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Abstract

Convolutional Neural Networks (CNNs) have provided
promising achievements for image classification problems.
However, training a CNN model relies on a large number of
labeled data. Considering the vast amount of unlabeled data
available on the web, it is important to make use of these data
in conjunction with a small set of labeled data to train a deep
learning model. In this paper, we introduce a new iterative
Graph-based Semi-Supervised Learning (GSSL) method to
train a CNN-based classifier using a large amount of unla-
beled data and a small amount of labeled data. In this method,
we first construct a similarity graph in which the nodes repre-
sent the CNN features corresponding to data points (labeled
and unlabeled) while the edges tend to connect the data points
with the same class label. In this graph, the missing label of
unsupervised nodes is predicted by using a matrix comple-
tion method based on rank minimization criterion. In the next
step, we use the constructed graph to calculate triplet regular-
ization loss which is added to the supervised loss obtained by
initially labeled data to update the CNN network parameters.

Introduction
CNN models require vast amounts of labeled data to be
trained properly; however, providing reliable annotated data
to train the CNN models tends to be expensive. There are es-
sentially two principal solutions that are usually used to deal
with this challenge: 1) Transfer Learning (TL) and 2) Semi-
Supervised Learning (SSL). In TL methods (Weiss, Khosh-
goftaar, and Wang 2016), we enhance new task learning via
transfer of knowledge from a related task which has already
been learned. In SSL methods (Zhu 2005), however, we are
motivated by the fact that in a lot of applications, there are
a vast amount of unlabeled data but only a small amount of
labeled data and we essentially aim to learn discriminative
learning methods that can make use of the information about
the input distribution that is given by a large amount of unla-
beled data. The SSL is a broad research field which has been
used in variety of applications such as image search (Fergus,
Weiss, and Torralba 2009) and natural language processing
(Liang 2005). Among the recent SSL approaches, the GSSL
methods have received a lot of attention and have become
popular due to their flexibility in practical applications and
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low computational complexity. In GSSL methods, one as-
sumes that the data points (both labeled and unlabeled) are
embedded in a low-dimensional manifold which might be
reasonably represented by a graph. In GSSL methods, each
data point is expressed as a node in a graph and weights be-
tween nodes provide a measure of similarity between them.
In GSSL, we inject seed labels on a subset of the nodes and
then we infer labels on the unlabeled nodes in the graph. The
intuition behind the similarity graph is that it captures the
information from the labeled samples which is then propa-
gated through to the unlabeled samples within the graph.

In this paper, we propose a novel iterative GSSL algo-
rithm to train a CNN-based classifier. Our GSSL algorithm
uses a new method to construct a similarity graph by lever-
aging matrix completion method based on rank minimiza-
tion criteria. Once the similarity graph is constructed, we
use it to regularize the fully supervised loss (i.e., given by
initially labeled data points) to force that connected data
points in the graph (i.e., data points which belong to the
same class) share similar feature representations while dis-
connected ones have different representations.

The entire framework is trained end to end such that in
each training iteration, the feature representations computed
from the CNN are used to construct the similarity graph,
then the graph is used to calculate triplet regularization loss
which is added to the supervised loss to update the parame-
ters of the network which provides new feature representa-
tions for the next iteration.

