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Abstract

In real-world recommendation tasks, feedback data are usu-
ally sparse. Therefore, a recommender’s performance is often
determined by how much information that it can extract from
textual contents. However, current methods do not make full
use of the semantic information. They encode the textual con-
tents either by “bag-of-words” technique or Recurrent Neu-
ral Network (RNN). The former neglects the order of words
while the latter ignores the fact that textual contents can con-
tain multiple topics. Besides, there exists a dilemma in de-
signing a recommender. On the one hand, we shall use a so-
phisticated model to exploit every drop of information in item
contents; on the other hand, we shall adopt a simple model to
prevent itself from over-fitting when facing the sparse feed-
backs. To fill the gaps, we propose a recommender named
CAMO 1. CAMO employs a multi-layer content encoder for
simultaneously capturing the semantic information of multi-
topic and word order. Moreover, CAMO makes use of ad-
versarial training to prevent the complex encoder from over-
fitting. Extensive empirical studies show that CAMO out-
performs state-of-the-art methods in predicting users’ pref-
erences.

Introduction
Recommender System (RS) is one of the most important
applications of artificial intelligence (Bennett and Lanning
2007; Linden, Smith, and York 2003; Su and Khoshgof-
taar 2009). In e-commerce, RS is capable of selecting cus-
tomized commodities for users and boosting vendors’ prof-
its (Zhu et al. 2014). In online media, RS is able to provide
personalized playlists and increase users’ engagement (Bon-
nin and Jannach 2013). In information retrieval, RS can be
used to filter out users’ unwanted links and improve their
searching efficiency (Zhang, Yao, and Sun 2017).

RS aims to mine users’ preferences from their feedbacks,
including explicit ratings and implicit clicks (Rendle et al.
2009). Therefore, many methods use feedbacks as the sole
data source to train a recommendation model (Mnih and
Salakhutdinov 2007; Koren 2008; Koren, Bell, and Volin-
sky 2009). However, the feedbacks are often severely sparse
∗Corresponding author.
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1CAMO is short for Collaborative rAnking via dynaMic rOut-
ing.

in practical applications, which makes such methods pro-
duce inferior recommendation results. To enhance the per-
formance, many researchers indicate that an item’s con-
tent information is capable of boosting model’s expressing
power (Kim et al. 2016; Gupta and Varma 2017). Conse-
quently, RSs with item content have higher accuracy than
their vanilla counterparts (Wang and Blei 2011; Gopalan,
Charlin, and Blei 2014).

In this paper, we focus on fusing RS with textual contents.
Many Content-Based Recommendation (CBR) approaches
have been proposed for exploiting a corpus of textual con-
tents. Generally, CBR methods combine a Collaborative Fil-
tering (CF) function with an encoder which extracts features
from the text (Bansal, Belanger, and McCallum 2016; Chen
et al. 2017; Xiaoyan Cai and Yang 2018). Note that these
encoders dominate the performance of such methods since
they have similar CF architectures. Though abundant litera-
ture have comprehensively studied the construction of con-
tent encoders (Zhang et al. 2017; Agarwal and Chen 2010;
Volkovs, Yu, and Poutanen 2017), we find that there are still
significant rooms for improvements.

Firstly, most existing methods fail to simultaneously cap-
ture topic semantics and word order information, since they
belong to different semantic hierarchies. For topic-aware en-
coders, the content features are extracted by models such as
Latent Dirichlet Allocation and autoencoder (Liu et al. 2017;
Gopalan, Charlin, and Blei 2014; Wang, Wang, and Ye-
ung 2015). Since these models are built upon the “bag-
of-words” assumption, they are not sensitive to the order
of words. For example, “I prefer apple to banana” and
“I prefer banana to apple” are semantically equivalent to
such methods, which induces serious bias in text under-
standing. To catch word order, many researchers use a Re-
current Neural Network (RNN) such as Gated Recurrent
Unit (GRU) or Long Short-Term Memory (LSTM) to en-
code content text (Wang, Xingjian, and Yeung 2016;
Bansal, Belanger, and McCallum 2016). However, they treat
a document as one sequence of words, which fails to identify
the high leveled topic information.

