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Abstract

In this paper, we study the problem of learning multi-class
classification models from a limited set of labeled exam-
ples obtained from human annotator. We propose a new ma-
chine learning framework that learns multi-class classifica-
tion models from ordered class sets the annotator may use to
express not only her top class choice but also other competing
classes still under consideration. Such ordered sets of compet-
ing classes are common, for example, in various diagnostic
tasks. In this paper, we first develop strategies for learning
multi-class classification models from examples associated
with ordered class set information. After that we develop an
active learning strategy that considers such a feedback. We
evaluate the benefit of the framework on multiple datasets.
We show that class-order feedback and active learning can
reduce the annotation cost both individually and jointly.

Introduction
In recent years, the world has witnessed remarkable increase
in the number and quality of classification models built from
data. One important factor contributing to this progress and
improvement is the amount of labeled data instances avail-
able to train these models. However, this improvement may
not be possible when the original data are unlabeled and
when the labels are obtained through additional human an-
notation effort. To alleviate this problem, we study various
ways of reducing the annotation effort, while keeping the
quality of the classification models built from data high. Our
specific focus in this work is on construction of multi-class
classification models.

Multi-class classification models are typically learned
from annotated data in which every data instance is asso-
ciated with one class label indicating the top class choice
assigned to it by a human annotator. However, human anno-
tators can often express and provide additional information
about the top class and its relation to other class choices. For
example, when the instance is not a clearcut case, there are
other likely class choices the annotator may have in mind.
Associating multiple competing classes with one instance is
common in various diagnostic tasks. For example, in med-
ical domain, a list of competing diagnostic classes is re-
ferred to as a differential diagnosis. Briefly, given the fea-
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tures (symptoms, observations, etc.) of a patient, the physi-
cian considers not only the leading diagnosis (class), but also
other alternative diagnoses (classes) that are possible and
may fit the patient’s case. The gist of our approach is to uti-
lize such information to learn multi-class classifiers. More
specifically, apart from the top class label for each data in-
stance, we let the annotator provide also information about
other alternative classes, and express these in terms of the
ordered set of classes representing the descending priorities
(or confidence) in these classes.

To translate this idea into a working framework we first
develop and present a new multi-class support vector clas-
sifier method that lets us incorporate the ordered class set
(OCS) information into the model learning process. Since
data instances may not be initially labeled, we then ex-
plore active learning strategies to further reduce the anno-
tation effort. Briefly, active learning (Lewis and Gale 1994;
Settles 2010; Roy and McCallum 2001) helps us reduce the
number of examples necessary to train a high quality clas-
sifier by repeatedly identifying and annotating the data in-
stance with the greatest potential to improve the quality of
the classification model. The effectiveness of active learn-
ing is, however, highly dependent on the instance-selection
strategy, and such a strategy is highly related to the format
of the labels in the data. Hence, the instance-selection strat-
egy for ordered class set feedback may not be a straightfor-
ward modification of strategies for a single class feedback.
In this paper, we develop a new active learning strategy that
considers ordered class set feedback. Specifically, our active
learning strategy calculates the expected prediction change
for an unlabeled instance by calculating and combining the
estimate of the prediction change for the different OCSs one
can assign to the instance. Since the estimate of the expected
change requires one to repeat the retraining by consider-
ing each unlabeled instance, we propose new approximation
strategies that reduce the running time of the estimate.

We experiment with our new framework on both synthetic
and real-world datasets with class-order feedback. We show
the effectiveness of the ordered class set feedback and active
learning for reducing the annotation effort both individually
and jointly. We also show that our solution outperforms ex-
isting multi-class classification methods that consider one-
class-per-example labels.

5589



Related Work
In this section, we briefly review literature related to our
work. We divide it to three different topics: learning with
auxiliary information, multi-class support vector machine,
and active learning.