Related Work
Deep Semi-Supervised Learning. Deep learning models
with SSL algorithms have been attempted by several groups
(Laine and Aila 2016; Chongxuan et al. 2017; Rasmus et
al. 2015; Donahue, Krähenbühl, and Darrell 2016). Most of
deep SSL approaches leverage the idea of adversarial train-
ing; however, these approaches suffer from a range of disad-
vantages including training instability, lack of topology gen-
eralization, and computational complexity (Arjovsky, Chin-
tala, and Bottou 2017). Salimans et al. (Salimans et al. 2016)
use a model to improve the effectiveness of Generative Ad-
versarial Networks (GAN) for SSL applications. The model
provides a new technique in which the performance of super-
vised task is improved by learning on additional unlabeled
samples. The model consists of two deep networks which are
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trained jointly as in typical GAN framework. The first net-
work is a generative model that generates new samples while
the other network is the discriminative network. The main
problem of this method is training instability, and extra time
and memory cost spent to train the two deep networks. Ras-
mus et al. (Rasmus et al. 2015) merge supervised with unsu-
pervised learning methods using a deep learning model. The
model is trained to minimize the sum of supervised and un-
supervised cost functions by using back propagation, and at
the same time prevents the need for layer-wise pre-training.
The main problem of this method is the lack of a clear path to
generalize it to other network topologies, such as recurrent
or residual networks. The probabilistic formulation of CNN
models proposed in (Patel, Nguyen, and Baraniuk 2016) na-
tively supports SSL introduced by using a new family of hi-
erarchical generative models. However, the main concern of
these methods is that the activation function requires to be
ReLU and that the overall network topology follow a CNN.
There are some other methods which extend the generative
models for the SSL; for example, Maaløe et al. (Maaløe et al.
2016a) extend GANs with auxiliary variables to learn better
variational approximations and more expressive variational
distribution. Tobias et al. (Springenberg 2015) propose cate-
gorical GAN (CatGAN) which replaces the binary discrim-
inator in the standard GAN with a multi-class classifier, and
trains the generator and the discriminator using mutal infor-
mation on unlabeled samples. Kingma et al. (Kingma et al.
2014) use conditional Variational Autoencoders (VAEs) to
treat labels as conditions of generative models to describe
the input data; they make posterior inference of labels given
unlabeled samples to generate a particular class of samples.

Graph-Based Semi-Supervised Learning. The GSSL
approaches generally contains two main steps. In the first
step, the graph is constructed from all the data points (both
labeled and unlabeled data) to represent the relationship be-
tween them while in the second step, the information from
the labeled data is propagated to the unlabeled data over the
graph. Among the different GSSL methods which formulate
the information propagation step by using different objec-
tive functions such as low-rank minimization (Zheng et al.
2013), k-nearest neighbor methods (Anastasiu and Karypis
2015), structured sparsity (Zhou, Lu, and Peng 2013) min-
cut (Blum and Chawla 2001), energy minimization (Blum
et al. 2004) and Laplacian spectral method (Fergus, Weiss,
and Torralba 2009), there is one common assumption which
states that the data points on the same structure (i.e., man-
ifold, cluster or subspace) more likely have the same label.
In fact, GSSL methods tend to model the structural density
among the data points by measuring the proximity (similar-
ity) between data points in the graph and then propagate in-
formation of labeled data to the unlabeled data in a way that
the missing labels in the graph are predicted based on the
closest labeled data points (e.g, k-nearest neighbors classi-
fier). Since normally there is no explicit solution to model
the underlying structures of the data in the feature space, a
graph created from the data usually serves as an approxima-
tion of the real structure. As a result, constructing a proper
graph that best captures the main structure of the data point
is important to all GSSL approaches (Berton and de An-

drade Lopes 2015).
Matrix Completion Based on Rank Minimization. The

problem of completing a low-rank matrix from a few sam-
pled entries has been successfully applied in a variety of
applications such as the Netflix challenge. A major break-
through by Candes et al. (Candès and Recht 2009) states
that minimizing a matrix rank subject to some constrains can
be recast as minimizing the nuclear norm (sum of singular
values) of the matrix. Since nuclear norm minimization of
a matrix has characteristic of a Semidefinite Programming
(SDP), many approaches have been proposed to solve this
minimization problem effectively (Fazel 2002). In the field
of computer vision and machine learning, nuclear norm min-
imization has been applied to many problems such as robust
PCA (Wright et al. 2009) and subspace segmentation (Liu,
Lin, and Yu 2010).

Similarity Graph Construction
In this section, we describe our method to construct the
similarity graph via the matrix completion method. Let
g(x1), ..., g(xn) ∈ Rd be the features captured by the
CNN model corresponding to n samples; each of these sam-
ples is represented by a node in the similarity graph. Let
X = [g(x1), g(x2), ..., g(xn)] be a d×n feature matrix con-
structed by stacking samples column wise. Suppose that c is
the number of classes; y1, ..., yn are one hot encoding label
of samples, and Y = [y1, ..., yn] indicates a c× n label ma-
trix which is obtained by a linear model from X (i.e., yi =
Wg(xi)+b, where W is a c×n weight matrix). In our prob-
lem, all the entries in feature matrix X are known and ob-
servable; however, entries corresponding to unlabeled sam-
ples in the label matrix Y are missed and we essentially aim
to predict them. We note that by assuming X as a low rank
matrix, the combined (c+d)×nmatrix Z = [X; Y] produces
a low rank matrix too (i.e., rank ([X; Y]) ≤ rank (X)+c); and
predicting the missing entries in this matrix can be cast as a
matrix completion problem (Cai, Candès, and Shen 2010;
Cabral et al. 2011). Here, we take advantage of the matrix
completion method to predict missing labels in the graph.

