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Abstract

Next Point-of-Interest (POI) recommendation is of great
value for both location-based service providers and users.
However, the state-of-the-art Recurrent Neural Networks
(RNNGs) rarely consider the spatio-temporal intervals between
neighbor check-ins, which are essential for modeling user
check-in behaviors in next POI recommendation. To this end,
in this paper, we propose a new Spatio-Temporal Gated Net-
work (STGN) by enhancing long-short term memory net-
work, where spatio-temporal gates are introduced to capture
the spatio-temporal relationships between successive check-
ins. Specifically, two pairs of time gate and distance gate
are designed to control the short-term interest and the long-
term interest updates, respectively. Moreover, we introduce
coupled input and forget gates to reduce the number of pa-
rameters and further improve efficiency. Finally, we evaluate
the proposed model using four real-world datasets from vari-
ous location-based social networks. The experimental results
show that our model significantly outperforms the state-of-
the-art approaches for next POI recommendation.

Introduction

Recent years have witnessed the rapid growth of location-
based social network services, such as Foursquare, Face-
book Places, Yelp and so on. These services have attracted
many users to share their locations and experiences with
massive amounts of geo-tagged data accumulated, e.g., 55
million users generated more than 10 billion check-ins on
Foursquare until December 2017. These online footprints
(or check-ins) provide an excellent opportunity to under-
stand users’ mobile behaviors. For example, we can analyze
and predict where a user will go next based on historical
footprints. Moreover, such analysis can benefit POI holders
to predict the customer arrival in the next time period.
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Figure 1: w; in (a) represents the i-th word. In (b), p; rep-
resents the i-th item and At is time interval between two
neighbor items. In (¢), /Ad further represents distance inter-
val between two successive check-ins.

In the literature, approaches like latent factor model and
Markov chain have been widely applied for sequential data
analysis and recommendation. Rendle et al.(2010) proposed
Factorizing Personalized Markov Chain (FPMC), which
bridges matrix factorization and Markov chains together,
for next-basket recommendation. Cheng et al.(2013) ex-
tended FPMC to embed personalized Markov chain and user
movement constraint for next POI recommendation. He et
al.(2016) proposed a unified tensor-based latent model to
capture the successive check-in behavior by exploring the la-
tent pattern-level preference for each user. Recently, Recur-
rent Neural Networks (RNNs) have been successfully em-
ployed to model sequential data and become state-of-the-art
methods. Hidasi et al.(2015) focused on RNN solutions for
session-based recommendation task, where no user id exists,
and recommendations are made on short session data. Zhu
et al.(2017) proposed a variant of Long-Short Term Memory
network (LSTM), called Time-LSTM, to equip LSTM with
time gates to model time intervals for next item recommen-
dation.

However, none of the above recommendation methods
considers both time intervals and geographical distances be-
tween neighbor items, which makes next POI recommenda-



tion different from other sequential tasks such as language
modeling and next-basket recommender system (RS). As
shown in Figure 1, there is no spatio-temporal interval be-
tween neighbor words in language modeling, and there is no
distance interval between neighbor items in next-basket RS,
while there are time and distance intervals between neighbor
check-ins in next POI recommendation. Some recent efforts
have been made to extend RNNs for modeling dynamic time
and distance intervals. For example, HST-LSTM (Kong and
Wu 2018) combines spatio-temporal influence into LSTM
while it is for general location recommendation. A recent
work ST-RNN (Liu et al. 2016a) tried to extend RNN to
model the temporal and spatial context for next location pre-
diction. In order to model temporal context, ST-RNN models
multi-check-ins in a time window in each RNN cell. Mean-
while, ST-RNN employs time-specific and distance-specific
transition matrices to characterize dynamic time intervals
and geographical distances, respectively. However, there ex-
ists some challenges preventing ST-RNN from becoming the
best solution for next POI recommendation.