Learning with auxiliary information
Learning with auxiliary class information is a relatively new
approach for improving classification learning process. In
general, auxiliary class information covers additional infor-
mation provided by a human annotator related to the class
choice. The idea of learning with auxiliary class informa-
tion is based on a simple premise: auxiliary class informa-
tion can often be provided by human annotators at an in-
significant cost when compared to the cost of instance re-
view and label assessment. Perhaps the most intuitive format
is a probabilistic score, which has been explored in context
of binary classification problems. The probabilistic score
indicates the confidence with which the annotator believes
the class label is true. The problem of learning classifica-
tion models from auxiliary probabilistic scores was formu-
lated first by (Nguyen, Valizadegan, and Hauskrecht 2011a;
2011b; 2013). The authors developed a method that focuses
on the pairwise orderings among all data examples, which is
robust against the noise in human’s probabilistic score esti-
mate (Juslin, Olsson, and Winman 1998; Griffin and Tversky
1992; O’Hagan et al. 2007). This method learns a parametric
model trying to satisfy the constraints from pairwise order-
ings among all data examples. The approach has been tested
on data based on electronic health records (Hauskrecht et al.
2013; 2016) and lead to improved sample efficiency com-
pared to binary class feedback. A probabilistic score ob-
tained by averaging labels from multiple annotators (with
potential disagreements) was explored by (Thiel 2008). This
work, however, does not consider any noise. More recent ap-
proaches for building classification models from probabilis-
tic label feedback include a non-parametric approach based
on the Gaussian process regression by (Peng and Wong
2014; Peng, Wong, and Yu 2014) and an ordinal regres-
sion approach with a reduced set of constraints by (Xue and
Hauskrecht 2017b).

All of the above works show that additional label-related
information can improve model learning in binary classifi-
cation settings. This raises the following questions: are there
other formats of auxiliary class-related information one can
use for training the models, and, is it possible to use such
an information in multi-class classification problems? In
this work, we investigate auxiliary class-related information
expressed in terms of the ordered class set (OCS), which
makes sense in multi-class classification scenario. Basically,
an OCS defines an ordered subset of classes that represent
choices that are likely (considered) for labeling the instance
and their priority. An OCS may vary in size and includes
classes that are considered to be viable class alternatives.
Classes not in the OCS are considered to be unimportant or
negligible. For example, in a four-class scenario, the OCS
〈3, 4〉 indicates that the annotator believes class 3 to be the
most likely and class 4 to be the second most likely choice,

while other two classes 1 and 2, are unimportant. The prob-
lem of learning multi-class classification models from OCS
is a new open problem. In this paper, we first propose a
multi-class classifier that learns from OCS in addition to
class labels. That is, each data instance is associated with an
OCS likely classes in descending order. In the experiments
section we show that our class-order multi-class classifier
substantially reduces the number of instances one needs to
label when compared to existing multi-class classifiers based
only on the top class label.

Multi-class support vector machine
Multi-class support vector machine (MCSVM) was first pro-
posed by (Vapnik 1998; Weston et al. 1999). Basically, for
a K-classification problem, MCSVM trains K one-vs-rest
binary classifiers in one optimization problem that consist
of the sum of the regularization term and the penalty for
slack variables of all the K one-vs-rest classifiers is min-
imized jointly. Compared with previous methods, one-vs-
rest, that trains K one-vs-rest classifiers independently and,
one-vs-one, that trains K(K−1)

2 one-vs-one classifiers in-
dependently, MCSVM achieves higher performance espe-
cially when the labeled data are limited. Recently, (He et
al. 2012) proposed an approximate multi-class support vec-
tor machine (AMSVM) approach that reduces the number of
constraints one has to satisfy via averaging. Compared with
the original MCSVM, AMSVM uses an approximation that
relaxes the constraints by only enforcing the comparison on
projections between the labeled class and the average of all
other classes. With such an approximation, AMSVM signif-
icantly reduces the number of constraints it needs to solve
while still reaching performance comparable to MCSVM.

In this work, we first show how to adapt AMSVM to in-
corporate OCS. Then, we design and implement an active
learning strategy that is compatible with the new AMSVM
with OCS.

Active learning
In active learning, model training and data instance annota-
tion process are interleaved. Active learning sequentially se-
lects and labels originally unlabeled instances that are most
informative and believed to have the greatest potential to im-
prove the model. There are multiple ways to assess the “in-
formativeness” of an unlabeled instance. Perhaps the most
popular strategy is uncertainty sampling (Lewis and Gale
1994). In multi-class classification scenarios, three differ-
ent standards are applied to measure uncertainty: (1) lowest
confidence, that queries the unlabeled instance with lowest
maximum in predictions over all classes, and (2) marginal
confidence, that queries the unlabeled instance with low-
est discrepancy in its top two class predictions, and (3) in-
formation entropy, that queries the unlabeled instance with
highest information entropy over predictions of all classes.
However, uncertainty sampling is incompatible with class-
order information as the ordering of classes indirectly re-
flects the uncertainty associated with all probable classes.
Another popular strategy is query-by-committee (Seung, Op-
per, and Sompolinsky 1992) that trains a committee of mod-

5590



els and selects the unlabeled instance on which the models
disagree the most. The models in the committee can be ac-
quired from different training sets via, for example, boot-
strapping all data instances (Breiman 1996). The limitation
of query-by-committee is a potential bias introduced by the
trained models.