Similar to other GSSL methods, we assume that the data
points are embedded within a low-dimensional manifold; in-
deed we make a structural assumption about the data points.
This assumption causes the feature matrix X to have a low
rank or approximately have a low rank, and consequently it
provides the fact that the matrix Z should also have a low
rank. Therefore, we set up an optimization problem to pre-
dict missing labels in the graph where the decision variable
Z is the data matrix with the missing labels. We aim to find
the matrix Z which matches the observed entries ( i.e., labels
of supervised data and matrix X) and has the minimum rank.

However, rank minimization is an NP hard problem. To
the best of our knowledge, the best algorithm we know to
minimize the rank of a matrix under linear constraint is
doubly exponential in the size of the matrix (Chistov and
Grigor’Ev 1984), which means that when the size of the ma-
trix is more than seven, it is not practical to solve it on the
computer. To relax the rank term in our optimization prob-
lem, we use the heuristic proposed in Candes et al. (Candès
and Recht 2009); the heuristic uses an alternative method
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which minimizes the nuclear norm ||Z||∗ =
∑n
k=1 σk(Z)

(the sum of the singular values) under the constraint set over
the observed entries; where σk(Z) denotes the kth largest
singular value of Z. The nuclear norm of matrix Z is the dual
norm of the spectral norm of the matrix Z which is convex,
and it can be solved by variety of convex optimization al-
gorithms (Fazel 2002). The relationship between rank and
nuclear norm is similar to that of `0 norm and `1 norm for
vectors. Since we can not minimize the rank of the matrix,
we choose the nuclear norm as an alternative optimization
problem which is the tightest convex relaxation to the rank.

Predicting Missing Labels via Matrix Completion
In this section, we provide an optimization problem to pre-
dict missing entries of the data matrix Z = [X; Y] such that
the nuclear norm of Z is minimized and entries in Z match
the observed entries ( i.e., labels of supervised data and fea-
ture matrix X). Let ΩX be the index set of observed entries
in the feature matrix X, where (i, j) ∈ ΩX if and only if Xij
is observed. Likewise, let ΩY be the index set of observed
entries in the label matrix Y and (i, j) ∈ ΩY if and only if
yj is a labeled sample. In this problem |ΩX| = d × n ( no
missing entries in X), and 1 < |ΩY| < c × n (some miss-
ing entries in Y). The optimization problem for predicting
missing entries in Z is defined as follow:

argmin
Z

µ||Z||∗ +
1

|ΩX|
∑
i,j∈ΩX

cx(zij , xij)+

λ

|ΩY|
∑
i,j∈ΩY

cy(z(i+d)j , yij).

(1)

We shift row index of the stacked matrix Z in the
cy(z(i+d),j , yij) because we want to skip X part in the
Z. Apart from minimizing the nuclear norm of Z, we pe-
nalize the cost function in (1) by adding cy(.) and cx(.)
losses to avoid trivial solutions and large distortions of Z
from the observed entries in X and Y matrices. The ob-
served label data type is of a different type than the ob-
served feature data; thus we define two different losses. The
cx(zij , xij) = 1

2 (zij − xij)2 is defined as the squared loss,
while the cy(z(i+d)j , yij) = log(1 + exp(−z(i+d)j .yij))
is the logistic loss which accentuates the error on entries
switching labels as is different from their absolute numerical
deviation. The parameters µ, λ are the weights which create
a balance between errors for better label error correction and
feature adaptation.