Secondly, a sophisticated encoder has poor generalization
for unseen content. Empirical evidence given by (Almahairi
et al. 2015) shows that replacing a simple encoder such as
word embedding with a complex RNN can make recom-
mendation accuracy drop seriously due to over-fitting. To re-
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duce over-fitting, Wang, Xingjian, and Yeung (2016) injects
noises into content corpus. Bansal, Belanger, and McCallum
(2016) utilize an extra tag classification task to regularize the
complex RNN model. The previous two strategies are not
optimal. Injecting noises into content data inevitably con-
taminates the raw text, which reduces the quality of content
data. Regularization via tag may be impractical in real-world
tasks since valuable tags are hard to obtain.

To resolve these difficulties, we propose a CBR method
called CAMO. Our main contributions are listed as follows.
• We design a novel neural architecture which extracts both

topic and word order information. The encoder uses a
multi-layer structure to mimic the semantic hierarchies.
In the lower layer, a GRU is used to exploit word order.
In the higher layer, a multi-head attention mechanism is
employed to summarize topics.

• A variant of multi-head attention mechanism is devised.
The proposed method uses a dynamic routing protocol
to update the attention signal iteratively. Such protocol
can allow attention-heads decide the pooling weights of
lower-level states according to the predicted output. This
allows attention-heads prune unrelated part and attend to
active parts of a document.

• We utilize an adversarial training technique to enhance
the generalization power of our content encoder. We view
the training process as a minimax game between a content
encoder and an opponent generator. The encoder tries to
construct a content vector that minimizes the decoding er-
ror. The generator produces a document from the content
vector and tries to maximize the distance between its out-
put and the original document.

Preliminaries and Notations
Consider the following typical CBR scenario for inferenc-
ingm users’ preferences over n items. Suppose two kinds of
data are available. One is the content corpusC = {docj}nj=1
where each document docj contains textual description of
item j, the other is users’ feedbacks D = {(i, ρ+i , ρ

−
i )}ni=1

where ρ+i contains all items labeled with “relevant” by user
i while ρ−i is comprised of all items labeled with “not rele-
vant”. The goal of CBR is to learn a preference score func-
tion f(i, j, docj) which gives higher scores to items in ρ+i
and lower scores to items in ρ−i . Formally, the learning
process can be expressed as follows (Christakopoulou and
Banerjee 2015).

min
θf

m∑
i=1

∑
j∈ρ+i

∑
j′∈ρ−i

l(i, j, j′) , Lrank(θf ) (1)

where θf are the parameters of f(i, j, docj) and l(i, j, j′) =
− log σ(f(i, j, docj) − f(i, j′, docj′)) with σ(·) being the
sigmoid function. The preference score function can be
modeled as

f(i, j, docj) = p>i (qj + g(docj)) (2)

where pi is the latent vector of user i, qj is the latent vector
of item j, and g(·) is a content encoder which maps docj

Table 1: Table of notations

Variable Description
Itopic Number of topics
Isent Number of sentences
Iword Number of words
pi,P User’s latent vector and matrix
qi,Q Item’s latent vector and matrix
Wp Alignment matrix of topic space
Wword Embedding matrix of words
Wdec Decoding matrix of a GRU
vdoc, g(docj) Semantic vector of a document
vtopici Semantic vector of a topic
vsent, vsenti Semantic vector of a sentence
vword, vwordi Semantic vector of a word
αattenti Signal of a attention mechanism
hgrui A hidden state of a GRU network
θcont Set of the content encoder’s parameters
θdec Set of the generator’s parameters
θgru Set of a GRU’s parameters
αp,i Signal of Dynamic Routing
r Number of Dynamic Routing iterations
∂̂xf(x) Stochastic gradient of function f

into semantic vector. Equation (2) means that the final item
representation is the sum of content vector g(docj) and item-
specific vector qj (Bansal, Belanger, and McCallum 2016).
We list the notations used in the paper in Tab. 1.