Other more sophisticated querying strategies estimate the
expected change in the model the specific query may lead
to. Briefly, the strategy calculates the change in the model
due to an unlabeled instance being assigned to one of the
possible labels and weights the change by an estimate of
its probability. The first expectation-based querying strategy
is expected model change (EMC) (Tong and Koller 2000;
Settles, Craven, and Ray 2008). The model change is mea-
sured in terms of the change of the model parameters. How-
ever, a big change of the parameters does not necessarily im-
ply a big change in model’s predictions. Therefore, this strat-
egy typically overestimates the “informativeness” of each
unlabeled instance. The expected error reduction (Roy and
McCallum 2001) measures the change based on the general-
ization error when an unlabeled instance is assumed labeled.
More recently, expected performance change (EPC) (Xue
and Hauskrecht 2017a) has been proposed for binary clas-
sifiers with auxiliary Likert-scale information. Such a strat-
egy measures the change in the Likert-scale prediction due
to labeling.

Recent active learning work focuses on more sophisti-
cated querying strategies that go beyond standard instance-
based label-oriented queries. For example, active group
learning (AGL) (Luo and Hauskrecht 2018a; 2018b) con-
structs queries for subpopulations (groups of examples) the
human annotator labels with class proportions. The advan-
tage of the approach is that multiple instances are labeled
jointly with just one query. Another approach is structural
query-by-committee (SQBC) (Tosh and Dasgupta 2018). It
is a generalization of the query-by-committee (QBC) strat-
egy (Seung, Opper, and Sompolinsky 1992), that attempts
to learn the best structure defined on some space X by con-
structing queries that represent a snapshot of the most un-
certain part of the structure that is then either confirmed or
corrected via human feedback.

In this work, we propose to use the OCS to improve the
learning. An open question is how to combine it with ac-
tive learning. To address the problem, we propose a new ac-
tive learning strategy based on the expected model change
(EMC) that is compatible with the multi-class classifiers
with OCS. Briefly, when adding an unlabeled instance and a
possible OCS, it calculates the change in the ordering in-
duced by all one-vs-rest classifiers over all unlabeled in-
stances. We propose several techniques and approximations
to accelerate the retraining of the models and to reduce the
number of ordered class set assignments. In experiments, we
show our active learning strategy can substantially reduce
the number of examples it needs to query.

Methodology
In this part, we develop an active learning framework that
builds a multi-class classification model by actively query-
ing an annotator who provides feedback to the framework by

assessing instances with OCS. We start by first defining and
formalizing the problem of learning from OCS in a multi-
class settings. After that, we present an algorithm for learn-
ing the multi-class classification model from such feedback.
Second, we show how this algorithm can be included in the
active learning framework that aims to improve the model
by wisely selecting the examples to be assessed next. The
criterion used to choose from among unlabeled candidate
instances is based on the highest expected change in OCS.
Since the calculation of the expected change in OCS is non-
trivial, we present our solutions to the following problems:
(1) how to model the distribution of OCS for calculating the
expected change, and (2) how to speed up training via incre-
mental solver when adding one unlabeled instance and an
OCS.

Multi-class classifier with ordered class sets (OCS)
Problem Our objective is to learn a multi-class classifier
f : X → Y , where X ∈ Rd is the input space and
Y = {1, 2, . . . ,K} represents possible (mutually exclusive)
classes one can assign to an example. Standard way to learn
such a model is to use input-output pairs 〈xi, yi〉. In this
work we learn from the input-OCS pairs 〈xi, Si〉, where the
input xi is associated with the ordered class set (or OCS)
Si reflecting the annotator’s class preferences. The ordered
class set Si is formed by a non-empty subset of classes defin-
ing Y . Please note that the information in the input-OCS pair
subsumes the information provided in the standard input-
output data format. Briefly, we assume yi = Si1, that is, the
class label yi is identical to the first class in ordered class
set Si. In general Si may contain any number of classes: an
ordered set of only one class only indicates the annotator’s
top class choice; an ordered set of all K classes indicates
the annotator provides the complete ordering of all alterna-
tive classes. For example, in a 4-class setting, an OCS 〈3, 2〉
indicates this data instance most probably belongs to class
3, then class 2 and is not likely to belong to any other class.
Since the class label is identical to the first class in the OCS,
the output (class label) of this instance should be 3.