Optimization Method The loss defined in (1) is a con-
vex optimization problem. We use the soft-impute algorithm
(Mazumder, Hastie, and Tibshirani 2010) which is a simple
and effective algorithm for nuclear norm regularized matrix
completion. This algorithm iteratively restore the missing
entries with those attained from a soft-thresholded SVD. We
first define a projection operator PΩ on the observed set Ω
as follows:

[PΩ(Z)]ij =

{
zij (i, j) ∈ Ω

0 (i, j) 6∈ Ω
(2)

thus, the optimization problem in (3) can be rewritten as fol-
lows:

f(Z) =µ||Z||∗︸ ︷︷ ︸
G(Z)

+
1

2|ΩX|
||PΩ(X)− PΩ(Zx)||2F︸ ︷︷ ︸

H(Zx)

+

λ

|ΩY|
log(1 + exp(−PΩ(Zy) ◦ PΩ(Y)))︸ ︷︷ ︸

U(Zy)

,

(3)

where, Zx and Zy are sub-matrices of Z for parts X and
Y, respectively (i.e., Z = [X; Y]), and symbol ◦ indicates
Hadamard or element wise product between PΩ(Zy) and
PΩ(Y). In this set of formulation, we call the second and
third parts H(Zx), U(Zy), respectively which are convex
and smooth, and the first part G(Z) which is also convex but
not smooth. Therefore, we can think about three ingredients
needed for proximal gradient descent:
• The first is ∇H(Zx); here subgradient is just the gradi-

ent:
∇H(Zx) = − 1

|ΩX|
(PΩ(X)− PΩ(Zx)), (4)

where, the gradient of H(zij) is − 1
|ΩX| (xij − zij).

• The second is ∇U(Zy); here, subgradient is also just
the gradient:

∇U(Zy) =
λ

|ΩY|
−PΩ(Y)

1 + exp(PΩ(Zy) ◦ PΩ(Y))
, (5)

where, the gradient of U(z(i+d)j) is λ
|ΩY|

−yij
1+exp(z(i+d)jyij) .

• The third is the prox operator:

proxt(Z) = arg min
C

1

2t
||Z− C||2F + µ||C||∗. (6)

It can be proved that proxt(Z) = Sλt(Z) (Mazumder,
Hastie, and Tibshirani 2010) which is the matrix soft thresh-
olding at the level λ; where Sλ(Z) is defined by

Sλ(Z) = UΣλV
>, (7)

where, Z = UΣλV
> is an SVD, and Σλ is diagonal with

(Σλ)ii = max{Σii − λ, 0}. This matrix soft-thresholding
is an element-wise soft-thresholding of the matrix. By using
a soft-threaded singular matrix Σλ , this returns a low-rank
prox result.

Therefor, the Proximal Gradient update step is written as
follows:

Z+ =proxt(Z− t(∇H(Zx) +∇U(Zy)))

=Sλt(Z− t(∇H(Zx) +∇U(Zy)).
(8)

Note that (∇H(Zx) + ∇U(Zy)) is Lipschitz continuous
with L = 1, thus we can choose fixed step size t = 1 and
then the update step in this case is expressed as follows:

Z+ = Sλ(Z− (∇H(Zx) +∇U(Zy)). (9)

Once the label of unlabeled data are predicted by matrix
completion; in the next step, the nodes in the graph are con-
nected to each other if they belong to the same class and they
are disconnected otherwise.
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Supervised Task Regularization via the
Constructed Graph

In this section, we provide a new approach based on the
triplet loss function to leverage the constructed graph for
training the CNN model. In this approach, we aim to reg-
ularize the supervised task by adding a semi-supervised loss
term as an auxiliary task to the CNN. In other words, we
concentrate mostly on the classifier regularization learned in
a supervised fashion with few labeled data. To regularize the
supervised task using unsupervised data, we apply the triplet
loss function using a triplet of data on the graph as follows;

Ltrip(g(xa), g(xp), g(xn), A) =

max(||g(xa)− g(xp)||2 − ||g(xa)− g(xn)||2 + α, 0),
(10)

where A is the adjacency matrix of the graph in which en-
tries in the matrix indicate if pairs of the nodes are adjacent
or not in the graph; the α parameter is the margin in the
triplet loss and g(xa), g(xp), g(xn) are the output of CNN
for the images xa, xp and xn, respectively. In triplet loss, we
look at the three data point on the graph at the same time;
in our case we choose labeled samples in the graph as the
anchor (i.e., sample xa in (10)) and sample xp as a positive
sample if A(xa, xp) = 1 and sample xn as a negative sam-
ple if A(xa, xn) = 0; we want to bring positive and anchor
pairs (i.e., two images which are connected in the graph)
close to each other while push away the negative and anchor
pairs (i.e., two images which are not connected in the graph)
simultaneously. The triplet loss is added to the total network
loss function to regularize the supervised classification loss
with an auxiliary semi-supervised loss term.

