) = F,, tr(J)(z)=F,

(6)

where Dg;, denotes the Kullback-Leibler divergence (Joyce
2011); F, and F, are positive constant that denote the de-
sired Fisher information value. A large value of F, (resp.
F,) implies we favor a precise distribution estimation in the
model parameterized by 6 (resp. ¢); while a low value of F,
(resp. F,) indicates we weaken the distribution modeling to
increase the Shannon entropy power.

To solve the scenario described in Eq. (6), we transfer this
optimization problem into a Lagrangian objective, formu-
lated as:

LF(ez(b) = E

xT~p

[ B, togata.0)] = Dr (a1

ELBO

(7N
— s

tr(J)(z) — F:

A

tr(J)(z) — Fo

FI control in encoder FI control in decoder

Now the objective consists of three parts, the ELBO to max-
imize, and two Fisher information regularizers in encoder
and decoder, where )\, and )\, are positive constant that con-
trol the regularizers. With this objective, we can control the
Fisher information in encoder/decoder with an expected de-
sired value F’, /. In the most cases, the calculation of Fisher
information is not difficult. We can estimate the Fisher in-
formation directly by its definition.

Characteristic of FAE: an example of FI
regularization in Gaussian encoder

Here we give a FAE exemplar that only controls the Fisher
information in encoder, which means we set A\, in Eq. (7)
as zero. In this model, we assume that all random variables
are of dimension 1 (i.e. in the scalar case) for simplicity in
presentation. The FAE objective is formulated as:

L=E | E [logp(x|z,9)]]
a~p |2y

- B [Dxi(a(zlz, 9)l[p(=))] — A- ®)

J(Z)_Fz

R($,6)



This objective consists of a reconstruction term and a gener-
alized regularizor R (¢, 0) that considering the Fisher infor-
mation other than KL divergence. Same to the VAE (Kingma
and Welling 2014), both prior distribution py(z) = N (0,1)
and posterior approximation ¢4 (z|z) are Gaussian, thus the
KL-divergence can be analytically computed as:

©))

where 1 and o respectively correspond to the mean and stan-
dard derivation of a Gaussian distribution. The Fisher infor-
mation can be easily computed by definition:

gt = [ (Zaten)) =
(10)

q(z|z)
Finally, putting Eq. (9) and Eq. (10) together, we have the
following regularizer R (¢, 0),

—Dxw (q(z]z, §)|Ip(2)) = % (1+10g((0)?) — ()? ~ (0)*

o?(x)

R(9,0) = =Dk (q(zlz, §)|IP(2)) — A= |T (2) — F%

1
~ _F,

o2
(11)

Considering the KL-divergence term in the original
VAEs (Kingma and Welling 2014), the optimal is reached at
o2 = 1, which aligns the posterior g, (z|z) to a normal dis-
tribution NV (0, 1). However, in Eq. (11), we can observe that
the variance is also penalized by the desired Fisher informa-
tion value F,, which will push the variance to approach zero
when F, is large or make the variance larger than 1 when F),
is picked as a small value.

In the above discussion, we analyze the characteristics of
FAE in variance control. This property corresponds to the
inequality of Cramer-Rao, from which the uncertainty prin-
ciple shown in Eq. (3) can be derive (Dembo, Cover, and
Thomas 1991). Given a stochastic variable X of mean y and
variance o2, the Fisher information is the lower bound of the
variance in a non-biased estimation:

1

J(X)’
the equality holds if and only if X is Gaussian. This inequal-
ity gives us the first impression of the characteristic of Fisher
information: When FI is in a low value, the variance of the
estimation is forced to be high, causing larger uncertainty
of the model estimation. Thus, we need to enlarge the FI to
make the variance more controllable.

((1+108((0)%) = (1)* = (@) = A

N | =

o3 > (12)

Connection to the Mutual Auto-Encoder

In this section, we demonstrate the connection between the
Fisher Auto-Encoder and the Mutual Auto-Encoder (MAE)
(Phuong et al. 2018), which is representative in the family
of VAEs that leverage the Shannon information.

As discussed in the previous section, the product of Fisher
information and entropy power is a constant when the dis-
tribution of variable is fixed, as shown in Eq. (4). We can
derive:

5920

log(N(Z]X)) = log(K) — log(T (Z| X))

<= log(J (Z|X)) = —2H(Z|X) + constant. (13)

where the FI regularizor in FAE is equivalent to a regularizor
of the conditional entropy H(Z|X).

