
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Bounding Uncertainty for Active Batch Selection

Hanmo Wang,1,2 Runwu Zhou,1,2 Yi-Dong Shen1∗
1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China

2University of Chinese Academy of Sciences, Beijing 100049, China
{wanghm,zhourw,ydshen}@ios.ac.cn

Abstract

The success of batch mode active learning (BMAL) methods
lies in selecting both representative and uncertain samples.
Representative samples quickly capture the global structure
of the whole dataset, while the uncertain ones refine the deci-
sion boundary. There are two principles, namely the direct
approach and the screening approach, to make a trade-off
between representativeness and uncertainty. Although widely
used in literature, little is known about the relationship be-
tween these two principles. In this paper, we discover that the
two approaches both have shortcomings in the initial stage
of BMAL. To alleviate the shortcomings, we bound the cer-
tainty scores of unlabeled samples from below and directly
combine this lower-bounded certainty with representative-
ness in the objective function. Additionally, we show that the
two aforementioned approaches are mathematically equiva-
lent to two special cases of our approach. To the best of our
knowledge, this is the first work that tries to generalize the di-
rect and screening approaches. The objective function is then
solved by super-modularity optimization. Extensive experi-
ments on fifteen datasets indicate that our method has signif-
icantly higher classification accuracy on testing data than the
latest state-of-the-art BMAL methods, and also scales better
even when the size of the unlabeled pool reaches 106.

Introduction
Active learning (Settles 2010) is a machine learning and data
mining methodology to automatically select informative
data instances for annotation when facing a large amount of
unlabeled data. The goal of active learning is to train a classi-
fier that has good generalization performance with informa-
tive instances only. Traditional active learning methods it-
eratively select one single informative instance and thus are
not efficient when there are multiple annotators. Recently,
batch mode active learning (BMAL) was introduced, which
makes the annotation process more productive by selecting
multiple instances in each iteration.

Informative instances in BMAL are both representative
and uncertain. The representativeness indicates that the se-
lected instances capture some global structure of the en-
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tire dataset, while the uncertainty indicates that the se-
lected instances can refine the decision boundary in a label-
efficient way. Empirically, choosing representative instances
are particularly critical when labeled data is scarce, while
uncertainty plays a more important role as the number of
labeled instances increases (Guo and Schuurmans 2008;
Wang and Ye 2015; Settles 2010). There are two common
approaches to combine representativeness and (un)certainty.
The first is the direct approach, which directly combines
representativeness with uncertainty to form a single objec-
tive, such as in (Wang and Ye 2015), (Chakraborty et al.
2015a) and (Chakraborty et al. 2015b). The second is the
screening approach, which excludes some unlabeled in-
stances about which the classifier is certain, and chooses
representative samples among the remaining instances, such
as in (Chattopadhyay et al. 2012) and (Chakraborty et al.
2015b). Neither of these two approaches can handle small
number of labeled instances in the beginning of BMAL,
when the labeled data is scarce. Under such circumstances,
there are not adequate labeled data to train an accurate clas-
sifier, and thus the output of the classifier is usually not accu-
rate. The direct approach, which directly utilizes the output,
is therefore possibly misled; the screening approach, which
screens samples beforehand, may accidentally remove use-
ful instances.

In this paper we propose a novel method that not only
alleviates the problems of the direct and the screening ap-
proaches but also illustrates the connections between them.
In the beginning of BMAL, the output of the classifier is
usually not so accurate owing to insufficient labeled data.
We observe that samples with high certainty usually remains
certain even under a not-well-trained classifier, while sam-
ples with low certainty have low confidence on the certainty.
To alleviate this issue, we further modify existing certainty
measures by enforcing a lower-bound on the certainty score
of each unlabeled instance. With this lower-bounded cer-
tainty (LBC), some of the most misleading instances have
the same certainty score, possibly reducing their influence
to the selection process. We then prove that for any repre-
sentativeness and additive certainty, the direct and screening
approaches are two special cases of our LBC method. To
the best of our knowledge, this is the first attempt to make
generalizations about the direct and screening approaches
in literature. Unlike the direct approach, our LBC-based
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BMAL method treats the noisy samples with equal certainty
and thus eliminates some of the most misleading certainty
scores. On the other hand, our method takes all unlabeled
samples into account, so it may not accidentally discard use-
ful instances merely by their certainty scores as the screen-
ing approach does.