First of all, ST-RNN may fail to model spatial and tempo-
ral relations of neighbor check-ins properly. ST-RNN adopts
time-specific and distance-specific transition matrices be-
tween cell hidden states within RNN. Due to data sparsity,
ST-RNN cannot learn every possible continuous time inter-
vals and geographical distances but partition them into dis-
crete bins. Secondly, ST-RNN is designed for short-term in-
terests and not well designed for long-term interests. Jan-
nach et al.(2015) reported that users’ short-term and long-
term interests are both significant on achieving the best per-
formance. The short-term interest here means that recom-
mended POIs should depend on recently visited POIs, and
the long-term interest means that recommended POIs should
depend on all historical visited POIs. Thirdly, it is hard to se-
lect the proper width of the time window for different appli-
cations in ST-RNN since it models multi-elements in a fixed
time period.

To this end, in this paper, we propose a new Spatio-
Temporal Gated Network by enhancing long short term
memory, named STGN, to model users’ sequential visiting
behaviors. Time intervals and distance intervals of neigh-
bor check-ins are modeled by time gate and distance gate,
respectively. Note that there are two time gates and two dis-
tance gates in the STGN model. One pair of time gate and
distance gate are designed to exploit time and distance in-
tervals to capture the short-term interest, and the other pair
are introduced to memorize time and distance intervals to
model the long-term interest. Furthermore, enlightened by
Greff et al.(2017), we use the coupled input and forget gates
to reduce the number of parameters, making our model more
efficient. Experimental results on four real-world datasets
show STGN significantly improves next POI recommenda-
tion performance.

To summarize, our contributions are listed as follows.

e We propose an innovative gate mechanism way to model
spatio-temporal intervals between check-ins under LSTM
architecture to learn user’s visiting behavior for the next
POI recommendation.
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e A STGN model is proposed to incorporate carefully de-
signed time gates and distance gates to capture the spatio-
temporal interval information between check-ins. As a re-
sult, STGN well models user’s short-term and long-term
interests simultaneously.

e Experiments on four large-scale real-world datasets are
conducted to evaluate the performance of our proposed
model. Our experimental results show that our method
outperforms state-of-the-art methods.

Related Work

In this section, we discuss related work from two aspects,
which are POI recommendation and leveraging neural net-
works for recommendation.

POI Recommendation

Different from traditional recommendations (e.g., movie
recommendation, music recommendation), POI recommen-
dation is characterized by geographic information and no ex-
plicit rating information (Ye et al. 2011; Lian et al. 2014).
Moreover, additional information, such as social influence,
temporal information, review information, and transition be-
tween POIs, has been leveraged for POI recommendation.
Ye et al.(2011) integrated the social influence with a user-
based collaborative filtering model and modeled the geo-
graphical influence by a Bayesian model. Yuan et al.(2013)
utilized the temporal preference to enhance the efficiency
and effectiveness of the solution. Kurashima et al.(2013)
proposed a topic model, in which a POI is sampled based
on its topics and the distance to historical visited POIs of a
target user. Liu et al.(2016b) exploited users’ interests and
their evolving sequential preferences with temporal interval
assessment to recommend POI in a specified time period.

Next POI recommendation, as a natural extension of gen-
eral POI recommendation, is recently proposed and has at-
tracted great research interest. Research has shown that the
sequential influence between successive check-ins plays a
crucial role in next POI recommendation since human move-
ment exhibits sequential patterns. A tensor-based model,
named FPMC-LR, was proposed by integrating the first-
order Markov chain of POI transitions and distance con-
straints for next POI recommendation (Cheng et al. 2013).
He et al.(2016) further proposed a tensor-based latent model
considering the influence of user’s latent behavior patterns,
which are determined by the contextual temporal and cat-
egorical information. Feng et al.(2015) proposed a person-
alized ranking metric embedding method (PRME) to model
personalized check-in sequences for next POI recommen-
dation. Xie et al.(2016) proposed a graph-based embed-
ding learning approach, named GE, which utilized bipartite
graphs to model context factors in a unified optimization
framework. Chang et al.(2018) utilized a check-in context
layer and a text content layer to capture the geographical in-
fluence of POIs from the check-in sequence of a user and the
characteristics of POIs from the text content.



