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Abstract
A fast, convenient and well-known way toward regression is
to induce and prune a binary tree. However, there has been lit-
tle attempt toward improving the performance of an induced
regression tree. This paper presents a meta-algorithm capa-
ble of minimizing the regression loss function, thus, improv-
ing the accuracy of any given hierarchical model, such as
k-ary regression trees. Our proposed method minimizes the
loss function of each node one by one. At split nodes, this
leads to solving an instance-based cost-sensitive classification
problem over the node’s data points. At the leaf nodes, the
method leads to a simple regression problem. In the case of
binary univariate and multivariate regression trees, the com-
putational complexity of training is linear over the samples.
Hence, our method is scalable to large trees and datasets.
We also briefly explore possibilities of applying proposed
method to classification tasks. We show that our algorithm
has significantly better test error compared to other state-of-
the-art tree algorithms. At the end, accuracy, memory usage
and query time of our method are compared to recently in-
troduced forest models. We depict that, most of the time, our
proposed method is able to achieve better or similar accuracy
while having tangibly faster query time and smaller number
of nonzero weights.

Tree structured models are among the oldest ones in the su-
pervised learning literature. Decision trees are popular in the
scientific community due to their simple deployment, train-
ing and interpretation. In (Breiman et al. 1984), authors de-
scribe the fundamentals of binary decision trees and their
applications, in both classification and regression. While de-
cision trees can operate on problems with any number of
labeled classes, other popular models, such as support vec-
tor machine, do not extend to multi-class problems naturally
(Criminisi and Shotton 2013).

Despite mentioned advantages, tree training is a greedy
algorithm that leads to sub-optimal structure and parame-
ters. In this paper, we tackle this issue by providing a meta-
algorithm that improves the performance of a given multi-
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response regression k-ary tree while keeping the training
complexity linear for univariate and multivariate trees.

Conventionally, the goal is to minimize the following ob-
jective function

Lα(T ) = L(T ) + α|T |, α > 0.

Here L(T ) is the loss function of a tree T . |T | is the number
of leaf nodes, and α > 0 is a complexity cost. Pruning is
performed in order to achieve a minimum of this cost func-
tion Lα(T ) over the validation set. Finding the optimum of
this objective function is an NP-complete problem (Laurent
and Rivest 1976). Therefore, traditionally, it is not surprising
that standard algorithms to train a tree are applied greedily.

A decision tree is trained by recursively partitioning the
feature space into two (or several) parts, optimally with re-
spect to some criteria (Breiman et al. 1984). The criteria are
usually mean squared error for regression and purity cost
functions for classification. the induction algorithm stops as
soon as some stopping criteria are triggered, e.g., maximum
depth and minimum number of samples at nodes. At test
time, an input sample follows a path from the root to a leaf
based on the hierarchy of decisions made at the split nodes.
Finally, the prediction happens at a leaf node. In regression
trees, the model at a leaf is a constant function in the space
of target values.

There are two common split functions at nodes of a de-
cision tree. The first type is called a univariate, a.k.a axis-
aligned, node that consists of a single feature and a thresh-
old to drive data to left or right. Finding optimal feature and
threshold with respect to a criterion can be done by exhaus-
tive search over all possible feature and threshold combina-
tions. At node j consisting of Nj samples with a dimension-
ality of p, optimal combination is found in O(Njp) using
an incremental algorithm (Breiman et al. 1984). We have
to mention that this complexity is based on assuming sam-
ples are sorted along each feature dimension before train-
ing. The second type of split function is termed multivariate
node which consists of linear combination of features and a
threshold. The complexity of finding an optimal linear com-
bination is NP-complete (Heath, Kasif, and Salzberg 1993).
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Here, the optimization method is performed by applying co-
ordinate descent over weights one at a time (Breiman et al.
1984; Murthy, Kasif, and Salzberg 1994). The trees using
second type of split nodes are called multivariate or oblique
trees.

A main limitation of above-mentioned methods is that the
greedy algorithms lead to sub-optimal and usually inaccu-
rate trees. In addition, for multivariate trees, the coordinate
descent optimization used at the split nodes may get stuck
at a local minimum. Therefore, researchers have investi-
gated several heuristics to avoid local optima such as restart-
ing from a random initialization or applying random pertur-
bations to escape from them (Murthy, Kasif, and Salzberg
1994). Unfortunately, these heuristics have shown marginal
improvements(Murthy, Kasif, and Salzberg 1994).

To tackle above-mentioned shortcomings, we propose a
meta-algorithm framework addressing the issue of optimiz-
ing a hierarchical model that is constrained to drive data
down to only one child at a split node (e.g., k-ary tree). This
means that each sample can only follow one path through
the structure. Inspired by (Jordan and Jacobs 1994), our pro-
posed framework optimizes a given multi-response regres-
sion k-ary tree by optimizing one node at a time while keep-
ing the rest of structure fixed. Optimizing a split node j only
depends on the set of samples Sj passing through the node.
Minimizing the loss function depends on the traversed route
of a sample from the node j. This means that node j should
be able to route the samples in Sj correctly to one of its chil-
dren such that the loss function is decreased optimally. We
show that this leads to an instance-based cost-sensitive clas-
sification problem and solve it for cases of multivariate and
univariate multi-response regression binary trees. At the leaf
nodes, the prediction function is a constant function whose
optimal value is the mean of the target responses in Sj .
The algorithm iterates over tree nodes until there is no fur-
ther improvement in the loss function. Generally, this meta-
algorithm can be applied to different supervised learning
problems and loss functions. At the end of proposed method,
we explore possibility of applying our method to classifica-
tion task and show that for a specific case of using 0-1 mis-
classification loss for classification binary tree will reduce to
TreeAlternatingOptimization (TAO) (Carreira-Perpiñán and
Tavallali 2018).