Methodology
Content Encoder
We use a three layer content network to encode semantic
information of corpus into Euclidean vectors. The architec-
ture of the content network is shown in Fig. 1. From top to
bottom, a Doc2Vec layer aggregates sentence vectors into a
topic-aware document vector. A Sent2Vec layer pools word
vectors into sentence vectors. A Word2Vec layer embeds
each word into a semantic space.

Doc2Vec Suppose that document doc is comprised of sen-
tence vectors {vsenti }Isent

i=1 and topic vectors {vtopici }Itopici=1 .
We make two assumptions. Assumption I: document vector
vdoc is equal to the average of topic vectors vtopicp

vdoc =
1

Itopic

Itopic∑
i=1

vtopici . (3)

Assumption II: vtopicp is equal to the weighted mean of sen-
tence vectors

vtopicp =

Isent∑
i=1

αp,iWpv
sent
i (4)

where the weight αp,i satisfies αp,i ≥ 0,
∑
i αp,i = 1, and

Wp is the alignment matrix. The weight αp,i can be inter-
preted as the probability that topic p is involved in sentence
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Figure 1: Architecture of CAMO.

i. Intuitively, the inner product of vtopicp and Wpv
sent
i shall

reflect the semantic relativeness of the two object. Thus, we
formulate the probability αp,i as follows.

αp,i ∝ exp((vtopicp )>Wpv
sent
i ). (5)

Substitute equation (5) into (4), we obtain the following non-
linear equation of topic vector.

vtopicp =

∑Isent

i=1 exp((vtopicp )>Wpv
sent
i )Wpv

sent
i∑Isent

i=1 exp((vtopicp )>Wpvsenti )
. (6)

The above fixed point equation is of the form x = f(x),
and it can be numerically solved by iteratively calculating
x(t+1) = f(x(t)) (Stoer and Bulirsch 2013). In this way, we
get the recurrence for computing the topic vector

h(t)p =

0 t = 0∑
i exp(h

(t−1)>
p Wpv

sent
i )Wpv

sent
i∑

i exp(h
(t−1)>
p Wpvsent

i )
0 < t ≤ r .

(7)
We summarize the Doc2Vec protocol in Alg. 1.
Remark 1 The Doc2Vec protocol can be simplified as the
following formulation.{
vdoc = 1

Itopic

∑Itopic
p=1 vtopicp

vtopicp = V softmax(K>W>
p qp), 1 ≤ p ≤ Itopic

(8)

where K = (vsent1 , vsent2 , . . . , vsentIsent
) is the “key matrix”,

qp = h
(r−1)
p is the query vector and V = WpK is the

“value matrix”. Therefore, the Doc2Vec protocol shares the
same form of multi-head attention mechanism (Vaswani et
al. 2017). The difference between them is that the proposed
“query vector” is formed by a dynamic routing method.

Algorithm 1 Doc2Vec( vsent1 , vsent2 , . . . vsentIsent
)

1: for t ∈ {0, 1, 2, . . . r} do
2: for all 1 ≤ p ≤ Itopic: update hidden state h(t)

p via equation
(7)

3: end for
4: for all 1 ≤ p ≤ Itopic : vtopicp = h

(r)
p

5: vdoc = 1
Itopic

∑Itopic
p=1 vtopicp

6: return vdoc

Sent2Vec Layer A sentence vector vsent (vsent ∈
{vsenti }) is generated by the following attention formulation.

vsent =

Iword∑
i=1

αattenti hgrui (9)

where hgrui is the hidden state of a GRU and αattenti is the
attention signal for pooling the GRU’s hidden states. GRU
is used to capture the order information of words, its hidden
states are given by the following recurrence.

hgrui =

{
0 i = 0

GRUCell(hgrui−1, v
word
i ) i > 0

(10)

where the transition function h′ = GRUCell(h, v) (Chung
et al. 2014) can be formulated as follows.

z = σ(Wzv +Uzh+ bz)

r = σ(Wrv +Urh+ br)

h′ = (1− z) ∗ h
+z ∗ (tanh(Whv +Uh(r ∗ h) + bh))
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with matrix Wz,Wr,Wh, matrix Uz,Ur,Uh, and vector
bz, br, bh being the GRU’s parameters. The attention signal
αattent = (αattent1 , . . . , αattentIword

)> is given by the following
equation

αattent = softmax(H>GRUh
gru
Iword

) (11)

where matrix HGRU contains the hidden states of GRU
cells.