Neural Networks for Recommendation

Neural networks are not only naturally used for feature
learning to model various features of users or items, but
also explored as a core recommendation model to simu-
late nonlinear, complex interactions between users and items
(Wang and Wang 2014; Zhang et al. 2016; He et al. 2017;
Cui et al. 2017). Yang et al.(2017a) proposed a deep neu-
ral architecture named PACE for POI recommendation,
which utilizes the smoothness of semi-supervised learning
to alleviate the sparsity of collaborative filtering. Yang et
al.(2017b) jointly modeled a social network structure and
users’ trajectory behaviors with a neural network model.
Zhang et al.(2017) tried to learn user’s next movement in-
tention and incorporated different contextual factors to im-
prove next POI recommendation. Zhu et al.(2017) proposed
a Time-LSTM model and two variants, which equip LSTM
with time gates to model time intervals for next item rec-
ommendation.Huang et al.(2018) integrated the RNN-based
networks with knowledge base enhanced key-value memory
network (KV-MN) to capture sequential user preference and
attribute-level user preference. Lin et al.(2018) proposed a
K-plet recurrent neural network to accommodate multiple
sequences jointly to capture global structure and localized
relationships at the same time.

A recently proposed ST-RNN, which is closely related to
our work, considers spatial and temporal contexts to model
user behavior for next location prediction (Liu et al. 2016a).
However, our proposed STGN model differs significantly
from ST-RNN in two aspects. First, STGN equips the LSTM
model with time and distance gates while ST-RNN adds
spatio-temporal transition matrices to the RNN model. Sec-
ond, STGN well models time and distance intervals between
neighbor check-ins to extract long-term and short-term inter-
ests. However, ST-RNN recommends next POI depending
only on POIs in the nearest time window which may be hard
to distinguish short-term and long-term interests. A more
recent work HST-LSTM (Kong and Wu 2018) combines
spatio-temporal influences into LSTM for location predic-
tion. However, HST-LSTM is designed for general loca-
tion recommendation while our proposed model focuses on
next POI recommendation. Moreover, our model is equipped
with new time and distance gates while HST-LSTM intro-
duces spatio-temporal factors into exists gates in LSTM.

Preliminaries

In this section, we first give the formal problem definition
of next POI recommendation, and then briefly introduce
LSTM.

Problem Formulation

Let U = {u1,us,...,up} be the set of M users and V =
{v1,v2,...,vN} be the set of N POIs. For user u, she has a
sequence of historical POI visits up to time ¢;_; represented
as Hi' = {v{’ ,vi,- - -, vft_ }, where v’ means user u visit
POI v at time ¢;. The goal of next POI recommendation is
to recommend a list of unvisited POIs for a user to visit next
at time point ¢;. Specifically, a higher prediction score of a
user u to an unvisited POI v; indicates a higher probability

5879

that the user u would like to visit v; at time ¢;. According to
prediction scores, we can recommend top-k POIs to user u.

LSTM

LSTM (Hochreiter and Schmidhuber 1997), a variant of
RNN, is capable of learning short and long-term dependen-
cies. LSTM has become an effective and scalable model
for sequential prediction problems, and many improvements
have been made to the original LSTM architecture. We use
the basic LSTM model in our approach for the concise and
general purpose, and it is easy to extend to other variants of
LSTM. The basic update equations of LSTM are as follows:

ir = o(Wilhs_1, z4) + bs), (1)
fi = o(Wilhe_1, @] + by), )
¢ = tanh(We[hy_1, 2] + be), 3)
ct=fi ©cr1+i O, )
or = o (Wolhi_1, 4] + bo), (5)
h = 0; ® tanh(cy), (6)

where i, f:, o; represent the input, forget and output gates
of the ¢-th object, deciding what information to store, for-
get and output, respectively. ¢, is the cell activation vector
representing cell state, which is the key to LSTM. z; and
h represent the input feature vector and the hidden output
vector, respectively. o represents a sigmoid layer to map the
values between 0 to 1, where 1 represents “complete keep
this” while O represents “completely get rid of this”. W;
Wy, W, and W, are the weights of gates. b;, by, b, and b,
are corresponding biases. And ® represents for the element-
wise (Hadamard) product. The update of cell state c; has two
parts. The former part is the previous cell state c;_; that is
controlled by forget gate f;, and the latter part is the new
candidate value scaled by how much to add state value.