In the literature of multi-response regression trees, the
convention is to induce an individual tree for each output
response. During the test time, each output is predicted by
its corresponding tree (Breiman et al. 1984). This approach
leads to large models. In this paper, we do not follow this
convention. Instead, a single tree is induced to predict all
output values (De’Ath 2002), simultaneously.

In the rest of this paper, we first present related work.
The proposed method is explained in detail and solutions
to different kinds of splitting nodes are proposed. In ”Ex-
periments and Results” section , proposed method is com-
pared with the state-of-the-art regression algorithms on var-
ious datasets. We also compare optimized regression trees
with regression forest models. These experiments demon-
strate generally better accuracy, query complexity and mem-
ory size.

Related Work
Classification and regression trees (CART) baseline meth-
ods are presented in (Breiman 2001). These methods are
based on greedily growing and then pruning a tree. Despite
being sub-optimal, they provide a good approximation for
axis-aligned trees.

A recent survey by (Borchani et al. 2015) presents dif-
ferent state-of-the-art approaches toward multi-response re-
gression tasks. The authors categorize the multi-regression
to two groups. The first is a set of problem transformation
methods that transform the multi-output problem into inde-
pendent single-output problems solved by a single-output
regression algorithm. The second group is a set of algo-
rithm adaptation methods that adapt a specific single-output
method to directly handle multi-output data sets. In this
group, an example is the work done by (De’Ath 2002) that
builds a regression tree following the same steps as CART.
The only difference from the original CART is the redefi-
nition of splitting criterion of a node as the sum of squared
error over the multi-responses.

Authors in (Kocev et al. 2009) have explored and com-
pared both mentioned groups of learning multi-response re-
gression. In (Kocev et al. 2013), for purpose of improv-
ing performance, authors have considered the compari-
son of both previously mentioned groups using ensemble
techniques of bagging (Breiman 1996) and random forests
(Breiman 2001).

There are also papers aiming at different approaches to-
ward inducing a regression tree. The concern of these papers
is mainly concentrated around the splitting criterion used
at the growing phase of a tree (Ikonomovska, Gama, and
Džeroski 2011; Levatić et al. 2014).

Beside the regression trees, there is an extensive literature
on classification trees that aim at exploring different split-
ting criterion and pruning schemes of a classification tree
(Quinlan 2014; Loh and Shih 1997).

There have been many attempts toward optimal learn-
ing of fixed structure decision trees, specially, multivariate
ones. For example, (Bennett 1992; 1994) has proposed a
linear/multi-linear programming formulation towards find-
ing a global optimum. This method was only proposed for
binary classification and is also restricted to trees with few
splits due to high complexity of the proposed optimization
method.

(Nijssen and Fromont 2007) demonstrates how frequent
itemsets can be used for constructing optimal univariate de-
cision trees under a variety of constraints. The paper presents
different types of constraints and proposes an approach for
generating decision trees from lattices of itemsets that have
been mined under these constraints. In (Garofalakis et al.
2003; Struyf and Džeroski 2005), authors are aiming toward
inducting constrained based trees. In the former, constraints
are considered during the tree induction, while in the latter, a
large tree is built then pruned to satisfy the user constraints.

In (Norouzi et al. 2015a), the authors present an algo-
rithm capable of optimizing the split and leaf parameters
of the tree jointly, based on a global objective. Their pro-
posed method is related to structured prediction with latent
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variables. The optimization is initialized from an already in-
duced tree called CO2 (Norouzi et al. 2015b) that utilizes a
similar approach, this time in the induction phase of a mul-
tivariate tree.

Recently, in (Bertsimas and Dunn 2017), the authors have
attempted to find an optimal decision tree with a fixed depth.
It is done by linearizing the tree loss function along linear
and binary constraints. This results is a mixed integer op-
timization (MIO). However, the algorithm has no guaran-
tee on the computational complexity estimate since the pro-
posed MIO solver attempts to find an exact solution to an
NP-complete problem.

Compared to the conventional decision trees, soft deci-
sion trees incorporate probabilistic routes from the root node
to the leaf nodes, (Jordan and Jacobs 1994). The learning
process of these trees is cast as a maximum likelihood es-
timation. Log likelihood of a data set is obtained by mul-
tiplying densities at the leaf nodes. Later, it is optimized
over weights. Generally, there are two approaches for solv-
ing this problem. One is through introducing missing data
and then applying expectation maximization algorithm. The
other consists of using backpropagation and applying a gra-
dient based method (Jordan and Jacobs 1994). However, the
main drawback of a soft decision tree is the computational
complexity at the test time since all nodes have to be evalu-
ated for a prediction. In contrast, a decision tree just needs
to evaluate one path from the root node to a leaf, for each
input data point.