Word2Vec Layer Letw be a word belonging to the vocab-
ulary of articles. The vector representation vword of word w
is given by

vword = Wword(w, :) (12)

where Wword is the embedding matrix.

Model Training
Complex models are notorious for their over-fitting in the
task of personal recommendation. Such phenomenon will
make the proposed model perform inferiorly on the un-
recorded data. According to the framework of multi-task
learning, constructing an auxiliary learning task for a per-
sonal ranking task can greatly reduce the risk of over-fitting
(Ruder 2017). Therefore, training a decoder to map doc-
ument vectors {vdoc} back into corpus {doc} is a natural
choice.

vdoc
w

GRU

2

vword1

GRU GRU…

w3 wI

vword2 vword

word

Iword -1

Figure 2: The generator produces texts from vdoc.

The Decoding Task Let θcont denote the parameters of
the content network (including the word embedding matrix
Wword, topic alignment matrix Wp, and so on). Let θdec de-
note the parameters for the generator of the document vector.
For a document doc = {wi}, we define the transition proba-
bility of texts as the following softmax distribution

p(wi+1|wi, θcont, θdec) = softmax(Wdech
dec
i ) (13)

where Wdec is a matrix and hidden states {hdeci } are gener-
ated from a GRU with hidden states given by:

hdeci =

{
vdoc i = 0

GRUCell(hdeci−1, v
word
i ) i > 0

. (14)

where vwordi is the word vector of wi. For the corpus C =
{doc}, the negative log-likelihood Ldec can be composed as
follows.

Ldec(θcont, θdec) = −
∑
doc

∑
wi∈doc

log p(wdoci+1|wdoci , θcont, θdec).

One can learn the parameters of the decoding task via min-
imize Ldec(·, ·).

Algorithm 2 Alternate Gradient Method

Require: P(0),Q(0), θ
(0)
cont,W

(0)
dec, θ

′ and θ(0)gru.
1: for t ∈ {0, 2, . . . T} do
2: Compute stochastic gradients

gP = ∂̂PLrank(P
(t),Q(t), θ

(t)
cont)

gQ = ∂̂QLrank(P
(t),Q(t), θ

(t)
cont)

gθcont = ∂̂θcontLrank(P
(t),Q(t), θ

(t)
cont)

g′θcont
= ∂̂θcontλLdec(θ

(t)
cont,W

(t)
dec, θ

(t)
gru)

g′Wdec
= ∂̂WdecλLdec(θ

(t)
cont,W

(t)
dec, θ

(t)
gru)

g′θgru = ∂̂θgruλLdec(θ
(t)
cont,W

(t)
dec, θ

(t)
gru)

3: Perform stochastic gradient descent with stepsizes ηt, δt

P(t+1) = P(t) − ηtgP
Q(t+1) = Q(t) − ηtgQ
θ
(t+1)
cont = θ

(t)
cont − ηtgθcont − δtg

′
θcont

W
(t+1)
dec = W

(t)
dec − δtg

′
Wdec

4: Perform stochastic gradient ascent with stepsize δt

θ(t+1)
gru = θ(t)gru + δtg

′
θgru

5: {Project θgru onto the feasible set}
6: if ‖θ(t+1)

gru − θ′‖ > γ then
7: θ

(t+1)
gru = θ′ + γ(θ

(t+1)
gru − θ′)/‖θ(t+1)

gru − θ′‖
8: end if
9: end for

Adversarial Training Intuitively, multi-task learning of
collaborative ranking and textual decoding can be expressed
as follows.

min
P,Q,θcont,θdec

Lrank(P,Q, θcont) + λLdec(θcont, θdec).