Approximate multi-class SVM (AMSVM) To learn a
multi-class classifier for instances with OCS, we build upon
the approximate multi-class SVM method (AMSVM) pro-
posed by (He et al. 2012). The AMSVM is an approximation
of the standard multi-class SVM (MCSVM) method. Briefly,
MCSVM works by trying to assure for every training data
instance the projection of its assigned class label is higher
than the projection of any other class. Therefore, (K − 1)
constraints are derived for each labeled data instance, one
for each class, except for the assigned class label. The total
number of constraints in MCSVM is thus O(KN), where
N is the number of labeled data instances. In AMSVM the
set of the constraints is merged and replaced with one con-
straint that assumes that for each data instance the projec-
tion of the class label is higher than the average projec-
tion for all other classes. Via such averaging, the number
of constraints is significantly reduced: only one constraint
is derived for each labeled data instance. Therefore, the to-
tal number of constraints in AMSVM is reduced to O(N).
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Formally, in the AMSVM with k classes, k binary SVMs
f1(·), f2(·), . . . , fk(·) are trained jointly. For every labeled
instance 〈xi, yi〉, we try to assure the projection fyi(xi) of
the class label yi should be greater than the average projec-
tion 1

k−1

∑
j 6=yi fj(xi). The optimization of AMSVM can

be formalized as:

min
W,Ξ

1

2

k∑
l=1

wTl wl + C

N∑
i=1

ξi

(wyi −
1

k − 1

∑
j 6=yi

wj)Tφ(xi) ≥ 1− ξi; (1)

where yi is the class label of xi and φ(·) is the projection of
kernel space. W = {w1,w2, . . . ,wk} are parameters of the
k binary one-vs-rest classifiers. N is the number of labeled
instances. Ξ = {ξi ≥ 0} i = 1, 2, . . . , N are the slack vari-
ables for each constraint. For prediction, the class with the
highest projection value is selected as the predicted class. As
shown in (He et al. 2012) the performance of AMSVM is of-
ten comparable to the standard multi-class SVM (MCSVM).

AMSVM with ordered class sets (OCS) Next we show
how we can combine AMSVM with ordered class set (OCS).
One straight forward solution to incorporate OCS to the
framework is to enforce the pairwise ordering for each pair
of classes for each data instance; that is, the ordering of a
pair of classes should conform to their ranking in the OCS.
However, such intuition suffers from high time complex-
ity: K(K−1)

2 constraints are derived for each labeled data
instance, one for each pair of classes. Therefore, the total
number of constraints of this intuition is thus O(K2N).
To reduce the time complexity, we instead incorporate the
OCS via constraints derived from the ordinal regression
(Chu and Keerthi 2005). The gist of the approach is that,
for every data instance, we split the classes in its OCS
into two subsets: a ”higher” subset and a ”lower” subset.
Each class in the “lower” subset must satisfy one of the
two conditions: (1) it is not included in the OCS, or (2) if
in the OCS, it comes after all the classes from the higher
subset. In other words, each class in the “higher” subset
should have higher priority than all the classes from the
“lower” subset in their projections. If such condition is guar-
anteed, we may enforce that the average projection of the
“higher” subset is higher than the average projection of the
“lower” subset. Since there are at most (K − 1) splits of
“higher” and “lower” subsets for each labeled instance and
each split corresponds to one constraint, the total number
of constraints is reduced to O(KN). Formally, for every la-
beled instance 〈xi, Si〉 and j ∈ {1, 2, . . . , |Si|}, the “higher”
subset can be constructed as {Si1, Si2, . . . , Sij}, where Sij
indicates the jth class in Si, and the “lower” subset con-
sists of all other classes. Then the goal is to try to enforce
the average projection 1

j

∑
a∈{Si1,Si2,...,Sij} fa(xi) of the

“higher” subset should be greater than the average projection
1
k−j

∑
b/∈{Si1,Si2,...,Sij} fb(xi) of the “lower” subset. There-

fore, the optimization of AMSVM with OCS can be formu-

lated as:

min
W,Ξ

1

2

k∑
l=1

wTl wl + C

N∑
i=1

|Si|∑
j=1

ξij

(
1

j

∑
a∈{Si1,...,Sij}

wa −
1

k − j
∑

b/∈{Si1,...,Sij}

wb)Tφ(xi)

≥ 1− ξij
;

(2)

where Si is the OCS of xi and φ(·) is the projection of ker-
nel space. W = {w1,w2, . . . ,wk} are parameters of the k
binary one-vs-rest classifiers. N is the number of labeled
instances. Ξ = {ξij ≥ 0} for all i = 1, 2, . . . , N and
j = 1, 2, . . . , |Si| index the slack variables for each con-
straint. For prediction, the class with the highest projection
value is selected as the predicted class. Please notice the pre-
diction from our AMSVM with OCS is still a class label.