As well as the quality of the selected samples, the ef-
ficiency of BMAL methods also matters in practice. Un-
fortunately, most of the existing BMAL methods are not
scalable. For example, the most recent method batchRank
in (Chakraborty et al. 2015b) runs in O(n2u), where nu
is the number of unlabeled instances. The MMD-based
BMAL method (Chattopadhyay et al. 2012) and its vari-
ant (Wang and Ye 2015) both use a Quadratic Program-
ming toolbox which runs in O(n3u). Another representative
BMAL method (Wang et al. 2015) tends to solve its ob-
jective function using the sub-gradient method, which has
a slow convergence rate. To illustrate the effectiveness, we
instantiate our method by choosing Maximum Mean Dis-
crepancy (MMD) (Gretton et al. 2006)(Gretton et al. 2012)
as representativeness and posterior probabilities to the most
likely class as certainty. Under mild conditions, we prove
the super-modularity of our objective function and utilize a
random greedy method (Buchbinder et al. 2014) to obtain a
fast solution. Our method scales linearly w.r.t. nu and can
handle more than 106 unlabeled instances.

Our contributions are as follows:

• We propose to bound the uncertainty of the unlabeled
samples for active learning. Such mechanism not only al-
leviates the problem with the noisy output of the classifier,
but also takes all unlabeled samples into consideration. In
other words, our method alleviates the problems with the
direct approach and the screening approach.

• Our framework can be seen as a generalization of the two
aforementioned approaches. To the best of our knowl-
edge, this is the first work for such generalizations. For
effectiveness, we empirically choose MMD (Chattopad-
hyay et al. 2012) and the least confident method as rep-
resentativeness and uncertainty, respectively. In addition,
we discover a trivial solution of the original Quadratic
Programming solver in (Chattopadhyay et al. 2012) and
propose to solve the objective with a random greedy
solver that has theoretical guarantees.

• We conduct extensive experiments on fifteen bench-
mark datasets. The result demonstrates that our method
with LBC has significantly higher accuracy than the lat-
est state-of-the-art BMAL methods, while managing to
achieve faster (sometimes in several order of magnitude)
running time.

Related Work

Active learning has been an important topic in machine
learning and data mining. One extensively studied category
is pool-based active learning (Settles 2010), where an active
learner is exposed to a large pool of unlabeled data, and it

automatically decides which instances are the most informa-
tive for labeling. Pool-based active learning methods can be
roughly categorized into two groups. One is single instance
selection, where a single informative instance is selected it-
eratively to update the classifier. Well-known single instance
selection methods include query-by-committee (Seung, Op-
per, and Sompolinsky 1992) and uncertainty sampling (Tong
and Koller 2002). The other category is multiple instance
selection, a.k.a. batch mode active learning (BMAL), where
multiple annotators are available and the learner iteratively
selects multiple instances instead of one.