(15)
However, we find the encoder estimated by equation (15)
performs worse than a simple Word2Vec model. Almahairi
et al. (2015) also point out this issue. This shows that ex-
pression (15) is not suitable for estimating model parame-
ters, since a small Ldec(·) may result from the strong fitting
power of GRU other than the generalization power of the
learned feature vdoc. To rule out the optimistic bias induced
by GRU, we modify the composite loss as follows.

min
P,Q,θcont,Wdec

{Lrank(P,Q, θcont)

+ λ max
θgru,‖θgru−θ′‖≤γ

Ldec(θcont,Wdec, θgru)}
(16)

where θgru is the parameters of the GRU, θ′ is a randomly
generated vector and γ is a tuning parameter. Our intuition
is that if the decoding loss is still small for an adversarial
constructed GRU, one can infer that even a bad decoder can
not distort the generalization power of vdoc. The minimax
problem (16) can be solved by performing alternate gradient
method and we summarize it in Alg. 2.
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Experiments
We conduct extensive experiments on benchmark datasets.
We use the following state-of-the-art methods as baselines.
Note that we do not compare with matrix factorization mod-
els such as BPR, WRMF, and FM since it has shown that
CML and CDL outperform these models (Hsieh et al. 2017;
Wang, Wang, and Yeung 2015).

• CML + Skip-Thought (CMLST). We combine
CML (Hsieh et al. 2017), a metric based collaborative
ranking method, with text encoder Skip-Thought (Kiros
et al. 2015) to model both users’ feedbacks and content
texts.

• CRAE (Wang, Xingjian, and Yeung 2016). CRAE con-
tains a Bayesian matrix factorization model for modeling
users’ feedbacks and a Bayesian RNN for encoding con-
tent corpus.

• CDL (Wang, Wang, and Yeung 2015). CDL is a joint
probabilistic graphics model that integrates the matrix
factorization model with probabilistic autoencoder.

• CDAE (Wu et al. 2016). CDAE is a denoising autoen-
coder for users’ feedbacks.

The codes for CML, Skip-Thought, CDL, and CDAE are
downloaded from the homepage of the correspondent author.
The codes for the proposed CAMO and CRAE are imple-
mented using TensorFlow (Abadi et al. 2016). All the com-
pared methods are run on the same machine with i7-5930K
CPU, 64GB RAM, and one TITAN Xp GPU.

Datasets

The benchmark datasets include: CiteULike (Wang and Blei
2011), MovPlot1M and MovPlot10M (Liu et al. 2017). Ci-
teULike contains users’ bookmarks of scientific articles and
paper abstracts. MovPlot1M and MovPlot10M are exten-
sions of MovieLens1M and MovieLens10M datasets. Both
contain movie ratings and corpus of movie plots. We treat
every rated movie as “relevant”. For each “relevant” user-
item pair in all datasets, we sample NS items without book-
marks (or ratings) as “not relevant”. NS is dubbed nega-
tive sampling ratio. The statistics of the datasets are listed
in Tab. 2. We randomly select 80% of the observed data as
training set and evaluate the models with the remaining 20%.

Table 2: Statistics of the benchmark datasets where #users,
#items and #feedbacks are the number of users, items and
feedbacks respectively, “avg. words” is average words per
document.

Dataset #users #items #feedbacks avg. words
CiteULike 5551 16980 210504 204.9

MovPlot1M 6040 3861 996045 82.19
MovPlot10M 13975 10681 1962580 84.66

Default Hyperparameter Settings
We set all the dimension hyperparameters (e.g. dimensions
of the user, item and document latent vectors) of the consid-
ered models to the same value d. We call d model’s dimen-
sion and set d = 256 for all compared methods by default.
We set negative sampling ratio NS = 6. The default pa-
rameters for CAMO are set as follows: the number of topics
Itopic is set to 10, the number of dynamic routing iterations
r is set to 14, and the regularization parameter λ is set to 0.2.
Other parameters of baseline methods are set to their default
values.