Deep Semi Supervised Loss Function
Now, we have all the loss terms including the supervised
loss and semi-supervised loss to set up the total CNN loss
function. Our SSL loss function for updating the CNN pa-
rameters is defined as follows:

L(w, x, y) =
∑
xi∈xs

Lc(w, g(xi), yi)︸ ︷︷ ︸
supervised

+

γ

( ∑
xa∈xs;{xp,xn}∈x

Ltrip(w, g(xa), g(xp), g(xn), A)

︸ ︷︷ ︸
semi-supervised

)
,

(11)
where x and y are the training batch and samples labels

in the training batch (i.e., real labels and predicted labels);
Lc is supervised classification loss (softmax loss is used, but
can be chosen other type of losses such as center loss, con-
trastive center loss); xs is the supervised samples in training
batch x. The w is the parameters of the CNN and γ is the
balancing term between two supervised and semi-supervised
losses. The batch set is created such that number of similar
(i.e., anchor and positive) and dissimilar (i.e., anchor and
negative) pairs to be roughly balanced. In each triplet, the
labeled data (not predicted labels) are chosen as the anchor

and predicted labeled data are considered only as positive
and negative samples in the batch.

Experiments
Datasets and Pre-Processing. We conducted our experi-
ments on the widely used MNIST (LeCun et al. 1998),
SVHN (Netzer et al. 2011), small NORB (LeCun, Huang,
and Bottou 2004) and CIFAR 10 (Krizhevsky and Hinton
2009) datasets. For each of these datasets, we split the train-
ing set to two different sets of labeled and unlabeled sam-
ples. We ensure that all the classes are balanced such that
each class should have the same number of labeled samples.
We ran our model for 10 times with different random splits
of the labeled and unlabeled data for each dataset, and we
report the mean and standard deviation of the error rate.

MNIST is handwritten digits of 10 different classes
dataset which contains a training set of 60,000 samples,
and a test set of 10,000 samples. The digits have been size-
normalized and centered in a fixed-size ( 28 × 28) images.
We select 100 samples in the training set as labeled and re-
maining of it as unlabeled.

SVHN is another digit dataset similar to MNIST with
32 × 32 color images centered around a single character.
The task is to classify the center digits in the images; we
follow (Sermanet, Chintala, and LeCun 2012; Goodfellow
et al. 2013) methods to split the dataset to 598,388 train-
ing data and 26,032 testing data. For this dataset, we choose
randomly 1000 samples as labeled and rest of it, is used as
unlabeled.

CIFAR-10 is a collection of 32 × 32 RGB images of 10
classes including airplane, automobile, bird, cat, deer, dog,
frog, horse, ship and trucks. This dataset contains 50,000
number of images for training and 10,000 for testing; we
select 4,000 samples in the training set as labeled and rest as
unlabeled.

NORB contains gray scale images of 5 general classes
including animal, human, airplane, truck and car. The ob-
jects were imaged by two cameras under different lighting
conditions, elevations and azimuths. This dataset contains
24,300 images for both training and testing sets. In our ex-
periments, we resize the images to 32×32 as it is in (Maaløe
et al. 2016b); we select 1,000 samples in the training set as
labeled and remaining is considered as unlabeled.

Experimental Setup. Our CNN architecture has been
shown in Fig.1; it is composed of three convolutional lay-
ers , three max pooling layers and one fully connected layer.
There are 64 number of filters in the first convolutional layer
and 128 number of filters in the second and third convolu-
tional layers, respectively. The size filters in this architec-
ture are 3 × 3 and the convolution stride is set to 1 pixel. To
preserve spatial resolution after convolution, spatial padding
of the convolutional layer is fixed to 1 pixel for all 3 × 3
convolutional layers. The max-pooling layers are placed af-
ter each convolutional layers, respectively; the max-pooling
is carried out on a 2 × 2 pixel window with a stride of 2.
We apply batch normalization (i.e., shifting inputs to zero-
mean and unit variance) after each convolutional and fully
connected layer, and before performing the Rectified Linear
Units (ReLU) activation function. The batch normalization
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Figure 1: The labels of unsupervised nodes in the graph are predicted and then the graph is used to train the network.