A well-known application of decision trees is in ensemble
methods. Shallow trees are usually used in boosting methods
(Viola and Jones 2004; Freund, Schapire, and Abe 1999),
while deep trees are used in random forests (Breiman 2001;
Criminisi and Shotton 2013). One of the benefits of using
boosting, or random forest models, is that they provide far
better test accuracy compared to a single tree. On the other
hand, a single tree is more interpretable and faster in test
time.

Regression Trees
Consider a training data set (X,Y ) containing N pairs of
observations (xi, yi), i = 1, ..., N , where xi ∈ Rp and yi ∈
Rd. The task of fitting a regression tree can be stated as the
following minimization problem (Breiman et al. 1984):

min
F

1

N

N∑
i=1

L(yi, T (xi;F ))

s.t.
{
Nj ≥ Nmin ∀j ∈ leaves(T )
D ≤ Dmax

(1)

where T is the tree function, F = {f1, ..., f|T |} is the de-
cision functions at each node 1, ..., |T |, leaves(T ) is set of
leaf nodes in T , and L(yi, T (xi;F )) is the regression er-
ror function (mean square error, absolute error, etc.). The
constraints in (1) contain the limit on the number of mini-
mum acceptable samples Nmin at each leaf Nj and tree’s
depth D smaller than maximum depth Dmax. Finding opti-
mal partitioning of the data that minimizes the loss function
is NP-complete. Therefore, standard methods approximate it

greedily through locally minimizing some cost function and
recursively partitioning the data to grow the tree.

For regression, the cost function is usually squared error.
Hence, the decision function parameters at node j are found
through solving the following problem:

f∗j =argmin
fj

{min
c1,c2

∑
i:fj(xi)≤0

||yi − c1||2+

∑
i:fj(xi)>0

||yi − c2||2}

s.t (xi, yi) ∈ Sj ∀ i = 1...N.

(2)

The decision function fj can be WT
j xi − bj , for a weight

vector Wj , in a multivariate tree or simply xPi − bj for a
univariate tree with P as one of the features, bj and Sj are
the threshold and subset of samples in the jth node. Further,
fj corresponds to decision function at the jth node. Also, c1
and c2 are constant vectors with the same dimension as the
output responses.

In an axis-aligned tree, the best features and thresholds are
found through exhaustive search. This can be done through
an incremental algorithm in linear time O(Np). Problem
(2) consists of selecting a feature and threshold such that
loss of left and right children are minimized. We have
fj = sign(xP − b). Function fj routes the samples down
to the left or right child. The amount of objective func-
tion in (2) does not change when threshold b is a value be-
tween two consecutive values of xP of samples. Therefore,
in general there areO(Np) different combination of features
and thresholds that have to be evaluated and the best com-
bination is picked. To do so, exhaustive search is applied
(Breiman et al. 1984). A naive approach is to simply cal-
culate c1 and c2 for each partition incrementally and then
evaluate objective function in (2) that takes O(N). Since
there are also N different partitions along each dimension,
this takes O(N2p). But one can find the best combination
inO(Np). Assume along one dimension like P samples are
sorted and sample indexes correspond to the place of a sam-
ple after being sorted. E.g. yi corresponds to the target value
of ith sample after sorting. The loss function for each thresh-
old between i − 1th and ith for the left child can be written
as follows(assuming yi is one dimensional):

Ei−1 =
i−1∑
i′=1

(yi′ − ŷi−1)2 (3)

For each partition, optimal c1 is the mean of target val-
ues in its partition. Therefore, in (3) we have ŷi−1 =∑i−1
i′′=1

yi′
i−1 . For the next partition(or threshold) it can be

written that:

Ei =
i∑

i′=1

(yi′ − ŷi)2 (4)

It is trivial that ŷi = (i−1)ŷi−1+yi
i . By replacing it in (4),

then using (3)and using
∑i−1
i′=1(yi′ − ŷi−1) = 0 we have:

Ei = Ei−1 + (yi − ŷi−1)2(1−
1

i
). (5)
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The equation (5) enables the incremental calculation of
error for left side of each threshold along one dimension.
The error for the right side of each threshold should also be
calculated and summed with error of the threshold’s left side
to have total error for each threshold. Then the error for all
dimensions of output and input must be calculated. In total,
this takes O(Npd). Note that since the output dimensions
are independent, applying equation (5) to each output di-
mension individually is easily possible. Also, in this section,
the assumption is that samples are sorted before induction of
the tree.

Throughout the rest of paper, we call this method of solv-
ing problem (2) as multi-response regression tree (MRT)
as in (De’Ath 2002). To the best of our knowledge, we
have not found any method that constructs oblique multi-
response regression tree. However, in case of classifica-
tion, for various cost functions, the minimization prob-
lem (2) is found by applying coordinate descent optimiza-
tion over weights Wj (Murthy, Kasif, and Salzberg 1994;
Breiman et al. 1984). In this paper, the regression oblique
trees are called OC1-reg since the same optimization tech-
niques, as OC1 in (Murthy, Kasif, and Salzberg 1994), are
used to construct oblique regression tree.