Our Approach

In this section, we first propose a Spatio-Temporal Gated
Network (STGN) by enhancing long-short term memory,
which utilizes time and distance intervals to model user’s
short-term interest and long-term interest simultaneously.
Then, we improve STGN with coupled input and output
gates for efficiency.

Spatio-Temporal Gated Network

When using LSTM for next POI recommendation, x; repre-
sents user’s last visited POI, which can be exploited to learn
user’s short-term interest. While ¢;_1 contains the informa-
tion of user’s historical visited POIs, which reflect user’s
long-term interest. However, how much the short-term in-
terest determines where to go next heavily depends on the
time interval and the geographical distance between the last
POI and the next POI. Intuitively, a POI visited long time
ago and long distance away has little influence on next POI,



Figure 2: STGN has two time gates and two distance gates,
ie., T'l;, T2, D1, and D2;. T'1; and D1, are designed to
model time and distance intervals for short-term interests
while T2; and D2; are to model time and distance intervals
for long-term interest.

and vice versa. In our proposed spatio-temporal gated net-
work model, we use time gate and distance gate to control
the influence of the last visited POI on next POI recommen-
dation. Furthermore, the time gate and the distance gate can
also help to store time and distance intervals in cell state c;,
which memorizes user’s long-term interest. In this way, we
utilize time and distance intervals to model user’s short-term
interest and long-term interest simultaneously.

As shown in two dotted red rectangles in Figure 2, we add
two time gates and two distance gates to LSTM, denoted as
T1,, T2, D1; and D2, respectively. T'1; and D1, are used
to control the influence of the latest visited POI on next POI,
and T'2; and D2, are used to capture time and distance inter-
vals to model user’s long-term interest. Based on LSTM, we
add equations for time gates and distance gates as follows:

Tlt :U(mthtl + U(Attth) + btl);

7
T2t = U(.ﬁthh + U(AttWtz) + btz), (8)
D]-t :U(xtwmdl + U(Adthl) + bdl)? (9)

5-t~Wrd1 S 0
D2t = O'(SCthd2 + U(AdthQ) + bdQ). (10)
We then modify Eq. (4)-(6) to:

G=ftOc1+1: 0T © D1, © ¢, (11
c=fiOc1+i ©0T2,© D2 O ¢, (12)
or = o(Wolhi—1, 2] + Aty Wi + Adi Wi + b)), (13)
ht =0 ©® tanh(c}), (14)

where At; is the time interval and Ad; is the distance inter-
val. Besides input gate i;, T'1; can be regarded as an input
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Figure 3: A variant of STGN using coupled input and forget
gates.

information filter considering time interval, and D1; can be
regarded as another input information filter considering dis-
tance interval. We add a new cell state ¢; to store the result,
then transfer to the hidden state /; and finally influences next
recommendation. Along this line, ¢, is filtered by time gate
T'1; and distance gate D1, as well as input gate ; on current
recommendations.

Cell state ¢, is used to memory users general interest, i.e.,
long-term interest. We designed a time gate and a distance
gate to control the cell state c; update. 72, first memorizes
At; then transfers to ¢, further to ¢iq1, ey, . So T2
helps store /At; to model user long-term interest. In the sim-
ilar way, D2, memorizes Ad; and transfers to cell state ¢; to
help model user long-term interest. In this way, ¢, captures
user long-term interest by memorizing not only the order
of user’s historical visited POIs, but also the time and dis-
tance interval information between neighbor POIs. Model-
ing distance intervals can help capture user’s general spatial
interest, while modeling time intervals helps capture user’s
periodical visiting behavior.