Methods MNIST (100) SVHN (1000) NORB (1000) CIFAR-10 (4000)
Matrix Completion 1.98(±0.03) 10.06(±0.08) 9.11(±0.11) 19.91(±0.23)
GSCNN+No Reg 1.14(±0.09) 8.41(±0.22) 8.71(±0.18) 18.03(±0.31)

GSCNN 0.84(±0.12) 5.13(±0.39) 7.01(±0.53) 15.49(±0.64)

Table 1: Comparing GSCNN error rate in different scenarios on MNIST, SVHN, NORB and CIFAR-10 datasets.

(a) (b)

Figure 2: Visualizations of training data which are partially
labeled for (a) MNIST and (b) NORB datasets using our
GSSL method.

potentially helps to achieve faster learning as well as higher
overall accuracy. Furthermore, batch normalization allows
us to use a higher learning rate, which potentially provides
another boost in speed. The parameters of the network are
initialized by sampling randomly from N (0, 0.001) except
for the bias parameters which are initialized as zero. We im-
plemented our framework in TensorFlow and performed our
experiments on two GeForce GTX TITAN X 12GB GPUs.
We use Adam optimizer (Kingma and Ba 2014) with the
default hyper-parameters values ( ε = 10−3 , β1 = 0.9,
β2 = 0.999) in our experiments. The batch size in all exper-
iments is fixed to 128, and we set γ to 0.1 experimentally to
create a balance between supervised loss and unsupervised
loss in the total network loss function.

Hyper-Parameter Tuning. We used 10-fold cross vali-
dation in each experiment to tune hyper-parameters in our
model. For λ in (1), we randomly divide the labeled data
into ten disjoint subsets; next we run the matrix comple-
tion over 9

10 and we calculate the performance on the re-
maining 1

10 ; then we average the results over the 10 folds
(We note that we used label error as performance criterion
to select parameters because our goal in MC is to predict

label of unlabeled data points). The range of λ values are
{10−3, 10−2, 10−1, 1}. For µ in (1), we initialize it to be
0.25σ1, where σ1 is the largest singular value of the matrix
[X; Y] and decrease it gradually until 10−5 as it is suggested
in (Mazumder, Hastie, and Tibshirani 2010).

Matrix Completion. We use SoftImput algorithm imple-
mented in fancyimput package in python to predict missing
labels in the graph. We set shrinkage value which is the value
by which we shrink singular values on each iteration to the
maximum singular value of the initialized matrix (zeros for
missing values) divided by 100; the maximum number of
SVD iteration is set to 1000. In matrix completion, we stop
the algorithm by defining a convergence threshold (0.001 in
our experiments) which is the minimum ration difference be-
tween iterations (as a fraction of the Frobenius norm of the
current solution). In SoftImput algorithm, a sequence of so-
lutions are produced for which the criterion decreases to the
optimal solution with every iteration. Convergence thresh-
old can be given to the SoftImput algorithm implemented in
fancyimput package.

Triplet Mining on the Graph. In our experiments, we
concentrate on the online triplet mining strategy to gen-
erate useful triplets for data on the graph. Considering a
batch of b samples, we extract CNN features for each sam-
ple, and we then can create a maximum of b3 triplets even
though most of these triplets are not valid (i.e., triplet ex-
cept two positive and one negative). This technique pro-
vides us more triplets for a single batch of samples during
the network training. We use all the valid triplets in the
training and we average the loss on the hard triplet (i.e.,
d(g(xn), g(xa) < d(g(xp), g(xa))) and semi-hard triplet
(i.e., d(g(xa), g(xp)) < d(g(xa), g(xp)) +α); we disregard
the easy triplets ( triplets with zero loss) because averaging
on them makes the overall loss very small.