Optimization of Hierarchical Model for
Regression (OHMR)

Given a multi-response regression k-ary tree, the objective
function can be written as

min
F

n∑
i=1

||yi − T (xi;F )||2. (6)

Inspired by (Jordan and Jacobs 1994), the idea of our method
is to iterate over nodes of the tree and optimize them one at a
time while keeping the rest fixed. The algorithm terminates
when no further improvement is possible after two consec-
utive passes, over all nodes, or the maximum allowed itera-
tions is reached. At node j, the node receives sample points
Sj from its parent and if only operates on these samples.
Therefore, the optimization of node j only depends on Sj
and no other samples. The task of a node is to distribute its
samples among its children, hence, the optimization is per-
formed on the node parameters in fj . This can be cast as the
following problem

min
fj

∑
xi∈Sj

||yi − Tj(xi;Fj)||2. (7)

where, Tj is the subtree hanging from node j, Fj is the set of
decision functions in Tj and fj(∈ Fj) is the splitting func-
tion at node j. Now, minimization (7) can be rewritten as

min
fj

∑
l

∑
(xi,yi)∈Sl

j

||yi − T lj(xi;F lj)||2 (8)

Here T lj and F lj correspond to the tree and set of decision
functions at the lth child. First summation is over all chil-
dren of the node. Also, we have Slj = {(α, β) | (α, β) ∈
Sj & fj(α) = l)}. Tuple of (α, β) corresponds to an in-
put sample at α and its target value β. In other words, Slj is

input data {(xi, yi)}Ni=1, initial tree T ,
-τ = 0, Eτ =

∑n
i=1 ||yi − T (xi;F )||2,Eτ−1 = inf

while (Eτ 6= Eτ−1 and
τ < maximum allowed passes)
for each depth= level of the tree

for each split node ”j” at level
for each child l (there are k children in a k-ary tree)

-compute zli for each tuple of (xi, yi) ∈ Sj
endfor
-optimize cost-sensitive classification problem (9)
considering sample costs

endfor
for each leaf node ”j”

-yj = mean of target responses in Sj
endfor

endfor
-τ = τ + 1, Eτ =

∑n
i=1 ||yi − T (xi;F )||2

endwhile

Figure 1: OHMR applied to a regression tree

set of samples routed to the lth child by decision function
fj . In short, the problem consists of driving the arrived data
at node j to its children minimizing the loss function. In this
setting, there are two parameter sets to optimize: The first is
the partitions Slj and the second is the decision node param-
eters fj . In order to find Slj for each l, computationally, we
introduce a variable zli for each sample point defined as the
amount of loss for sample xi sent to the lth child. In mathe-
matical terms, zli = ||yi − T lj(xi;F lj)||2. Consequently, the
optimization problem we have is

min
fj

∑
l

∑
(xi,yi)∈Sj

zliI(fj(xi), l) (9)

where, I is an indicator function producing 0 if fj(xi) 6= l,
and 1 if fj(xi) = l. Problem (9) is an instance-based cost-
sensitive classification task because cost of a sample being
sent to a child can be different from other samples. The so-
lution to (9) depends on the decision function at each split
node. Exact solution to the problem (9) could be an NP-hard
problem depending on fj . However, one can approximate
it with existing classification methods in the literature. This
approximation for multivariate and exact solution for axis-
aligned regression trees are described later. Similarly, in the
leaf nodes, the solution is based on the model at the leaf
node. For example, in case of a constant function, the op-
timal value for the constant value is the mean of response
values at the leaf node. The psudo-algorithm for our method
is given in fig 1. The psudo-algorithm resembles the EM
algorithm in (Jordan and Jacobs 1994) but the difference is
the solution to the nodes (or gating and expert networks in
(Jordan and Jacobs 1994)) and the fact that OHMR is ap-
plicable to k-ary and non-probabilistic regression trees. The
convergence of our proposed algorithm is guaranteed based
on the following theorem.
Theorem 1 (algorithm convergence). For any set of samples
(X,Y ) and any number of leaf nodes |leaves(T )| of a tree
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T , the OHMR converges in a finite number of iterations for
a fixed structure.

Proof. The proof is based on k-means clustering method
and is also similarly done in (Carreira-Perpiñán and Tavallali
2018). It is trivial that, at each iteration, the loss function of
a node is minimized. Therefore, at each node the loss func-
tion may decrease or at least remain the same as before. It
is also important to mention that since the structure is fixed,
the maximum number of leaf nodes are fixed |leaves(T )|.
Hence, the maximum number of different assignments of
points to the leaf nodes is fixed and is N |leaves(T )|. In ad-
dition, the regression loss function is bounded from below
by 0. Together, this means that the loss function cannot de-
crease more than a finite number of passes over the structure.
Thus, it must stop decreasing at some point.

In case of using an approximate algorithm, in order to
guarantee convergence, one can introduce a rejection step
in which new parameters to a node are accepted only if the
objective function of problem (9) decreases. In practice, we
may notice marginal difference for different orders of opti-
mizing the nodes. In what follows next, we will propose how
to apply the OHMR framework to binary multi-response re-
gression univariate and multivariate trees.