Active learning with OCS
The next challenge is to embed the above multi-class classi-
fier with OCS in a compatible active learning strategy. The
core of any active learning strategy is a schema to select ex-
amples to be queried next. In this work, we propose and
experiment with a strategy called expected model change
that measures the potential of an unlabeled data instance to
change the model by estimating its impact on predictions. In
this section, we first show how the expected model change
of an unlabeled instance can be calculated by considering all
OCS of this instance. After that we tackle two related prob-
lems: (1) how to obtain the probability of a specific OCS,
and (2) how to measure the change of the model given an
unlabeled instance and one of its OCS.

Expected model change (EMC)
Let fL denotes a multi-class classification model trained on
all currently labeled data. Our objective is to assess how
much impact the annotation of a currently unlabeled exam-
ple x0 with an OCS can make. Let ∆(fL, x0) be a measure
of this impact. In this work, we assess the impact in terms of
the expected model change and an unlabeled instance with
the highest expected model change is selected for the label-
ing first. We define the expected model change for the OCS
feedback as:

∆(fL, x0) =
∑
S0∈S

P (S0|x0)δ(fL, fL∪〈x0,S0〉) (3)

where δ(fL, fL∪〈x0,S0〉) denotes a model change induced by
assigning an ordered class set (OCS) S0 to example x0.
Intuitively, the expected change is a weighted average of
model changes for all possible ordered class sets S where
the weight is a probability of the instance x0 being as-
signed an OCS S0. To simplify the model of P (S0|x0) and
its construction we express it in terms of two probabilities:
P (S0|x0) = P (S0|A0, x0)P (A0|x0), where P (A0|x0) is
the probability of an unordered class-set A0 defining S0,
and P (S0|A0, x0) is the probability of the specific class-
order for a fixedA0. In order to calculate the expected model
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change three quantities defining it need to be estimated: (1)
the probability P (A0|x0) of each unordered class setA0, (2)
the conditional probability P (S0|A0, x0) for each OCS S0

given its corresponding unordered class set A0, and (3) the
model change δ(fL, fL∪〈x0,S0〉). We present our solutions to
these next.

Estimating the probability of an unordered class set
The first quantity to be estimated is the probability P (A0|x0)
for each unordered class set A0. We approximate this quan-
tity with the help of an auxiliary multi-label logistic regres-
sion model gL we train on the data annotated with OCS. The
model gL maps instances to a class vector of size k indicat-
ing whether a class should be included in the unordered class
set or not. We define the output of a multi-label classifier as
zi = gL(xi) = MTφ(xi). The input xi of this model is a d-
dimensional feature vector of a data instance, and the output
zi is a class vector of size k indicating whether a class should
be included in the unordered class set or not. M is a d × k
matrix of parameters of this model, and φ(·) is the projec-
tion of the kernel space. The training of gL is also intuitive:
an OCS can be converted into a class vector naturally. If a
class is included in the OCS, then the corresponding scalar
of this class in the class vector is 1, otherwise the scalar
is −1. After converting the OCS of each labeled instance,
we will take the feature vector and class vector of each la-
beled instance for training. In this paper, we use an improved
multi-label logistic regression model by (Xu, Tao, and Geng
2018). Basically, this multi-label logistic regression consid-
ers the topological information of the feature space: the data
instances close to each other are more likely to share the
same class vector. Formally, the optimization of the model
parameter M can be formalized as follows:

min
M

N∑
i=1

||MTφ(xi)− zi||2+

λ
∑
ij

tij ||MT [φ(xi)− φ(xj)]||2 (4)

where xi and zi are the feature vector and class vector. tij
is the topological information between xi and xj . tij =

exp(− ||xi−xj ||2
2 ) if xj is among the nearest neighbors of xi,

and ti,j = 0 otherwise. λ is the parameter trading off the
two terms. The number of nearest neighbors is also tunable.
After obtaining the optimal parameter M̂ from the optimiza-
tion, the estimate of Â0 of A0 can be obtained from the pre-
dicted class vector ẑ0 = M̂Tφ(x0).