Normally, a more recently visited POI with a shorter dis-
tance should have a larger influence on choosing next POL.
To incorporate this knowledge in the designed gates, we add
constraints W,,, < 0and W,,, < 01in Eq. (7) and Eq. (9).
Accordingly, if At is smaller, T'1; would be larger accord-
ing to Eq. (7). In the similar way, if Ad; is shorter, D1,
would be larger according to Eq. (9). For example, if time
and distance intervals are smaller between x; and next POI,
then x; better indicates the short-term interest, thus its influ-
ence should be increased. If At; or Ad, is larger, x; would
have a smaller influence on the new cell state ¢. In this case,
the short-term interest is uncertain, so we should depend
more on the long-term interests. It is why we set two time
gates and two distance gates to distinguish the short-term
and long-term interests update.

Variation of Coupled Input and Forget Gates

Enlightened by (Greff et al. 2017), we propose another ver-
sion of STGN, named STGCN, to reduce the number of pa-
rameters and improve efficiency. STGCN uses coupled input
and forget gates instead of separately deciding what to for-
get and what new information to add, as shown in Figure 3.



Specifically, we remove the forget gate, and modify Eq. (11)
and Eq. (12) to:

G=1-40T1;0Dl)O®c—1

. - 15
+Zt®T1t®D1t®Ct, ( )

Ct = (1—%})@01‘/,1 +Zt®T2t®D2t®C~t (]6)

Since time gate 71, and distance gate D1, are regarded
as input filters, we replace the forget gate with (1 — i; ®
T1; ® D1;) in Eq. (15). T2, and D2, are used to store time
intervals and distance intervals respectively, thus we use (1—
i¢) in Eq. (16).

Training

The way we adapt our model to next POI recom-
mendation is as follows. Firstly we transform H"“ to
[(U%a tg*ﬁlﬂ d(ll7 l2))7 (Uga tg*tg? d(127 l3))7 T (’U%’ tg -
t¥, d(ln,1y))]. Then z; in STGN is equivalent to vy, At is
equivalent to ¢}, ; — ¢}, and Ad; is equivalent to d(ls41, 1),
where d(-,-) is the function computing the distance be-
tween two geographical points. Moreover, we make use of
all users’ behavioral histories for learning and recommenda-
tion. We leverage the mini-batch learning method, and train
the model on users’ existing histories until convergence. The
model output is a probability distribution on all POIs cal-
culated by h; and v;'. And then we take a gradient step to
optimize the loss based on the output and one-hot represen-
tations of v, ;.

We use Adam, a variant of Stochastic Gradient De-
scent(SGD), to optimize the parameters in STGN, which
adapts the learning rate for each parameter by performing
smaller updates for frequent parameters and larger updates
for infrequent parameters. We use the projection operator
described in (Rakhlin, Shamir, and Sridharan 2012) to meet
the constraints Wy, < 0in Eq. (7) and Wy, < 0 in Eq. (9).
If we have W;, > 0 during the training process, we set
Wi, = 0. And parameter Wy, is set in the same way.

The computational complexity of learning LSTM models
per weight and time step with the stochastic gradient descent
(SGD) optimization technique is O(1). Hence, the LSTM al-
gorithm is very efficient, with an excellent update complex-
ity of O(W), where W is the number of weights and can be
calculated as W = n.xXn.x4+n; XneX4+n.Xny,+n.x3,
where 7. is the number of memory cells, n; is the number of
input units, and n, is the number of output units. Similarly,
STGN computational complexity is also O(W) and can be
calculated as W = n.Xn X5+n; XneX8+n.Xn,+n.x9.

Experiments

In this section, we conduct experiments to evaluate the per-
formance of our proposed model STGN on four real-world
datasets. We first briefly depict the datasets, followed by
baseline methods. Finally, we present our experimental re-
sults and discussions.