Effectiveness of Regularization based on Triplet. To
show the effectiveness of our semi-supervised loss based on
the triplet in training of our CNN model, we conducted ex-
periments in two different scenarios, a) GSCNN+No Reg
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Samples Per Class 100 200 400 800
NORB 9.88(±0.54) 7.01(±0.53) 6.12(±0.41) 5.07(±0.19)

CIFAR-10 18.98(±0.62) 16.82(±0.47) 15.49(±0.64) 14.51(±0.34)

Table 2: GSCNN error rate by given number of initially labeled data per class. Results are averaged on 10 times randomly split.

Methods MNIST (100) SVHN (1000) NORB (1000) CIFAR-10 (4000)

M1 + M2 (Kingma et al. 2014) 3.33(±0.14) 36.02(±0.1) 18.79(±0.05) -
VAT (Miyato et al. 2015) 2.33 24.63 9.88 -

Ladder (Rasmus et al. 2015) 1.06(±0.37) - - 20.40(±0.47)
CatGAN (Springenberg 2015) 1.39(±0.28) - - 19.58(±0.46)
ADGM (Maaløe et al. 2016a) 0.96(±0.02) 22.86 10.06(±0.05) -
SDGM (Maaløe et al. 2016a) 1.32(±0.07) 16.61(±0.24) 9.4(±0.04) -

FM (Salimans et al. 2016) 0.93(±0.07) 8.11(±1.3) - 18.63(±2.32)
Triple GAN (Chongxuan et al. 2017) 0.91(±0.58) 5.77(±0.17) - 16.99(±0.36)∏

model (Laine and Aila 2016) - 5.43(±0.25) - 16.55(±0.29)
ALI (Donahue, Krähenbühl, and Darrell 2016) - 7.42(±0.65) - 17.99(±1.62)

GSCNN 0.84(±0.12) 5.13(±0.39) 7.01(±0.53) 15.49(±0.64)

Table 3: Comparing SSL models on MNIST, SVHN, NORB and CIFAR-10 datasets

which indicates the case where we remove the triplet regu-
larization loss in (11) and use all the labeled and unlabeled
data with true and completed labels directly in the softmax
classifier loss, b) GSCNN which indicates the case where we
use the triplet regularization loss in (11) in training of our
CNN model. Table.1 shows the performance of our model
in two different scenarios (i.e., a) GSCNN+No Reg and b)
GSCNN); the results show that our regularization loss based
on the triplet can improve the model performance by 0.3%,
3.28%, 1.7% and 2.54% on the MNIST, SVHN, NORB and
CIFAR-10 datasets, respectively. This improvement is be-
cause the softmax classifier loss only forces the CNN fea-
tures of different classes to stay apart, while the triplet loss
not only does this, but also efficiently brings the CNN fea-
tures of the same class close to each other. Therefore, by
considering triplet regularization in the training, not only
the inter-class features differences are enlarged, but also the
intra-class features variations are reduced. Moreover, since
our method is an iterative process of two steps (i.e., the first
step uses matrix completion to predict the labels, and the
next step uses the predicted results to train a CNN), we re-
ported in Table.1 the matrix completion error rates to pro-
vide an empirical analysis showing that matrix completion
has significant influence on training the CNN model. Accu-
racy of the matrix completion indicates those unlabeled data
predicted correctly by matrix completion, are then used in
the regularizer to improve the CNN performance.

Constructed Graph Properties. The graph in our
model is constructed dynamically while the CNN network
is trained; this is because the graph in our model needs the
network output to be constructed. In our SSL method, the
graph is created online in a local scope (over a few samples
of training set) which is virtually similar to the concept of
training batch in the CNN models. In each training batch,
the labels of the unsupervised data are predicted based on
all the labeled data using our matrix completion method. In-
deed, we take a batch of training data and then we predict the

class label of unsupervised data to construct the graph for
the batch. Our graph construction method is an Expectation
Maximization (EM) like algorithm in a sense that in forward
pass, the graph is constructed for a batch (including labeled
and unlabeled data), and later on it is used as a regularizer in
the network loss calculation to update the network parame-
ters by back propagation in the backward pass. This property
enables us to create a robust graph through the training step;
because the graph is constructed by better set of CNN fea-
tures as we train the CNN through several training epochs.
This factor makes the graph construction method more ro-
bust in comparison to the offline based graph construction
methods with static data embedding.