Estimating the conditional probability of an OCS The
second quantity to be estimated when calculating the
expected model change is the conditional probability
P (S0|A0, x0) of each OCS S0 given the corresponding un-
ordered class set A0 and an unlabeled instance x0. Al-
though it is hard for us to directly estimate P (S0|A0, x0),
the class-wise conditional probability P (c|A0, x0) of a sin-
gle class c ∈ A0 can be estimated directly by applying
a soft-max function: P (c|A0, x0) =

exp(wT
c φ(x0))∑

i∈A0
exp(wT

i φ(x0))
.

Since each OCS S0 ∼ A0 is a permutation of the unordered

class set A0, the conditional probability P (S0|A0, x0) can
be constructed from the class-wise conditional probability
P (c|A0, x0) for all c ∈ A0 the same way we construct
the probability of a permutation. Formally, the probability
P (S0|A0, x0) can be constructed as:

P (S0|A0, x0) =

|S0|∏
i=1

P (S0i|A0, x0)

1−
∑i−1
j=1 P (S0j |A0, x0)

(5)

where S0i indicates the ith probable class in S0.
It seems the conditional probability P (S0|A0, x0) is per-

fectly calculated. However, there is an inevitable fact: each
S0 is a permutation of its corresponding unordered class set
A0. This indicates that, given an unordered class set A0, the
number of OCS S0 such that S0 ∼ A0 is actually |A0|!.
Considering relation between δ and δ′ explained in Formula
(7), we also need to enumerate all unlabeled data instances
to calculate the OCS change of S0 ∼ A0. Therefore, the
time complexity of EMC for a given unlabeled data instance
x0 is O(U |A0|!), where U is the number of unlabeled data
instances. Clearly, it is intractable to calculate the condi-
tional probability P (S0|A0, x0) for all the OCS S0 ∼ A0.
To reduce the number of OCS to enumerate, a straightfor-
ward method is to do random sub-sampling over all the OCS
S0 ∼ A0. However, such a method introduces another prob-
lem: is such a sub-sample a “good” approximation of all
OCSs S0 ∼ A0? That is, is the EMC obtained using this
sub-sample similar to the EMC obtained by considering all
OCSs S0 ∼ A0? To solve this problem, we propose the fol-
lowing sub-sampling scheme: first, we create two random
sub-samples T ′0 and T ′′0 over all the OCS S0 ∼ A0 such
that: (1) S0 ∈ T ′0 ⇒ S0 ∼ A0 and S0 ∈ T ′′0 ⇒ S0 ∼ A0. In
other words, both T ′0 and T ′′0 only contains the OCS whose
corresponding unordered class set is A0. (2) T ′0 ∩ T ′′0 = ∅,
and (3) |T ′0| = |T ′′0 | = m where m is a small number. Then,
we define an instance-wise EMC κ(fL, x0, xu, T ′0) of the un-
labeled instance x0 on an arbitrary unlabeled instance xu and
a sub-sample set T ′0 where S0 ∈ T ′0 ⇒ S0 ∼ A0 as follows:

κ(fL, x0, xu, T ′0) =

1

Z

∑
S0∈T ′

0

P (S0|A0, x0)δ′(fL, fL∪〈x0,S0〉, xu) (6)

where u /∈ L and T ′0 only contains the OCS
whose corresponding unordered class set is A0. Z =∑
S0∈T ′

0
P (S0|A0, x0) is the partition function. δ′ reflects

the OCS change observed on a specific unlabeled example
xu and its output OCS. The relation between δ and δ′ is ex-
plained in Formula (7).

Clearly, the instance-wise EMC is similar to the EMC in
Formula (3) while considering only one unlabeled instance
xu and a certain unordered class set A0. If both T ′0 and T ′′0
are “good” approximations for all OCSs S0 ∼ A0, then the
instance-wise EMC κ(fL, x0, xu, T ′0) and κ(fL, x0, xu, T ′′0 )
on both sub-samples should be approximately equal to
each unlabeled instance xu. In other words, the quantity
κ(fL, x0, xu, T ′0) − κ(fL, x0, xu, T ′′0 ) ≈ 0 for all u /∈ L,
which can be validated using a t-test with a hypothesis that
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the mean of this quantity is 0. If the t-test does not reject
the hypothesis, we may consider both T ′0 and T ′′0 as “good”
approximations over all the OCS S0 ∼ A0, and take T ′0∪T ′′0
as the sub-sample over all the OCS S0 ∼ A0 and only con-
siders the OCS S0 ∈ T ′0 ∪ T ′′0 . The conditional probability
P (S0|A0, x0) of the OCS S0 ∈ T ′0 ∪ T ′′0 should also be nor-
malized to exclude the OCS not in the sub-sample T ′0 ∪ T ′′0 ;
otherwise, we increase m and repeat the scheme until the
t-test does not reject the hypothesis. By applying the sub-
sampling technique above, the time complexity of EMC for
a given unlabeled data instance x0 is reduced to O(Um).