There is a variety of pioneer work in BMAL, which
also considers representativeness and uncertainty. For ex-
ample, (Guo and Schuurmans 2008) proposes to select in-
stances based on pure discriminativeness (which can be
seen as a variant of uncertainty). Later, (Guo 2010) pro-
poses an approach to selecting a batch of samples that min-
imizes the mutual information between labeled and unla-
beled data. (Hoi et al. 2006) apply the Fisher information
as an uncertainty criterion in BMAL. Recently, (Chattopad-
hyay et al. 2012) propose a representative method to mini-
mize the difference in distribution between labeled and un-
labeled data via selecting the samples with the lowest MMD
score. (Wang and Ye 2015) further combine this distribution-
matching method with discriminative information. Another
method based on the distribution-matching criterion named
relative Pearson divergence is proposed in (Wang et al.
2015). (Chakraborty et al. 2015b) present a method using
mutual information and entropy. There are also other BMAL
methods for specified classifiers such as hierarchical classifi-
cation (Cheng et al. 2014)(Chakraborty et al. 2015a), logistic
regression (Gu, Zhang, and Han 2014), multi-class classifier
(Reyes and Ventura 2018; Yan and Huang 2018) and Naive
Bayes/Nearest Neighbor (Wei, Iyer, and Bilmes 2015). Re-
cently, there is also theoretical analysis of BMAL(Chen and
Krause 2013).

Batch Mode Active Learning

Before diving into our method, we introduce the formal
problem setting for BMAL. Let X = {x1,x2, ...,xn} be
a dataset of n instances with dimensionality d. We use L
and U to denote sets of labeled and unlabeled indexes re-
spectively, where L ∪ U = {1, 2, ..., n} and L ∩ U = ∅.
Let nl = |L| and nu = |U |. Let XL and XU be the labeled
and unlabeled set respectively, i.e., XL = {xi|i ∈ L} and
XU = {xi|i ∈ U}. Each instance xi is associated with label
yi ∈ {1, ..., |y|}. If xi ∈ XL, label yi is revealed by a hu-
man labeler; otherwise yi is unknown. A BMAL algorithm
iteratively select a batch of samples XS with indexes S sat-
isfying S ⊂ U and |S| = b until there is no budget (user
specified) available for labeling, where the batch size b is a
predefined constant.

The Proposed Algorithm

For a candidate batch S ⊂ U , we define R(S) and C(S)
to be the representativeness and certainty function of set S.
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We ignore the certainty score of some low-certainty samples
by ensuring a lower bound on the certainty score of all un-
labeled instances. Formally, for each instance xi ∈ XU we
propose the lower-bounded certainty (LBC) score as follows

LC(xi) = max(C(xi), ε) (1)

with threshold ε indicating the smallest accurate certainty.
We mainly consider the most widely-used type of certainty,
i.e., additive certainty, with the following definition.

Definition 1. Additive Certainty: We say certainty function
C(·) : 2U 7→ R to be additive iff C(S) =

∑
i∈S C(xi) for

any S ⊂ U .

Additivity indicates that the certainty measure is calcu-
lated in the instance level, and it applies to most of the
certainty measures, such as entropy (Chakraborty et al.
2015b) and margin sampling (Scheffer, Decomain, and Wro-
bel 2001).

With this nice property, we define the LBC on a set S ⊂ U
as

LC(S) =
∑
i∈S

max(C(xi), ε)

Without loss of generality, we directly combine the repre-
sentativeness R(S) with LBC score LC(S) and obtain the
BMAL framework with LBC:

min
S⊂U,|S|=b

R(S) + λLC(S) (2)

where λ is a trade-off parameter.

Before instantiating our method with specific representa-
tiveness and certainty, we prove that the direct and screening
approaches are two special cases of our method in Eq. (2).

Lemma 1. For representativeness R(S) and additive cer-
tainty C(S), the direct approach with the following objec-
tive

min
S⊂U,|S|=b

R(S) + λC(S), (3)

and the screening approach that optimizes

min
S⊂U,|S|=b

R(S)

s.t. C(xi) ≤ ε for all i ∈ S
(4)

are both special cases of our method in Eq. (2).