Dataset

We use four public LBSNs datasets that have user-POI inter-
actions of users and locations of POIs. The statistics of the
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Table 1: Statistics of the four datasets

Dataset #user  #POI #Check-in  Density
CA 49,005 206,097 425,691 0.004%
SIN 30,887 18,995 860,888 0.014%
Gowalla 18,737 32,510 1,278,274  0.209%
Brightkite | 51,406 772,967 4,747,288  0.012%

four datasets are listed in Table 1. CA is a Foursquare dataset
from users whose homes are in California, collected from
January 2010 to February 2011 and used in Gao et al.(2012).
SIN is a Singapore dataset crawled from Foursquare used by
(Yuan et al. 2013). Gowalla and Brightkite are two widely
used LBSN datasets, which have been used in many re-
lated research papers. We eliminate users with fewer than 10
check-ins and POIs visited by fewer than 10 users in the four
datasets. Then, we sort each user’s check-in records accord-
ing to timestamp order, taking the first 70% as the training
set, the remaining 30% as the testing set.

Baseline Methods

We compare our proposed model STGN with eight repre-
sentative methods for next POI recommendation.

FPMC-LR (Cheng et al. 2013): It combines the person-
alized Markov chains with the user movement constraints
around a localized region. It factorizes the transition ten-
sor matrices of all users and predicts next location by
computing the transition probability.

PRME-G (Feng et al. 2015): It utilizes the Metric Em-
bedding method to avoid drawbacks of the MF. Specifi-
cally, it embeds users and POlIs into the same latent space
to capture the user transition patterns.

GE (Xie et al. 2016): It embeds four relational graphs
(POI-POI, POI-Region, POI-Time, POI-Word) into a
shared low dimensional space. The recommendation
score is then calculated by a linear combination of inner
products for these contextual factors.

RNN (Zhang et al. 2014): This method leverages the tem-
poral dependency in user’s behavior sequence through a
standard recurrent structure.

LSTM (Hochreiter and Schmidhuber 1997) This is a vari-
ant of RNN model, which contains a memory cell and
three multiplicative gates to allow long-term dependency
learning.

GRU (Cho et al. 2014): This is a variant of RNN model,
which is equipped with two gates to control the informa-
tion flow.

ST-RNN (Liu et al. 2016a): Based on the standard RNN
model, ST-RNN replaces the single transition matrix in
RNN with time-specific transition matrices and distance-
specific transition matrices to model spatial and temporal
contexts.

http://snap.stanford.edu/data/loc-gowalla.html
http://snap.stanford.edu/data/loc-brightkite.html



HST-LSTM (Kong and Wu 2018): It introduces spatio-
temporal factors into gate mechanism in LSTM to mit-
igate data sparsity problem. Since we do not have ses-
sion information in our application scenario, we use its
ST-LSTM version here.

Evaluation Metrics

To evaluate the performance of our proposed model ST-
LSTM and compare with the seven baselines described
above, we use two standard metrics Acc@K and Mean Aver-
age Precision (MAP). These two metrics are popularly used
for evaluating recommendation results, such as (Liu et al.
2016a; He et al. 2016; Xie et al. 2016). Note that for an in-
stance in testing set, Acc@K is 1 if the visited POI appears
in the set of top-K recommendation POIs, and 0 otherwise.
The overall Acc@K is calculated as the average value of all
testing instances. In this paper, we choose K = {1, 5, 10, 15,
20} to illustrate different results of Acc@K.

Results and Discussions

Method Comparison. The performance of our proposed
model STGN and the eight baselines on four datasets evalu-
ated by Acc@K and MAP is shown in Table 2. The cell size
and the hidden state size are set to 128 in our experiments.
The number of epochs is set to 100, and the batch size is set
to 10 for our proposed model. For the parameters of other
baselines, we follow the best settings in their papers.