Performance of Each Neural Layer
In this section, we study the influence of semantic vectors
constructed by different layers of the proposed encoder. Let
doc be a document containing words {wi}Iword

i=1 . To show
the impact of Word2Vec layer, we evaluate a Word2Vec
variant of CAMO. The variant is constructed by replacing
CAMO’s content vectors with the mean of word vectors,
i.e. vdoc = 1

Iword

∑
i v
word
i . Similarly, we build a Sent2Vec

variant of CAMO using the average of sentence vectors
as content features. The experimental results are shown in
Tab. 3. From the table, we can see that accuracy of Sent2Vec
variant is much better than Word2Vec. This can be explained
by that Sent2Vec captures the semantic information of word
order, while Word2Vec does not. The table also shows that
CAMO is more accurate than its Sent2Vec variant. This is
because Doc2Vec layer encodes extra topic semantic infor-
mation to content features.

Table 3: Performance of CAMO’s different neural layers
Pre@5, Pre@10, Rec@5 and Rec@10 are Precision@5,
Precision@10, Recall@5 and Recall@10 respectively. MAP
is short for mean average precision. AUC is abbreviated for
Area Under the ROC.

CiteULike MAP AUC Pre@5 Pre@10 Rec@5 Rec@10

Word2Vec 0.1340 0.9404 0.1496 0.1218 0.1131 0.1724
Sent2Vec 0.1589 0.9283 0.1730 0.1374 0.1317 0.1930
CAMO 0.1623 0.9540 0.1779 0.1414 0.1357 0.2019

MovPlot1M MAP AUC Pre@5 Pre@10 Rec@5 Rec@10

Word2Vec 0.2145 0.9168 0.3973 0.3418 0.0892 0.1425
Sent2Vec 0.2199 0.9215 0.4059 0.3468 0.0911 0.1474
CAMO 0.2439 0.9296 0.4310 0.3701 0.0995 0.1629

MovPlot10M MAP AUC Pre@5 Pre@10 Rec@5 Rec@10

Word2Vec 0.2360 0.9168 0.3696 0.3174 0.1118 0.1818
Sent2Vec 0.2468 0.9724 0.3852 0.3208 0.1181 0.1917
CAMO 0.2516 0.9737 0.3948 0.3360 0.1216 0.1985

Quantitative Comparison
In this section, we compare the accuracy of the consid-
ered methods. To reduce randomness, we run each method
five times and report the average. We use Area Under the
ROC Curve (AUC) and Mean Average Precision (MAP)
to measure the ranking accuracies of the compared meth-
ods. We report their accuracies on the three benchmark
datasets in Tab. 4. From the table, we can see that CAMO
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outperforms the baselines both on AUC and MAP. More-
over, users usually check a few top-ranked items in real-
world applications, top-K evaluation metrics are important
for studying the recommendation performance. Thus, we
measure both Precision@K and Recall@K on benchmark
datasets. The results are reported in Fig. 3 where (a1-c1)
record Precision@K curves and (a2-c2) contain Recall@K
curves. From Fig. 3 we can see that under different K, the
proposed CAMO has consistently better results in terms of
both criterions. We find that model dimension d and negative
sampling ratio NS have a huge impact on the model’s per-
formance, and hence we analyze different settings of these
parameters on testing accuracy. To visualize the impact of
them, we report Recall@50 scores of CAMO, CMLST, and
CRAE in Fig. 4 and Fig. 5. Both Fig. 4 and Fig. 5 show that
CAMO have better Recall@50 than other methods consis-
tently. In summary, all the above quantitative empirical re-
sults show the superior performance of CAMO. We attribute
the promising empirical results to the encoding and general-
ization power of the multi-layer content network of CAMO.

Table 4: Performance of the compared methods.

Method CiteULike MovPlot1M MovPlot10M
AUC MAP AUC MAP AUC MAP

CMLST 0.9354 0.1217 0.9214 0.1881 0.9370 0.1753
CRAE 0.9416 0.0580 0.9157 0.1856 0.9682 0.1585
CDL 0.9120 0.1124 0.9188 0.1432 0.9365 0.1547

CDAE 0.9348 0.1211 0.9210 0.1630 0.9366 0.1712
CAMO 0.9540 0.1623 0.9296 0.2439 0.9737 0.2516
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Figure 3: Precision@K and Recall@K of compared meth-
ods under different choices of K with respect to benchmark
datasets.