OHMR for Multi-response Regression
Multivariate Binary Trees
The decision function at nodes of a multivariate regression
tree can be expressed as fj(x;Wj , bj) = sign(WT

j x− bj).
Accordingly, we can rewrite problem (9) as

min
Wj ,bj

∑
(xi,yi)∈Sj

tiL(argmin
l

zli, fj(xi)). (10)

Problem (10) is in fact a cost-sensitive binary classification.
ti is the cost of misclassifying a sample and is equal to
maxl(z

l
i)−minl(z

l
i). In other words, if a sample is classified

wrongly, there will be ti increase in the loss function. Here,
L(.) is a 0-1 misclassification function. Since the objective
function of (10) is piecewise constant and discontinuous, the
problem is NP-hard and in practice is approximated using
surrogate loss (Maibing and Igel 2015). Here, we approxi-
mate the solution to problem (10) using a modified logistic
regression.

The easiest way to approximate (10) is to replace the 0-1
loss L(.) with a logistic loss. For simplicity of notation, we
replace argmin

l
zli with l∗ = {−1, 1}. Therefore, we have:

min
Wj ,bj

∑
(xi,yi)∈Sj

tilog(1 + e−(l
∗(WT xi−b))). (11)

Objective function in problem (11) is a convex function and
one can easily optimize it using any gradient-based algo-
rithm.However, implementation-wise, one might be inter-
ested in using highly optimized existing toolboxes for lo-
gistic regression such as liblinear (Fan et al. 2008). As per
our search, no toolbox has the option for instance based
cost-sensitive binary classification such as in (11). There-
fore, we propose the following useful heuristic to use. For
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Figure 2: 0-1 loss and our proposed surrogate loss functions
for different sample weights. Intuitively, as cost of a sam-
ple gets higher, the slope of surrogate loss gets steeper and
essentially making it easier to classify.

each datapoint multiply it’s features and augmented bias by
the misclassification cost of the datapoint (instead of xi we
feed ti × [xi, 1]) and then feed it to the toolbox. The in-
tuition is that the shape of loss function changes such that
the loss for misclassified samples with higher costs (heavy
samples) rises faster as they get further away from decision
boundary(f(x) = 0) than the samples with lower costs (light
samples). This still makes the loss function a surrogate to
original 0-1 loss. Figure 2 shows 0-1 loss functions and our
proposed modification.

OHMR for Multi-response Regression Univariate
Binary Trees
In univariate regression trees, the decision function at a split
node is fj = sign(xPj − bj). This formulation is simi-
lar to problem (10) in which all the possible combinations
of feature and threshold are O(Njp). In this case, the so-
lution can be found efficiently in O(Njp) by using an in-
cremental algorithm. We are interested in solving (10) with
fj = sign(xP − b). This is a selection of a feature and
threshold. Again similar to section case of splitting a uni-
variate node, there areO(N) available thresholds along each
feature and O(Np) in total. One needs to calculate error for
each threshold along a feature and the error. Error of left
child is equal to summation Ei =

∑i
i′=1 z

−1
i′ (it is because

zli is equal to error of sample sent to lth child and l = −1
corresponds to left child). Therefore, by shifting indexes, we
have Ei = Ei + z−1i which in practice is calculating er-
rors incrementally and takesO(N). The same procedure can
be applied for the right child in reverse order. Afterwards,
adding both errors of left and right children and then finding
the global minimum error and picking its respective feature
and threshold. This has to be applied to all p input features,
hence, total computational complexity is O(Np). Note that
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since zli is one dimensional, computational complexity does
not depend on the dimensionality of yi.

OHMR for Classification Multivariate Binary
Trees
In order to tackle a classification problem, 0-1 loss misclas-
sification can be used instead of regression loss in (6) and
follow the procedure to problem (9). It is trivial to see that
zli at the node is either 0 or 1 (because the loss function
produces 0 or 1). Therefore, it is possible to have similar
costs for several children while in the regression case zli
can be any positive real value. Further for case of classifi-
cation binary trees, by following the same analysis as for
case of binary regression trees, it can be seen that sample
cost ti becomes either 0 or 1. Essentially meaning the prob-
lem only depends on samples that have sample cost of 1;
hence, leading to a binary classification(TAO algorithm in
(Carreira-Perpiñán and Tavallali 2018)).

An alternative method to solve a classification problem
using regression loss is to change the categorical variable
outputs to hot-one-vectors. By doing so sample costs at
the nodes will remain positive real value; hence, termi-
nating confusion caused by 0 cost samples. For classifica-
tion experiments, in this paper the second method is ap-
plied. However, focus of the current paper is on regres-
sion problems and We are not trying to address classifi-
cation in this paper, as it has been done in some previous
work (Norouzi et al. 2015b; 2015a; Frosst and Hinton 2017;
Carreira-Perpiñán and Tavallali 2018; Bertsimas and Dunn
2017). However, we are trying to show the capabilities of
OHMR in treating classification as regression.

Computational Complexity
Theorem 2 (computational complexity). Computational
complexity of one pass of OHMR over the k-ary tree (k de-
notes the number of children each node has) structure is
O(Dg(N, p)+kD2Nh(p)), if following condition holds for
g(N, p):∑

j

g(Nj , p) ≤ g(N, p) s.t

{∑
j Nj ≤ N

Nj , N ∈ Z+ . (12)

Here g(.) and h(.) are the computational complexities of
training over N samples and evaluating a sample for the
model at the nodes, respectively.