Looking back into the MAE proposed in (Phuong et al.
2018), this model controls the mutual information between
latent variable z and data x as follows:

L= zEp LEM logp(x|z,0)] — Dkr (¢(2|z, ¢)||p(2))
ELBO
- C"I(az,z) - M‘
N

MI regularizor

where C' and M are positive constants that respectively con-
trol the information regularization and the desired mutual
information quantity. Since the mutual information is diffi-
cult to compute directly, the mutual information Z(x, z) is
inferred using Gibbs inequality (Barber and Agakov 2003):
f(;v,z) =H(z) — H(z|x) ”
>H(:)+ B flogro(zle) (Y
x,z~p

where 1, (z|x) is a parametric distribution that can be
modeled by a network. The objective is to maximizing
E, . [log r,(z|z)] in Eq. (14) with the constraint M. Thus,
MAE intrinsically controls the mutual information by con-

trolling the conditional entropy:

IL(z, z) = H(z) — H(z|2)

— H(2) — H(|x). (15

with M of large value, the conditional entropy H(Z|X) can
minimized more to obtain a larger mutual information, and
vice versa. FAE can also set constraint F' to control the con-
ditional entropy H(Z|X) (or H(X|Z)). As Eq. (13) shows,
using Fisher information, the FI regularizers are equivalent
to the regularizers of the conditional entropy; thus the mu-
tual information between X and Z can also be assessed
without derive approximative upper or lower bounds. FAE
can thus implicitly control the mutual information Z(X, Z)
by setting proper Fisher information constraint F'.

Experiments

In this section, we perform a range of experiments to inves-
tigate the Fisher-Shannon impacts in VAEs. Meanwhile, we
expose how the Fisher Auto-Encoder can improve VAEs in
encoding/decoding with the Fisher information constraint.

Experiment Goals and Experimental Settings

As discussed, the entropy power and Fisher Information cor-
responds to different characteristics. Thus, we aim to explore
these characteristics and give corresponding analysis in or-
der to give a better understanding of existing VAE variants.
Some specific goals are summarized as:
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Figure 1: (Best view in color) Visualization of VAE models in the Fisher-Shannon Plane (left) and visualization of FAE’s
training process in the plane. (right, the color bar indicates the training) epoch.

Explore several variants of VAEs models’ characteristics
in the FS plane.

Explore the characteristics of latent code w.rz. the Fisher
Information and entropy power.

Discuss the effect of different FI constraint in FAE.

The experiments are conducted on the MNIST
dataset (Lecun et al. 1998) and the SVHN dataset (Netzer
et al. 2011). The first dataset consists of ten categories of
28 x28 hand-written digits and is binarized as in (Larochelle
and Murray 2011). We follow the original partition to split
the data as 50,000/10,000/10,000 for the training, validation
and test. For SVHN dataset , it is MNIST-like but consists
of 3232 color images. We apply 73257 digits for training,
26032 digits for testing, and 20000 samples from the
additional set (Netzer et al. 2011) for validation.

In FAE and its baselines, all random variables are sup-
posed to be Gaussian variables. Here we only concern the
hyper-parameters A to adjust the constraint of Fisher infor-
mation in encoding. In practice, we observe this value can be
effective when set from 0.01 to 10 (depends on dataset and
tasks). For the architecture of inference network and gener-
ative network, we both deploy a 5-layers network. Since the
impacts of fully-connected and convolution architecture do
not differ much in the experiments, we here present results
using the architecture as 5 full-connected layers of dimen-
sion 300. The latent code is of dimension 40.

Quantitative Results

Fisher-Shannon Plane Analysis In this part, we conduct
a series of experiments on different models to evaluate them
in Fisher-Shannon plane to present different characteristics
of using Fisher information and entropy power.

We first evaluate the test log-likelihood. To compute the
test marginal negative log-likelihood (NLL), we apply the
Importance Sampling (Burda, Grosse, and Salakhutdinov
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Table 1: Test negative log-likelihood (NLL) estimates for
different models on MNIST

Model Test NLL Model Test NLL
VAE 85.56 FAE(F=0) 83.2
PixelVAE 79.21 FAE(F=20) 79.30
IAF 79.85 MAEM=0) 81.58
MAEM=10) 80.86

2015) with 5,000 data points for the previously mentioned
models. We select the most representative average results
from extensive hyper-parameter configuration and expose
them in Table 1: when the Fisher information constraint of
q:|z in FAE (F, = 20) (or the mutual information constraint
between data x and latent variable z in MAE M = 10)
is large, the models can achieve a competitive results of
state-of-the-arts like pixel VAE (Van den Oord et al. 2016)
and Inverse Autoregressive Flow(IAF) (Kingma et al. 2016).
When set the information constraint F' or M to zero, we can
observe that the results are comparable to the plain VAE, but
less competitive than the former models.

We put the former models in the FS information plane
and draw the “NJ curve” for the Gaussian variable (where
N(Z|X) - tr(J(Z]X)) = K) in the left subfigure of
Figure 1. According to the illustration, we can observe the
trade-off between the Fisher information and entropy power
in VAE. When the Fisher information elevates, the corre-
sponding entropy power abases and vice versa. When the
dependence between data and latent code is higher, where
we set larger information constraint /' or M in q,, the cor-
responding models appear in the bottom-right corner in the
FS plane. In the contrary, the models that contains less in-
formation in latent code appear in the upper-left corner, for
instance, pixel VAE, which was reported to ignore the latent
code (Chen et al. 2017) appears nearby FAE and MAE with
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Figure 2: From left to right: Visualization of latent code embedding (upper) and distribution of ¢,(z) (lower) as entropy

power increases (FI decreases).