From the experimental results, we can see the follow-
ing observations: RNN performs better than Markov chain
method FPMC-LR and embedding method PRME-G, due
to its capability in modeling sequential data and user inter-
ests using RNN cell. Both LSTM and GRU slightly improve
the performance compared with RNN because of their ad-
vantages in modeling long-term interests. The result of GE
is not good for missing social and textual information in our
datasets. The performance of the state-of-the-art method ST-
RNN is close to the standard RNN method, which may be
caused by the difficulty of manually setting the windows
of time and distance intervals. HST-LSTM performs bet-
ter than ST-RNN. It proves the effectiveness of the idea of
combining spatial-temporal factors with gates mechanism.
Our proposed STGN and STGCN model all perform sig-
nificantly better than existing state-of-the-art methods eval-
uated here on the four datasets in all metrics. Specifically,
STGCN outperforms the Markov chain based methods con-
siderably by a large margin. Moreover, STGCN consis-
tently outperforms five RNN-based methods: RNN, LSTM,
GRU, ST-RNN, and HST-LSTM. The performance gains
provided by STGCN over these five counterparts are about
34.8% - 68.6%, 16.3% - 80.0%, 32.9% - 97.3% and 2.5%
- 34.2% in terms of Acc@1 metric on CA, SIN, Gowalla,
and Brightkite respectively. The significant improvement in-
dicates that the mechanism to model temporal and spatial
contexts in STGCN can better catch the user’s sequential be-
haviors and is effective for the task of next POI recommen-
dation. This is because we add time and distance gates to in-
tegrate time and distance intervals into the model. Moreover,
STGCN not only reduces the number of parameters but also
marginally improve the performance compared with STGN.
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Figure 4: The performance with different time and distance
gates in STGCN

Effectiveness of Time and Distance Gates. There are
two time gates and two distance gates in our STGCN model.
We first investigate the effectiveness of time and distance
gates on modeling time and distance intervals. Specifically,
we set D1; = 1 and D2; = 1, in Eq. (9) and Eq. (10),
respectively. That is, we close two distance gates and only
consider the time intervals. Similarly, we set 7'1; = 1 and
T2, = 1, in Eq. (7) and Eq. (8), respectively. That is, we
close two time gates and only consider distance informa-
tion. From Figure 4, we can see that the time gates and dis-
tance gates have similar importances on both datasets (i.e.,
Gowalla and CA). Moreover, they both are critical for im-
proving the recommendation performances.

We also investigate the effectiveness of time and distance
gates on modeling short-term and long-term interests. We set
T2, = 1and D2; = 1, in Eq. (8) and Eq. (10), which means
we close time and distance gates on long-term interests and
only activate time and distance gates on short-term interest.
Similarly, we set T'1; 1 and D1; = 1, in Eq. (7) and
Eq. (9), which means we close time and distance gates for
short-term interest. As shown in Figure 4, we can observe
that they all perform worse than original STGCN, which
means that time and distance intervals are not only critical to
short-term interests but also important to long-term interests.
Distance intervals may help model user general spatial pref-
erence and time intervals may help to model user long-term
periodical behavior.
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Figure 5: The performance of cold start on two datasets

Performance of Cold Start. We also evaluate the perfor-
mance of STGN by comparing with other next POI recom-
mendation competitors for cold-start users. If a user just vis-



Table 2: Evaluation of next POI recommendation in terms of Acc@K and MAP on four datasets

CA SIN

Acc@1 | Acc@5 | Acc@10 | MAP | Acc@1 | Ace@5 | Acc@10 | MAP
FPMC-LR 0.0378 | 0.0493 | 0.0784 0.1791 | 0.0395 | 0.0625 | 0.0826 0.1724
PRME-G 0.0422 0.065 0.0813 0.1868 | 0.0466 | 0.0723 | 0.0876 0.1715
GE 0.0294 | 0.0329 | 0.0714 0.1691 | 0.0062 | 0.0321 | 0.0607 0.1102
RNN 0.0475 | 0.0901 | 0.1138 0.1901 | 0.1321 | 0.1867 | 0.2043 0.2186
LSTM 0.0486 | 0.0937 | 0.1276 0.1975 | 0.1261 | 0.1881 | 0.2019 0.2123
GRU 0.0483 | 0.0915 | 0.1216 0.1934 | 0.1237 | 0.1921 | 0.1992 0.2101
ST-RNN 0.0505 | 0.0922 | 0.1232 0.2075 | 0.1379 | 0.1957 | 0.2091 0.2239
HST-LSTM | 0.0594 | 0.1088 | 0.1372 0.2208 | 0.1920 | 0.2504 | 0.2794 0.3570
STGN 0.0716 | 0.1232 | 0.1508 0.2265 | 0.2157 | 0.2653 | 0.2954 0.3570
STGCN 0.0801 | 0.1308 | 0.1612 0.2556 | 0.2232 | 0.2737 | 0.3017 0.3608