Proof. First, we define the computational complexity of one
pass over the tree.

D∑
n=1

∑
depth(j)=n

g(Nj , p) + k(D − n)Njh(p). (13)

Here, the index of first summation is over the depth of the
tree and second summation is over the nodes at the same
depth of n. depth(j) = n denotes index of any node j
that is at depth n. First term, g(Nj , p) is due to training
model at node j. Second term, k(D − n)Njh(p) is due
to propagating each sample (these are Nj samples) down
each k children (which are a subtree of depth D − n)

and calculating its costs at node j. Since each input sam-
ple in the structure can only follow a fixed path, at a cer-
tain depth, a sample can be present in at most only at
one node. As a result, we have

∑
depth(j)=nNj ≤ N .

Hence,
∑
depth(j)=n g(Nj , p) ≤ g(N, p). This leads to

the fact that at depth n, we have
∑
depth(j)=n g(Nj , p) +

k(D − n)Njh(p) ≤ g(N, p) + k(D − n)Nh(p). So,
the total computational complexity of training models
is
∑D
n=1 g(N, p) + k(D − n)Nh(p) = Dg(N, p) +

kD(D+1)
2 Nh(p). Therefore, asymptotically total computa-

tional complexity is O(Dg(N, p) + kD2Nh(p)).

computational complexity of applying OHMR to regres-
sion binary trees: for multivariate case: solving a logistic
loss function using truncated Newton method costsO(αNp)
(Hsia, Zhu, and Lin 2017) (g(N, p) = αNp). α is the
number of iterations performed. Evaluating each split node
takes h(p) = p. Therefore, by plugging h and g in theorem
2, OHMR’s learning complexity is O(DαNp + 2D2Np)).
The algorithm is linear on the number of samples. Simi-
larly, for univariate case, the computational complexity is
O(DNp+ 2D2).

Experiments and Results
In this section, we present results of experiments to show
the merits of our proposed method. In all these experiments,
OHMR is applied to an induced MRT or OC1-Reg tree.
MRT is similar to the CART algorithm, except that the this
algorithm is applied to a multi-response tree like the work in
(De’Ath 2002). OC1-reg is also OC1 optimization algorithm
for a single oblique tree applied for multi-response regres-
sion. To the best of our knowledge, it is the first time this
method has been applied to create one OC1 tree for a multi-
response regression task. In all experiments, at the split op-
timization, logistic regression was trained using (Fan et al.
2008) library. In each figure, the dataset and its dimension-
ality is written left to the figure as datasetname(N × p, d).
All reported errors are mean squared error.

The optimized MRT and OC1-Reg are called MRT-
OHMR and OC1-OHMR, respectively. Maximum number
of allowed iterations over tree was set to 10. As a reminder,
we mention that the OHMR model for the experiments is the
model introduced for multivariate trees.

Comparison With Regression Trees
During the regression experiments, the datasets were ran-
domly partitioned to 64% train, 16% validation and 20%
test sets. Concrete Compressive Strength(CCS), Airfoil, CT
slice localization and California housing(CADATA) datasets
were downloaded from (Dheeru and Karra Taniskidou
2017). Classification datasets and regression dataset of Year
Prediction were downloaded from (Chang and Lin 2011).

Figure 3 shows the results of applying OHMR to different
datasets. OHMR has been able to decrease test and train er-
ror by 25−50% in most datasets. We can see from these fig-
ures that as trees get deeper, overfitting might happen. This
issue can be handled by simply applying cross-validation
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Figure 3: Train and test errors(mean squared error) of the
proposed method as compared to other greedy algorithms in
the literature. OHMR has achieved the smallest test error in
all 3 datasets, winning all time in 2 datasets and best train in
all of them.

and picking the best tree among trees of different depths.
In addition, the algorithm is also fast and usually takes 25
seconds to optimize a tree of depth 8 over a dataset like CT
Slice using a device with 4 core i7 cpu and 8 GB of ram.

Comparison With Forest Models
The fact with the regression trees is that they are fast in
query complexity. Hence, one important problem is to see
if an oblique tree can do as good as, or on par as, a forest
model while preserving the tree’s faster query complexity.
To check this, we compared OHMR with a few recently pro-
posed forest models. For a fair comparison, we followed the
same dataset partition as in (Begon, Joly, and Geurts 2017;
Li and Martin 2017) for each dataset. The query complexity
consists of the number of element-wise multiplications and
additions needed to propagate a sample down the trees or
forest. The number of parameters consists of all existing pa-
rameters throughout the model nodes. Methods that do not
fit inside the plots are put on the boundaries of them.

For CADATA, dataset was partitioned into 66% train and
34% test sets, each experiment was done 10 times and the
averages of the test errors are reported. For Airfoil and Con-
crete, datasets were partitioned into 60% train and 40% test

sets and each experiment was conducted 20 times. OHMR
was applied to trees of depth 2 to 10. The errors of these trees
are reported as a function of query complexity and number
of parameters; see figure 4.