F = M = 0. It is also interesting to notice that the inverse
autoregressive flow VAE (Kingma et al. 2016) is beyond the
curve. This is due to the IAF transforms the posterior into a
more complex distribution from the simple Gaussian distri-
bution. This phenomenon gives us the inspiration to improve
the Fisher information and entropy power at the same time.
That is to apply a more complex and a more proper distribu-
tion assumption for the modeling.

From this plane, it is not hard to learn that we can vary
the Fisher information constraint ' and “move” on this
curve. The upper-left corner indicates a less informative
code, while the bottom-right indicates a more informative
code. In the right subfigure of Figure 1, the training pro-
cess of a FAE is also visualized in the FS plane. We plot
the location of different epochs in FS plane. It is obvious
that in FS plane the training process is intrinsically moving
along the “NJ curve” from upper-left side to the bottom-right
side. In fact, for most models, the goal is to move further in
the bottom-right corner, thus we get better knowledge about
data. Setting constraint of the Fisher information means to
tell the model how much information we can transfer from
data to the latent code, which can affect how far we can move
to the right side along this curve.

Effects of Fisher Information and Entropy Power The
former part discusses the characteristics of different mod-
els and the corresponding performance. We are still curious
about the effects of Fisher information and entropy power
in VAEs: when should keep larger Fisher information and
when should keep larger entropy power? This part shows
how Fisher information and entropy power affect VAEs.
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We set the latent code size to 10, and gradually increase
the value of F' in FAE (from 0 to 20). The embedding of la-
tent variable z is visualized with T-SNE (Maaten and Hinton
2008); the distribution of ¢, is visualized by sampling z;
from g |, and count the norm of normalized z;, i.e. ||z; — Z|.
The results are presented in Figure 2.

In Figure 2, from left to right, the entropy power in-
creases while the Fisher information decreases. As the en-
tropy power increases, the latent variable embedding be-
comes more and more expanded in the latent space, where
we can observe the clusters become more and more identifi-
able; while as the Fisher information increases, the embed-
ding becomes more constrained to a smaller space. When
observing the distribution ¢, it is obvious that the distri-
bution is more centered when Fisher information is larger,
while the distribution swells with larger variance when the
Fisher information is abased.

As discussed, the Fisher information will control the vari-
ance of the encoding distribution. We can easily find out in
Figure 2, the variance of the distribution is getting smaller as
FI increases. Intuitively, when VAEs encode the data, if we
assign a large Fisher information constraint, the encoding
variance is compressed to be smaller, thus the hashing cost
is smaller and facilitates the model in distribution fitting. In
the contrary, we can set a larger entropy power (or a smaller
Fisher information) leaves more uncertainty to the encoding
space, thus the latent code grabs the most common infor-
mation from data points. This helps assemble data points in
tasks like classification.

In brief, we conclude the characteristics of large Fisher
information and entropy power:
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(a) Real images

(b) Reconstructed with F' = 20

(c) Reconstructed with F' = 0

Figure 3: From left to right: Real images from test sets of MNIST (upper) and SVHN (lower, best viewed in color); images
reconstructed by FAE with large (/' = 20) and small (F' = 0) Fisher information.

e Large Fisher information provides with a more refined
encoding mechanism, which ensures the latent code con-
tains more detailed information.

e Large entropy power provides with a more coarse encod-
ing mechanism, which helps in global information extrac-
tion.

Larger Fisher information is thus helpful in learning of de-
tailed features, high quality reconstruction, etc.; while larger
entropy power is helpful in classification, generalization, efc.

Qualitative Evaluation

In this section, we present some qualitative results to provide
an intuitive visualization. This will help us better understand
the characteristics of Fisher information.

We present some reconstruction samples of FAE with
large and small Fisher information constraint F" in Figure 3.
As shown, the samples reconstructed with large F' provide
with more pixel details and are more similar to the real im-
ages. This is especially more obvious in the case of SVHN,
where we can observe more clear texture compared to the
one reconstructed with larger constraint F. In the contrary,
we can find some blurry samples reconstructed with small F’
on MNIST. The blur is more obvious among reconstructed
samples from SVHN.
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Conclusion

Based on the uncertainty property between Fisher infor-
mation and Shannon information, in this paper, we apply
the Fisher-Shannon plane to study VAEs in a joint view
of these two quantities. In our study of VAEs in Fisher-
Shannon plane, these information quantities are demon-
strated related to the representation learning and likelihood
maximization; the trade-off between Fisher information and
Shannon information is shown to result in different char-
acteristics of VAEs. We further propose the Fisher Auto-
Encoder for the information control by different Fisher in-
formation constraints. In our experiments, we demonstrate
the complementary characteristics of Fisher information and
Shannon information and provide with a novel understand-
ing of VAEs; we also justify the effectiveness of FAE in
information control, high-accuracy reconstruction and non-
informative latent code resistance.
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