Proof. the direct approach: the direct approach directly
combines representativeness with uncertainty. By setting
threshold ε to mini∈U C(xi), we have C(xi) ≥ ε for all
i ∈ U , i.e. max(C(xi), ε) = C(xi). The LBC LC(·) degen-
erates to certainty C(·), and thus Eq. (2) becomes equivalent
to Eq. (3).

the screening approach: The screening approach mini-
mizes merely representativeness over uncertain samples. Let
S∗ be the global optimizer of the screening approach in
Eq. (4), and let v∗ be the smallest violation in certainty, i.e.,
v∗ = minC(xi)>ε C(xi) − ε for i ∈ U . When the trade-off
parameter λ satisfies λ > R(S∗)/v∗, any instance xj with

c(xj) > ε will be heavily penalized such that for any S sat-
isfying j ∈ S, we have f(S) = R(S)+λLC(S) ≥ R(S)+
λLC(xj) ≥ R(S)+(R(S∗)/v∗)C(xj) > R(S)+R(S∗) ≥
R(S∗) = R(S∗) + λLC(S∗) = f(S∗), i.e. any batch of
samples that contains the instance whose certainty is above
ε is not the global optimal of Eq. (2). Therefore, the solution
to Eq. (2) is restricted to the instances with certainty lower
than or equal to ε, i.e. optimizing the objective in Eq. (2) is
equivalent to optimizing Eq. (4) when λ becomes large.

The above lemma holds for most of the recent
BMAL algorithms that utilize both representativeness and
(un)certainty. (Wang and Ye 2015; Chakraborty et al. 2015a;
2015b; Chattopadhyay et al. 2012; Yang et al. 2015).

In the following, we instantiate our algorithm using spe-
cific certainty and representativeness. For a probabilistic
classifier with parameter w, we assume the true labels of
unlabeled samples are drawn from categorical distributions,
i.e

yi ∼ Categorical(pi) (5)

where pi is the vector of the probability estimate of xi

pi = [P (y = 0|xi,w); ...;P (y = |y||xi,w)] (6)

In this paper, we use accuracy as the evaluation metric.
Therefore, the expected accuracy on the unlabeled set U be-
comes

ACC
∧

U = Eyi∼Cat(pi),i∈U
1

|U |
I(yi = ŷi) (7)

where ŷi = argmaxy P (y|xi,w) is the predicted label. We
can easily calculate the expected accuracy as

ACC
∧

U =
1

|U |
max
y

P (y|xi,w) (8)

Following (Wang et al. 2018), the uncertainty of xi is de-
fined as the expected accuracy on U\i. After droping con-
stants, the uncertainty of sample xi becomes

C(xi) = ACC
∧

U\i ∼ max
y

P (y|xi,w) (9)

In the initial stage of BMAL, the certainty measure is usu-
ally noisy because there is no adequate labeled data to train
the classifier. Nevertheless, samples with high certainty usu-
ally remain certain under a noisy classifier (trained with in-
adequate data). To be more specific, the instances with high
certainty are generally far away from the decision bound-
ary, so they are highly likely to remain certain whether un-
der a noisy classifier or the ground-truth classifier (trained
with all data). As a result, even a noisy classifier predicts
accurately the highly certain samples. On the other hand,
uncertain samples are usually close to the decision bound-
ary, which makes their certainty scores untrustworthy under
a noisy classifier with an inaccurate decision boundary. To
alleviate this issue, we bound the certainty scores from be-
low

LC(S) =
∑
i∈S

max(C(xi), ε) (10)
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In the beginning of the sample selection process, so-called
representativeness are critical because it captures the global
structure of the unlabeled data. We use a typical representa-
tiveness measure named empirical MMD score ( See (Gret-
ton et al. 2006)(Gretton et al. 2012) for more details), which
selects instances that minimizes the difference in distribu-
tion between labeled and unlabeled data:

R(S) := MMD[φ,XL∪S , XU\S ] =
1

2

∑
i∈S

∑
j∈S

Kij +
∑
i∈S

hi

hi =
nu − b
n

∑
j∈L

Kij −
nl + b

n

∑
j∈U

Kij

(11)

where φ(·) is a kernel mapping and K is the kernel matrix
that measures similarity over all instances.