In Figure 4, red and blue lines show MRT-OHMR and
OC1-OHMR,respectively. Each two consecutive dots on the
line represent two trees at consecutive depths. The trees on
the lines start from depth 2 and increases up to depth 10.
Huber, and Tukey were forest models from (Li and Mar-
tin 2017). The forests in this paper were first induced by a
random forest of 1000 trees as a kernel for non-parametric
models. Then the non-parametric models were used to pre-
dict target values with respect to different loss functions such
as Huber (Huber and others 1964) and Tukey (Huber 2011).
Random forest (RF) in all datasets consist of 100 trees of
depth 9. ET100, ET10, ET1, GIF10, GIF1 are forest mod-
els from (Begon, Joly, and Geurts 2017). ET100 is a ran-
dom forest of 1000 fully grown trees. ET10 and ET1 are the
same as ET100, except that they are built such that they have
as 10% and 1% many nodes as ET100, respectively. GIF10
and GIF1 are the authors proposed method greedily induc-
ing forests that has as 10% and 1% many nodes as ET100,
respectively. Since the information about query complexity
of ET100, E10 and ET1 were not available, they were not
reported in figures consisting of query complexity.

The query complexity and size of other Huber and Tukey
forests are estimated in the experiments based on the mini-
mum needed query complexity or number of parameters re-
ported in the (Huber and others 1964). Figure 4 ,the graphs
in the left column, demonstrates the fact that a single oblique
tree can outperform, or do almost as good as, a forest model.
However, in all cases, the query complexity of OHMR is or-
ders of magnitude smaller.

Figure 4,the graphs in the right column, shows the per-
formance of different models with respect to the number of
parameters of each model. As a tree grows larger, the num-
ber of its parameters increase exponentially. However, still
with small trees, OHMR was able to achieve comparable or
smaller error compared to the forest models.

Compressed multivariate trees One direct application of
OHMR is to use it toward building sparse multivariate trees
by imposing l1 penalty over the weights λj ||Wj ||1 of each
node. λj is the regularization parameter for each node. This
helps achieve trees with smaller size and faster query com-
plexity, specifically useful for large datasets such as CT
slice. To do so, two general approaches can be followed.
One is to set λj equal for all nodes and similar to lasso
(Hastie, Tibshirani, and Friedman 2009) follow the regular-
ization path (increase λj from a small value to a large value)
and at each value of λj optimizing the tree. However, since
the lower level nodes in the tree receive smaller number of
samples, their weights get sparser with smaller values of λj ,
resulting in subtrees with no samples; hence, a post process-
ing procedure is needed to prune the inactive subtrees (e.g.
(Carreira-Perpiñán and Tavallali 2018)). Second approach is
to set λj for each node individually. To do so, a balance be-
tween λj and Nj has to be scheduled to make sure lower
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Figure 4: Test error(mean squared error) versus query com-
plexity and number of parameters are shown over different
data sets for OHMR and several forest models.

level nodes do not get heavily penalized. For this we set
λj/Nj = C in which C is a constant value. As a result, λj
will change proportional to number of samples the node re-
ceives. Then, follow the regularization path based on C, in-
creasingC from a small value to a large one and optimize the
tree for each value of C. In practice, we noticed the second
approach results in faster and similar size trees compared to
first approach. Further, each node gets similar sparsity ra-
tio to other nodes through the tree; hence resulting in no
structural changes. Nodes may occasionally get empty (un-
less regularization penalty is high). Note that the rejection
step must not be applied, otherwise, updates are rejected and
sparsity is not achieved. From the trees along the regulariza-
tion path, the best tree can be picked by cross-validation or
in case the validation set is not provided, by looking at the
train error of the trees versus their sparsity and picking the
sparsest tree among trees with lowest train error. The second
approach experiment is applied over CT slice and is com-
pared with other forest, nearest neighbor and radial basis
function (RBF) models. Same data partition as (Begon, Joly,
and Geurts 2017) was followed. Figure 5 shows different
methods compared to OHMR. Both top graphs of figure 5
show that sparse OHMR was able to achieve mostly smaller
test error while having order of exponent faster query and
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Figure 5: Test error versus query complexity and size are
shown over CT slice dataset in top two curves. Other
models are shown by × symbol and a number beside it.
MRT-OHMR:1, OC1-OHMR:1 and MRT-OHMR:2, OC1-
OHMR:2 correspond to first and second setup of exper-
iments mentioned in compressed trees paragraph respec-
tively. 1 is nearest neighbor. 2 is a bagging ensemble of
250 trees of depth 10. Sampling rate was 0.7. models 3,4,5,6
and 7 are RBF models with 100,200,300,400,500 basis func-
tions and used as transformation to a linear regression. Gaus-
sian functions with same variance were used and centers
were found using k-means. 8,9,10,11,12, are ET100, ET10,
GIF10, ET1 and GIF1 respectively. The bottom two curves
show number of nodes remained as λj/Nj or λ increases.
Left and right figures of second row correspond to first and
second setup of experiments mentioned in compressed trees
paragraph respectively. The black horizontal line displays
the selected tree models shown in the bottom two curves.

smaller size. Some nodes getting empty due to receiving no
training samples were pruned after the experiment proce-
dure. The bottom two graphs of figure 5 have explored num-
ber of nodes through the experiments procedure. # nodes is
the number of nodes.