Qualitative Comparison
To show CAMO’s topic-aware extracting ability, we visu-
alize the content feature of movies for Mov1MPlot dataset.
We randomly sample 300 or 400 movies, and plot the corre-
sponding features extracted by CAMO via t-SNE algorithm
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Figure 4: Recall@50 of compared methods under different
choices of dimension with respect to benchmark datasets.

NS=1 NS=6 NS=14 NS=16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

re
ca

ll@
50

NS=1 NS=6 NS=14 NS=16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

CAMO

CMLST

CDL

NS=1 NS=6 NS=14 NS=16
0

0.1

0.2

0.3

0.4

0.5

(b) MovPlot1M (c) MovPlot10M(a) CiteULike

Figure 5: Recall@50 of compared methods under different
choices of NS with respect to benchmark datasets.

(Maaten and Hinton 2008). In comparison, we also plot con-
tent features extracted by CMLST. The visualized results are
displayed in Fig. 6. From the figure, we can see that movies
are well clustered by CAMO while CMLST seem to confuse
horror movies with drama. The better identification power of
CAMO results from its topic-aware neural architecture.

To show the embedding capability of CAMO, we ran-
domly choose two article from CiteULike and display the
top-5 similar papers. The similarity is defined by Euclidean
distance. For comparison, the results of CMLST are also
recorded. We exhibit the experimental results in Tab. 5. It
shows that when queried with paper “Amazon.com Recom-
mendations Item-to-Item Collaborative Filtering”, CAMO
identifies both recommendation and e-commerce topics,
while CMLST ignores the latter. We can also observe that
when queried with paper “Towards Real-time Community
Detection in Large Networks”, CMLST even contains one
irrelevant paper named “Adaptive networks coevolution of
disease and topology”, while all results of CAMO are rele-
vant. These experimental studies demonstrate CAMO’s em-
bedding ability.

Conclusion
We propose a content-based recommender named CAMO.
CAMO employs a multi-layer content encoder to transform
textual corpus into content features. The lower layer of the
content encoder contains a GRU which extracts semantic in-
formation of word order. The higher layer uses a dynamic
routing protocol to ensemble features into topic vectors.
To prevent the complex content encoder from over-fitting,
we use adversarial training framework to enhance CAMO’s
generalization ability. Empirical studies show that CAMO
outperforms state-of-the-art methods.
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Figure 6: Comparison of t-SNE plots.

Table 5: Top-5 similar papers found by using the extracted document vector.

(a) Queried paper: Amazon.com recommendations item-to-item collaborative filtering
CAMO

1. Scalable collaborative filtering using cluster based smoothing
2. Analysis of recommendation algorithms for e-commerce
3. Applying collaborative filtering techniques to movie search for better ranking and browsing
4. Slope one predictors for online rating based collaborative filtering
5. Collaborative filtering by personality diagnosis a hybrid memory and model based approach

CMLST
1. Empirical analysis of predictive algorithms for collaborative filtering
2. Item based collaborative filtering recommendation algorithms
3. Improving recommendation lists through topic diversification
4. Recommender systems
5. Toward the next generation of recommender systems a survey of the state-of-the-art and possible extensions
(b) Queried paper:Towards real-time community detection in large networks

CAMO
1. Random hypergraphs and their applications
2. A comparative study of social network models network evolution models and nodal attribute models
3. Line graphs link partitions and overlapping communities
4. Statistical significance of communities in networks
5. Emergence of communities in weighted networks

CMLST
1. Line graphs link partitions and overlapping communities
2. Statistical significance of communities in networks
3. Random hypergraphs and their applications
4. Adaptive networks coevolution of disease and topology
5. The energy landscape of social balance

In the future, we would like to try the following two strate-
gies to improve CAMO. Firstly, we would like to incorpo-
rate other kinds of content information such as images and
videos into the model. Secondly, we will investigate how to
use the probabilistic methods to enhance the robustness of
CAMO.
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