After substituting Eq. (11) and Eq. (10) into Eq. (2), we
have

min
S⊂U,|S|=b

f(S) =
1

2

∑
i∈S

∑
j∈S

Kij +
∑
i∈S

hi + λ
∑
i∈S

LC(xi)

(12)

We call Eq. (12) an example of BMAL with lower bounded
certainty (LBC). For this instance of BMAL with LBC, we
further prove that under mild assumptions, the objective
function in Eq. (12) is a super-modular function. For sim-
plicity, we define fT (e) := f(T ∪ {e}) − f(T ), for any
T ⊂ U and e ∈ U\T .
Lemma 2. For a non-negative kernel Gram matrix K such
that Kij ≥ 0, the objective function f(·) in Eq. (12) is a
super-modular set function defined on 2U .

Proof. By the definition of super-modularity functions, for
any S ⊂ T ⊂ U and any e ∈ U\T , we have fT (e) −
fS(e) =

∑
j∈T\S Kej ≥ 0, thus completing the proof.

Solving the Objective
Trivial Solution. Previous work (Chattopadhyay et al. 2012)
solves an optimization problem by minimizing MMD in
Eq. (11) using Quadratic Programming (QP). We point out
a draw-back of the QP solver that it may give a trivial solu-
tion when the initial labeled setL is empty. The optimization
problem is obtained by giving each instance xi an indicator
variable αi ∈ {0, 1} and relaxing it to [0, 1] as follows.

min
0≤αi≤1,

∑
i αi=b

1

2
αTKUUα−

b

n

∑
i∈U

∑
j∈U

Kijαi (13)

where KUU is a sub-matrix of K over U . The KKT condi-
tions of the above convex optimization problem becomes

0 ≤ αi ≤ 1∑
i αi = b

µi(αi − 1) = 0

µ ≥ 0,ω ≥ 0

ωiαi = 0∑
j∈U (αj −

b
n )Kji +

∑
i µi +

∑
i ωi + t = 0

(14)

where t, µ ≥ 0 and ω ≥ 0 are dual variables.

We can easily verify that αi = b/n (t = 0,µ = 0,ω =
0) is a solution of the above KKT conditions, and thus a
global optimal of Eq. (13). This solution gives equal weights
to each unlabeled instance, resulting in undesired behavior
similar to random sampling. To avoid this, we use a random
greedy solver to solve our similar objective in Eq. (12)

Random Greedy Solver. The random greedy algorithm
(Buchbinder et al. 2014) maximizes a nonnegative sub-
modular function with cardinality constraint. Since mini-
mizing super-modular functions is equivalent to maximizing
sub-modular functions, this algorithm can also be applied to
our objective function in Eq. (12). It starts with an empty
set, and in each iteration a set of possible “good” indexes is
constructed, which consists of b instances that increase the
objective function least. One index is then randomly selected
from the set of “good” indexes and is added to the solution.
This process is repeated until b instances are selected.

The increase of the objective function f(·) after adding
index e to set S can be formulated as

fS(e) = f(S ∪ {e})− f(S) =
∑
i∈S

Kie +
1

2
Kee + he + λLC(xe)

After selecting another index e′, the increase becomes

fS\e′ (e) =
∑

i∈S\e′
Kie +

1

2
Kee + he + λLC(xe) = fS(e)−Kee′

Algorithm 1 summarizes the random greedy algorithm,
where ψ and ψ′ correspond to fS and fS\e′ respectively.