Most of graph construction algorithms are usually expen-
sive in terms of time complexity. For example, graph con-
struction using offline k-NN method in brute-force fashion
is O(n2) where n is number of training data. Even though
there are other efficient methods (Zhang et al. 2013) to im-
prove k-NN method in terms of time complexity, in most of
the offline construction methods the time complexity usu-
ally makes graph construction step unpractical specially for
the large scale datasets. However, splitting the data to small
chunks of data with equal size which in our case is the batch
makes the graph construction step more efficient, and also
feasible for online computation and simultaneous with CNN
training; because in this case, only a small portion of the
training data is used to construct the graph. Our method is
online and use small part of the whole data. The computa-
tionally demanding part of our graph construction algorithm
is the equation (9) where we take SVD from a low-rank ma-
trix Z to predict missing label of unsupervised nodes in the
graph. For example, it takes around 6 (secs) to complete a
100 × 100 matrix in each iteration of our algorithm.

Effect of Number of Initially Labeled Data in the
Model. Since supervised data points are taken as anchors
while forming the triplets in our model, we conducted ex-
periment showing the influence of the number of initially
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(a)

(b)

Figure 3: Example of Grad-CAM generated for (a) NORB
and (b) MNIST datasets from our GSSL; it is shown that
highlighted regions are activated by Grad-CAM algorithm
for different classes.

labeled data points on the final performance. In this exper-
iment, we selected 100 samples per each class and grad-
ually increased the number of samples to 200, 400, and
800, respectively; the results in Table.2 indicate that the
model performance increases as the number of initially la-
beled data points in the regularizer increases. The trend
of improvement is reported in Table.2. The results on the
CIFAR-10 dataset show the model is improved by around
2.16%, 1.33% and 0.98% when we increase the number
of labeled samples from 100 −→ 200 , 200 −→ 400 and
400 −→ 800, respectively, while on the NORB dataset, the
model performance is improved by around 2.87%, 0.89%
and 1.05% when we increase the number of labeled samples
from 100 −→ 200 , 200 −→ 400 and 400 −→ 800, respectively.

Evaluation and Discussion. We compare our GSSL
model with a large body of previous models on MNIST,
SVHN, NORB and CIFAR-10 datasets using 100, to ,
4000 labeled samples, respectively. Experimental results in
Table.3 show that our method is competitive to the state-
of-the-art results for all these datasets; given 100 labeled
samples on the MNIST dataset, our method still is com-
parable to the outstanding generative models including FM
(Salimans et al. 2016) and Triplet GAN (Chongxuan et
al. 2017); Table.3 also shows Semi-Supervised results on
the more challenging datasets including SVHN, NORB and
CIFAR-10 datasets. Following previous models (Maaløe et
al. 2016a; Kingma et al. 2014; Miyato et al. 2015), we use

1,000 labeled samples on SVHN and NORB datasets to
compare our method with other methods. The results show
that our method outperforms the previous state-of-the-art.

Inspired by the Grad-CAM (Selvaraju et al. 2016) on class
activation map, we can interpret the classification decision
made by our method. We can see that our model is trig-
gered by different semantic regions of the image for different
classes of classification. Fig. 3 shows that our GSSL method
by using Grad-CAM method provides ”visual explanations”
for decisions from the all classes of the CNN models. The
Fig. 3 indicate the class activation of the model for MNIST
and NORB dataset where we use 100 and 1, 000 labeled
samples to train the model and use the remaining as test; the
result shows the outstanding result of the model in object lo-
calization using Grad- CAM technique. We also used T-SNE
(Maaten and Hinton 2008) to visualize the CNN features for
training data which are partially supervised. Fig. 2 indicates
that the model has acceptable discriminative ability; we ap-
plied this method on MNIST and NORB datasets using 100
and 1,000 labeled samples in the training step. The figure
shows that our model can discriminate the training data in
the embedded space using partially supervised samples.

Conclusion
In this paper, we proposed a new Graph-based Semi-
Supervised Learning method to train a CNN model using
a vast amount of unsupervised data in conjunction with a
small amounts of supervised data. In this model, we make
structural assumption about the data point to predict the
missing labels on the graph and then we leverage the con-
structed graph as regularizer to train the CNN model. Ex-
perimental results show that our model is comparable to the
state of the art for Semi-Supervised image classification.
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