Gowalla Brightkite

Acc@1 | Acc@5 | Acc@10 | MAP | Acc@1 | Acc@5 | Acc@10 | MAP
FPMC-LR | 0.0293 | 0.0524 | 0.0849 0.1745 | 0.1634 | 0.2475 | 0.3164 0.33
PRME-G 0.0334 | 0.0652 | 0.0869 0.1916 | 0.1976 | 0.2993 | 0.3495 0.3115
GE 0.0174 0.06 0.0947 0.1973 | 0.0521 | 0.1376 | 0.2118 0.2602
RNN 0.0473 | 0.0892 | 0.1207 0.1998 | 0.3401 | 0.4087 0.432 0.413
LSTM 0.0503 | 0.0967 | 0.1241 0.2004 | 0.3575 | 04146 | 0.4489 0.4303
GRU 0.0498 | 0.0931 | 0.1289 0.2045 | 0.331 0.4007 | 0.4377 0.4042
ST-RNN 0.0519 | 0.0953 | 0.1304 0.2187 | 0.3672 | 0.4231 | 0.4477 0.4369
HST-LSTM | 0.0702 | 0.1366 | 0.1676 0.2414 | 0.4336 | 0.4783 | 0.4999 0.5476
STGN 0.0835 | 0.1522 | 0.1879 0.2443 | 0.4389 | 0.4807 | 0.5035 0.5266
STGCN 0.0933 | 0.1644 | 0.2020 0.2557 | 0.4443 | 0.4953 | 0.5231 0.5626
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Figure 6: The performance with different cell sizes and batch
sizes on Gowalla

its a few POIs in the datasets, which means we can hardly
learn user preference on POIs, we think the user is a cold
case. Specifically, we take users with less than 5 check-ins
as a cold user in our experiments. We conduct the experi-
ments on two datasets (i.e., Gowalla and BrightKite) and use
Acc@K as the measure metric. As shown in Figure 5, we can
observe that STGCN and STGN perform much better than
the other two under cold start scenario, and STGN performs
the best among all methods. The reason is that STGN and
STGCN model long-term interests as well as short-term in-
terests with considering time and distance intervals, which
proves that our method can work out well with sparse data.
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Impact of Parameters. In the standard RNN, different
cell sizes and batch sizes may lead to different performances.
We investigate the impact of these two parameters for STGN
and STGCN. We vary cell sizes and batch sizes to observe
the performance and the training time of our proposed two
models. We only show the impact of the two parameters on
Gowalla dataset due to space constraint. As shown in Figure
6, increasing the cell size can improve our model in terms
of the Acc@10 metric, and a proper batch size can help
achieve the best performance. The cell size determines the
model complexity, and the cell with a larger size may fit the
data better. Moreover, a small batch size may lead to local
optimum, and a big one may lead to insufficient updating of
parameters in our two models.

Conclusions

In this paper, a spatio-temporal gated network, named
STGN, was proposed for next POI recommendation by en-
hancing long short term memory network. In STGN, time
and distance intervals between neighbor check-ins, which
are essential to describe user behaviors, were modeled us-
ing newly introduced spatio-temporal gates. Specifically, we
added a new cell state, and so there are two cell states to
memorize users’ short-term and long-term interests, respec-
tively. we designed a pair of time and distance gates to



control user’s short-term interest update and another pair
of gates to control the long-term interest update. Further-
more, we coupled time and distance gates to reduce number
of parameters and improve STGN efficiency. Experimental
results on four large-scale real-world datasets demonstrated
the effectiveness of our model, which performed better than
the state-of-the-art methods. In future work, we would incor-
porate more context information such as social network and
textual description content into the model to further improve
the next POI recommendation performance.
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