Algorithm 1 RandGreedy(U ,b)% select b instances from U

Require: h, kernel K, batch size b, unlabeled index set U
Ensure: A solution S

1: S ← ∅
2: ψe =

1
2Kee + he + λLC(xe), for all e ∈ U

3: for i=1 to b do
4: Let M be the set of b indexes in U\S with b smallest

ψ value
5: Randomly select one index e′ from M
6: S ← S ∪ {e′}
7: ψ′e ← ψe −Kee′ , for all e ∈ U\S
8: ψe ← ψ′e, for all e ∈ U\S
9: end for

10: return S

Coefficient Between Batches. When one batch of samples
is selected for labeling, we have to update the coefficient h
in Eq. (11) according to the selected instances. Let Lt be the
labeled index set L at the t-th batch (t = 1, 2, ...). Similar
notations apply for nu, nl, U and h. We split Eq. (11) as
follows.

hti =
ntu − b
n

∑
j∈Lt

Kij −
ntl + b

n

∑
j∈Ut

Kij (15)

For nu and nl, we have nt+1
u = ntu−b and nt+1

l = ntl+b.
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Figure 1: Accuracy of LBC against seven baselines over fifteen datasets .
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We have the following recursive formula to calculate ht+1

ht+1
i = hti −

b

n

∑
j∈D

Kij +
nut − ntl − 4b

n

∑
j∈St

Kij (16)

Calculating coefficient h using Eq. (15) and Eq. (16), we
obtain Algorithm 2 for BMAL based on LBC.

Algorithm 2 BMAL based on LBC

Require: batch size b, labeled index set L, unlabeled index
set U , and data matrix X , batch number t

Ensure: A solution S of size b
1: if t=1 then
2: Construct Kernel matrix K from X
3: Initialize coefficient h1 using Eq. (15)
4: end if
5: S ← RandGreedy(U, b)
6: Update coefficient ht+1 with ht using Eq. (15) and

Eq. (16)
7: return S

Memory-Efficient BMAL. Note that the random greedy
method (Algorithm 1) requires the input to be an n× n ker-
nel matrix, which is difficult to store when the number of
instances n becomes large. In a simple case where d � n
and the n× d data matrix can fit into memory, we only need
to calculate the similarity matrix between (un)labeled set L
(U ) and selected instances S.

To reduce time complexity, we adopt the technique named
Random Fourier Features (RFF) (Chitta, Jin, and Jain
2012) to calculate ht with a low-rank representation of the
data. The kernel function K(x,y) can be approximated as
K(x,y) = R(x)R(y)T where R(x) is the low-rank repre-
sentation of x.

Using Eq. (15) and Eq. (16) as well as the RFF tech-
nique to calculate coefficient h, and directly calling the ker-
nel function when needed, we obtain the memory-efficient
version of Algorithm 2. The time complexity of Algorithm 2
is O(nub). The memory-efficient version runs in O(nubD),
where D is the number of Fourier components in RFF. Al-
gorithm 2 requiresO(n2u) space, while the memory efficient
version only needs O(nD).

Complexity Analysis. The random greedy algorithm in Al-
gorithm 1 runs in O(nub). Updating coefficient h requires
O(n2) time in the first batch, and O(nub) otherwise. Fi-
nally, constructing the kernel matrix usually takes O(n2d)
time in the first batch. To sum up, the time complexity1 of
Algorithm 2 is O(n2d) when the batch number t = 1 and
O(nub) otherwise.

The memory-efficient version of Algorithm 2 does not
store or pre-calculate the kernel matrix, and the kernel
function is activated only when called upon. In the first
batch, calculating coefficient h requiresO(nDd) using RFF.
Therefore, the total running time of the memory-efficient

1Here we do not consider the time complexity to obtain the cer-
tainty score, which is specified by the classifier

Name Number of Instances Number of Features Number of Classes
ORL 400 1024 40

COIL20 1440 1024 20
segmentation 2310 19 7

WEBACE 2340 1000 20
Reuters 2919 18933 4
USPS 3082 256 4

waveform 5000 21 3
twonorm 7400 20 2

RCV1 9625 29992 4
TDT2 10212 36771 96

20News 18774 61188 20
letter 20000 16 26

covtype 581012 54 7
SUSY 5× 106 18 2

HIGGS 1.1× 107 28 2

Table 1: Dataset Description

method becomesO(ndD+nbd) when t = 1 andO(nubD)
otherwise. The additional memory is reduced fromO(n2) to
O(nD), where D is the number of Fourier components. We
empirically set D = 100 in our experiment.