OHMR Applied to Axis-aligned Regression Trees
In Tables 1 and 2, accuracy and test error of applying OHMR
to MRT is shown for classification and regression tasks, re-
spectively. The classification tasks were changed to regres-
sion problem as explained in classification section of the
paper. All datasets were randomly partitioned to 50% train,
25% test and 25% validation. The algorithm was compared
to recently introduced optimal classification trees (OCT)
(Bertsimas and Dunn 2017). OHMR is able to achieve better
or similar test accuracy compared to OCT. OCT’s run time
in practice could take up to half an hour, whereas OHMR ter-
minates in order of 0.1 second. All datasets are downloaded
from (Dheeru and Karra Taniskidou 2017).
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Table 1: Test classification accuracy (avg ± stdev) for dif-
ferent methods and datasets (sample size × dimensionality,
# classes). All models are axis-aligned trees.

DATA SET DEPTH MRT OHMR OCT
BREAST 2 90.8± 1.2 92.9 ± 2.0 91.9
CANCER 3 92.9± 0.5 93.2 ± 1.2 91.5
(569× 30, 2) 4 92.8± 0.6 93.1 ± 0.5 91.5
SPAMBASE 2 82.5± 2.4 85.9 ± 0.9 84.3
(4601× 57, 2) 3 87.2± 1.1 89.1 ± 1.0 86.0

4 89.7± 0.9 90.4 ± 0.7 86.1

Table 2: Mean squared error over test set (avg ± stdev) for
different methods and datasets (sample size × dimension-
ality, # output dimensionality). All models are axis-aligned
trees.

DATA SET DEPTH MRT OHMR
PARKINSON 2 117.8± 3.4 116.0 ± 3.5
TELEMONITORING 3 89.2± 5.1 85.1 ± 4.4
(5875× 20, 2) 4 61.3± 6.3 53.4 ± 6.2
GAS×10−2 2 13.1± 6.9 7.8 ± 3.5
(58× 432, 2) 3 10.7± 10.2 8.0 ± 6.1

4 10.9 ± 8.5 13.2± 8.6
OES×10−6 2 29.2± 17.1 27.6 ± 14.4
(267× 263, 16) 3 25.1± 12.2 24.3 ± 14.9

4 23.7± 11.4 21.1 ± 10.7

Classification as Regression
In this section, we present examples on how a classification
problem can be handled as a regression using OHMR. The
target classes are changed to hot-one-vector in which the di-
mension is 1 if the class of a point belongs to that dimen-
sion and other dimensions are zero. This enables a regres-
sion tree to handle a classification problem in the context of
regression. Datasets are from in (Chang and Lin 2011). Our
proposed method was able to improve significantly over test
and train accuracies and outperform recently introduced op-
timization method in (Norouzi et al. 2015a) and greedy tree
in (Norouzi et al. 2015b) called non-greedy and CO2, re-
spectively. Specifically, in MNIST, OHMR was able to pass
accuracy 90% test accuracy at depth of 4 and also achieve
the best accuracy of 95.39% at depth 12.

Conclusion
This paper tackled the problem of optimizing a multi-
response regression tree through a meta-algorithm that pro-
poses general procedure for optimizing any hierarchical
(e.g., k-ary trees) structure for regression (OHMR). OHMR
provides opportunity for also learning sparse weights at the
nodes. Inspired by (Jordan and Jacobs 1994), OHMR is done
by iterating over the nodes and optimizing one at a time
which leads to instance-based cost-sensitive classification at
the split nodes and a regular regression problem at the leaf
nodes. Proposed method has an efficient training procedure
making it possible to scale the algorithm to larger datasets
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Figure 6: Test accuracy of the proposed method compared to
other greedy and optimization algorithms in the literature.
OHMR has almost achieved the best test accuracy in most
data sets.

and models. OHMR is also capable of competing with exist-
ing ensemble methods and even achieving smaller test error,
hence, possibility of essentially decreasing query complex-
ity and size of the model. Because of OHMR other research
topics using trees such as using other loss functions toward
other tasks such as density estimation, manifold learning,
multi-class labeling and using more complicated models at
the split nodes have now become easily possible. All that is
needed is to approximate or solve problem (9) for any given
task.

Acknowledgment
Peyman Tavallali’s research contribution to this paper was
carried out at the Jet Propulsion Laboratory, California Insti-
tute of Technology, under a contract with the National Aero-
nautics and Space Administration.

References
Begon, J.-M.; Joly, A.; and Geurts, P. 2017. Globally in-
duced forest: A prepruning compression scheme. In Inter-
national Conference on Machine Learning, 420–428.
Bennett, K. P. 1992. Decision tree construction via linear
programming. In Proc. 4th Midwest Artificial Intelligence
and Cognitive Sience Society Conference, 97–101.
Bennett, K. P. 1994. Global tree optimization: A non-greedy
decision tree algorithm. Computing Science and Statistics
26:156–160.
Bertsimas, D., and Dunn, J. 2017. Optimal classification
trees. Machine Learning 106(7):1039–1082.
Borchani, H.; Varando, G.; Bielza, C.; and Larrañaga, P.
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