Approximating the OCS change of an instance The
third important quantity to be estimated is the OCS-related
model change δ(fL, fL∪〈x0,S0〉). We calculate the model
change by observing and assessing changes in the ordered
class sets (OCSs) assigned for each unlabeled example xu, i
by models fL and fL∪〈x0,S0〉. More formally, we express the
model change as:

δ(fL, fL∪〈x0,S0〉) =
∑
xu

δ′(fL, fL∪〈x0,S0〉,xu) (7)

where δ′ reflects the OCS change observed on a specific un-
labeled example xu and its output OCS.

The OCS change can be easily measured as the absolute
ranking change on all k classes of xu. Formally, we define
a function rank(f, x, c) which returns the ranking of class c
in the output f(x) = {f1(x), f2(x), . . . , fk(x)}. Therefore,
the OCS change δ′(fL, fL∪〈x0,S0〉, xu) can be calculated as∑k
i=1 ||rank(fL, xu, i) − rank(fL∪〈x0,S0〉, xu, i)||. However,

such estimation is not perfect: it assumes all the k classes
contribute equally to the change. This is however inconsis-
tent with the fact: the changes of classes on higher rank-
ings should be emphasized. For example, if the class on
the first ranking changes, the predicted class label will also
change. To address this problem, we introduce Discounted
Cumulative Gain (DCG) (Järvelin and Kekäläinen 2002).
Briefly, DCG discounts the change of a class over a log
expression of its ranking, which understates the changes
of classes on lower rankings. Formally, the OCS change
δ′(fL, fL∪〈x0,S0〉, xu) with DCG can be calculated as:

δ′(fL, fL∪〈x0,S0〉, xu) =

k∑
i=1

||rank(fL, xu, i)− rank(fL∪〈x0,S0〉, xu, i)||
log2[1 + rank(fL, xu, i)]

(8)

Experiments and results
We test our approach on synthetic and real-world data. The
two synthetic datasets are built from two UCI multi-class
classification datasets where the OCSs are simulated; the
three real-world datasets contain OCS that are assessed by
human annotators and are extracted directly.

Experimental settings
The two synthetic OCS datasets are generated from UCI
Vehicle Silhouettes and Optical Digits datasets. We do this

Figure 1: Performance (exact match rate) on two synthetic
datasets in experiments.

by taking 1
3 of data instances in these datasets to train an

AMSVM with class labels only. After training, we apply the
trained AMSVM to every instance in the remaining 2

3 of the
dataset, and calculate the probabilitity distribution of all its
classes via soft-max function. We generate the OCS for the
instance by ordering the classes in terms of their probabil-
ity and by excluding those classes that fall below probability
0.05. In the OCS experiments we use only the 2

3 of data that
consists of the original feature vectors and the correspoding
(calculated) OCS.

The real-world datasets consists of two Million Song
datasets (CD1 and CD2) (Bertin-Mahieux et al. 2011) and
one Face Sentiment dataset (Mozafari et al. 2012). Each Mil-
lion Song dataset consists of a collection of songs. In each
dataset, the feature vector of each instance contains the tim-
bre information of this song, the OCS of each instance con-
tains one or two classes indicating the genre that this song
likely belongs to. Please notice that each song can only be-
long to one genre, and the OCS of this song just indicates
the competing choices of genres. In Face Sentiment data,
the feature of each instance is a 128× 120 gray-scale image
of a facial expression, where we extract 256 features using
a convolutional neural network. The class label of each in-
stance indicates the sentiment of facial expression. However,
each image is annotated by 9 human annotators. Therefore,
we may sort the classes according to their vote numbers in
the descending order, and take the ordered set of classes as
the OCS for each instance. The basic properties of two syn-
thetic datasets and three real-world datasets are summarized
in Table 1.