Experimental Results
Datasets We use fifteen benchmark datasets, seven of which
are from UCI machine learning repository (Dheeru and
Karra Taniskidou 2017), namely segmentation, waveform,
twonorm, HIGGS, covtype, SUSY and letter. The other eight
datasets are Reuters, RCV1, TDT2, 20News, WEBACE, ORL,
COIL20 and USPS, which are publicly available2. The tasks
of these datasets range from hand writing digits recognition,
object recognition, to text classification. Table 1 summarizes
the details of the datasets.

Experiment Setup
All the compared methods are described below.

• LBC: our BMAL method in Algorithm 2.

• LBCdirect: which is a degenerated version of our method
by taking the direct approach.

• LBCscreen: which is another degenerated version of our
method by taking the screening approach.

• Batchrank: the BMAL method proposed in (Chakraborty
et al. 2015b) which directly combines mutual information
with entropy.

• RPE: the representative BMAL method described in
(Wang et al. 2015) using relative Pearson divergence.

• MMD: the QP-based MMD method (Chattopadhyay et al.
2012), which selects samples using QP relaxation.

• MCDR: the BMAL method in (Wang and Ye 2015) which
directly combines MMD with a regression loss

• Rand: random selection, which selects b samples uni-
formly at random.

In the experiment, we randomly split each dataset into
unlabeled data (60%) and testing data (40%). One instance
from each class is randomly selected as the initial labeled

2http://www.cad.zju.edu.cn/home/dengcai/
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Time(s) acc.ratio
Dataset MMD RPE Batchrank MCDR LBC vs. MMD vs. RPE vs. Batchrank vs. MCDR
ORL 0.35 0.21 0.28 2.81 0.01 63.88 38.38 51.41 513.30

COIL20 37.84 19.37 8.70 59.52 0.16 234.97 120.28 54.04 369.58
segmentation 240.34 82.02 13.06 165.93 0.46 523.09 178.52 28.43 361.14

WEBACE 188.12 77.48 25.81 158.67 0.49 387.41 159.56 53.14 326.77
Reuters 539.71 99.73 16.76 384.22 0.83 647.73 119.69 20.12 461.12
USPS 368.49 133.81 19.83 147.28 0.89 414.07 150.37 22.29 165.50

waveform 3131.24 345.51 42.55 204.78 2.51 1245.58 137.44 16.93 81.46
twonorm 78.35 737.10 73.81 191.39 5.68 13.80 129.85 13.00 33.72

RCV1 7458.11 1061.75 184.23 11320.09 9.66 772.08 109.91 19.07 1171.88
TDT2 71093.94 239270.75 3567.2 5251.77 195.31 364.01 1225.05 18.26 26.89

20News NA NA 12951.53 NA 333.45 33.84
letter NA NA 25325.87 NA 598.61 42.31

covtype MLE MLE MLE MLE 10296.35
SUSY MLE MLE MLE MLE 59595.7

HIGGS MLE MLE MLE MLE 159035.40

Table 2: Total running time (in seconds) of five compared methods along with accelerating ratio of LBC against the other four.
NA represents the method fails to provide with a result after running for several days, and MLE indicates that the method runs
out of memory.

Win/Loss(%) of LBC vs. the following
Dataset Rand MMD RPE Batchrank MCDR direct screen
ORL 74/0 53/0 53/0 0/0 53/0 0/0 0/0

COIL20 86/0 90/0 54/0 44/0 71/0 20/0 21/0
segmetation 96/0 84/2 98/0 81/0 66/0 11/0 91/0
WEBACE 91/0 89/0 11/1 20/0 52/3 12/1 7/0

Reuters 98/1 99/0 66/0 47/0 98/0 0/0 1/0
USPS 96/1 84/0 32/0 100/0 64/0 9/0 82/4

waveform 85/0 76/0 3/4 99/0 13/4 0/4 90/0
twonorm 78/0 10/2 0/0 11/0 1/0 0/1 97/0

RCV1 99/0 90/0 100/0 100/0 58/0 91/0 78/5
TDT2 97/0 53/0 40/0 44/0 53/0 9/0 72/0

20News 80/14 NA NA 100/0 NA 92/0 98/0
letter 90/6 NA NA 100/0 NA 74/0 98/0

covtype 32/2 MLE MLE MLE MLE 3/0 37/0
SUSY 98/1 MLE MLE MLE MLE 89/0 98/0

HIGGS 100/0 MLE MLE MLE MLE 2/0 11/0

Table 3: the win/loss(%) of LBC against BMAL baselines
using paired t-test with a 95% significant level

data. All methods are applied with the same initial, unla-
beled and testing dataset. The batch size b is fixed to be 100
on large datasets covtype, SUSY and HIGGS, 50 on letter
and 20News, and 10 on other small datasets. Logistic Re-
gression is used as the classifier. For each dataset, the exper-
iment is conducted 10 times. The averaged result is reported.

We use Gaussian kernel on all datasets. For data instances
x and y we set K(x,y) = exp(−||x − y||2/p), where the
parameter p is the median of all pair-wise squared Euclidean
distances over the unlabeled data. We sort all the unlabeled
samples increasingly according to their certainty in Eq. (10),
and set hyper-parameter ε to be the β-th percentile (0 < β <
100). We empirically use two hyper-parameter γ and τ to
describe β as β = γ ∗ (nu/n)τ , where γ and τ is fixed to
be 20 and 10 respectively. For hyper-parameter λ, we set
λ = b2. The two degenerated methods use the same hyper-
parameters as our method. For the three largest datasets, we
use the memory-efficient version of Algorithm 2 instead.

Experimental Results
Running Time. Table 2 shows the total running time of five

compared methods, along with the accelerating ratio of LBC
against the other four. For datasets such as 20News and let-
ter, some baselines are omitted because they cannot present
the results after running several days. For datasets covtype,
HIGGS and SUSY, where the number of unlabeled instances
reaches 105 to 106, four baselines run out of memory. As
can be seen, LBC has smaller running time on all datasets
against the four complex baselines. It is interesting to in-
vestigate the accelerating ratio of LBC against MMD since
they are solving similar objective using different solvers. For
datasets RCV1, LBC is over 700 times faster than MMD, and
for dataset waveform, the accelerating ratio is over 1200.

Accuracy. Figure 1 shows the average accuracy of all com-
pared methods over fifteen datasets. We can see that our
algorithm at least does not lose accuracy from the figures.
Table 3 further reveals the percentage of win/loss of LBC
against five baselines using paired t-test with p < 0.05. The
t-tests are conducted on the accuracy of compared meth-
ods over 10 runs. As we can see, LBC wins most of the
batches on most datasets. Our method ties against RPE on
dataset twonorm, and also ties against batchrank on ORL.
It also becomes slightly worse in accuracy on dataset wave-
form and twonorm against LBCdirect. In Reuters and ORL,
the two degenerated versions have similar performance with
our method.

Conclusion

In this paper we propose a generalized algorithm that
demonstrates the connection between the direct and screen-
ing method. We use MMD and LBC as a special case of rep-
resentativeness and certainty for better empirical results. The
objective is efficiently solved using a random greedy algo-
rithm that avoids the trivial solution induced by the original
QP solver. Experiments on fifteen datasets demonstrate that
while having significantly higher accuracy, our method also
scales better than the latest state-of-the-art BMAL methods.
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