To demonstrate the benefits of our multi-class classifier
trained with ordered class set (OCS) and our expected model
change (EMC) active learning strategy, we compare it with
a number of existing multi-class classifiers with and with-
out an active learning strategy. These include: (1) one-vs-
rest classifier trained only on class labels, (2) one-vs-rest
classifier trained only on class labels with uncertainty sam-
pling active learning strategy, (3) approximate multi-class
SVM (AMSVM) trained only on class labels, (4) AMSVM
trained only on class labels with EMC active learning strat-
egy (EMC can be also applied to multi-class classifier with
class labels only by taking the class label as an OCS of size
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Figure 2: Performance (exact match rate) on three real-world datasets in experiments.

Dataset Name # of Instances # of Features # of Classes Size of OCS
Vehicle Silhouettes 946 18 4 Simulated

Optical Digits 5620 64 10 Simulated
Million Song CD1 35409 90 13 1∼2
Million Song CD2 89073 90 15 1∼2

Face Sentiment 584 256 4 1∼4

Table 1: Properties of all datasets in experiments.

1), and (5) our multi-class classifier trained with ordered
class sets (OCS) but without active learning (examples are
picked randomly). The details of all methods in the experi-
ments are as follows:

OVR: k one-vs-rest binary classifiers trained independently, one
for each class; The instances to be labeled next are selected ran-
domly; (k is the number of classes in the dataset, sic passim.)
OVRU: k one-vs-rest binary classifiers trained independently, one
for each class; The instances to be labeled next are selected using
least confident uncertainty sampling (Settles, Craven, and Fried-
land 2008) active learning strategy;
MSVM: Approximate multi-class SVM (AMSVM) where k one-
vs-rest binary classifiers are trained jointly, one for each class; The
instances to be labeled next are selected randomly;
MSVMA: Approximate multi-class SVM (AMSVM) where k one-
vs-rest binary classifiers are trained jointly, one for each class; The
instances to be labeled next are selected using our EMC active
learning strategy;
CMSVM: Our multi-class classifier incorporated with OCS where
k one-vs-rest binary classifiers are trained jointly, one for each
class; The instances to be labeled next are selected randomly;
CMSVMA: Our multi-class classifier incorporated with OCS
where k one-vs-rest binary classifiers are trained jointly, one for
each class; The instances to be labeled next are selected using our
EMC active learning strategy.

All data sets are split (before the training) into the train-
ing and test set (using 2

3 and 1
3 of all data instances). We

evaluate the performance of the different methods by calcu-
lating the exact match rates (EMR) all the classifiers achieve
on the test data. Exact match rate calculates the ratio of data
instances for which the prediction is identical to its class la-
bel, over all data instances. The learning considers the train-
ing data only, and the EMR is always calculated on the test
set. We also repeat the splitting and learning steps 24 times.

The average EMR (Y -axis) of different classifiers on two
synthetic datasets and three real-world datasets regarding in-
creasing sizes (X-axis) of the training sets is reported in Fig-
ure 1 and Figure 2 respectively.

Experimental results
Figure 1 and Figure 2 show the benefit of our multi-class
classifier trained with OCS and our EMC active learn-
ing strategy on two synthetic datasets and three real-world
datasets both individually and jointly:
Effect of incorporating OCS: On all the datasets, CMSVM
outperforms MSVM and OVR; CMSVMA outperforms
MSVMA and OVRU. These two groups of comparisons show
our multi-class classifier trained with the OCS improves the
learning performance when compared with models that use
only class label information at the same training size.
Effect of EMC strategy: Also, on all the datasets, CMSVMA
outperforms CMSVM; MSVMA outperforms MSVM. These
two groups of comparisons show our EMC active learning
strategy improves the performance of the multi-class models
compared with models that select next exmples randomly.
Again the results are matched at the same training data size.
Effect of combining OCS and EMC: Overall, on all the
datasets, the model CMSVMA, which is the combination of
our multi-class classifier incorporated with OCS and our
EMC active learning strategy, achieved the highest perfor-
mance. This supports and confirms the effectiveness of our
multi-class classifier trained with with OCS and our EMC
active learning strategy.

Conclusion
Ordered class set (OCS) is a special auxiliary information
arising in multi-class classification settings that can be eas-
ily obtained from human annotators at an insignificant cost
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and can help us to reduce the annotation efforts. In this work,
we proposed a new framework for learning multi-class clas-
sification models from human feedback that utilizes OCS
and a novel active learning strategy: expected model change
(EMC) that matches the OCS labels. Our results show that
our learning framework (1) is able to learn more efficiently
and from a smaller number of labeled instances than existing
methods (2) is better than models that rely on OCS or active
learning individually.
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