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Abstract
The training of deep neural networks (DNNs) requires inten-
sive resources both for computation and for storage perfor-
mance. Thus, DNNs cannot be efficiently applied to mobile
phones and embedded devices, which seriously limits their
applicability in industry applications. To address this issue,
we propose a novel encoding scheme of using {−1,+1} to
decompose quantized neural networks (QNNs) into multi-
branch binary networks, which can be efficiently imple-
mented by bitwise operations (xnor and bitcount) to achieve
model compression, computational acceleration and resource
saving. Based on our method, users can easily achieve differ-
ent encoding precisions arbitrarily according to their require-
ments and hardware resources. The proposed mechanism is
very suitable for the use of FPGA and ASIC in terms of data
storage and computation, which provides a feasible idea for
smart chips. We validate the effectiveness of our method on
both large-scale image classification tasks (e.g., ImageNet)
and object detection tasks. In particular, our method with low-
bit encoding can still achieve almost the same performance as
its full-precision counterparts.

Introduction
Deep Neural Networks (DNNs) have been successfully ap-
plied in many fields, especially in image classification, ob-
ject detection and natural language processing. Because
of numerous parameters and complex model architectures,
huge storage space and considerable power consumption are
needed. Furthermore, with the rapid development of chip
technology, especially GPU and TPU, the computing power
has been greatly improved. In the rapid developing era of
deep learning, researchers use multiple GPUs or computer
clusters to contribute to the exploration of complex prob-
lems. Nevertheless, the energy consumption and limitation
of computing resources are still significant factors in indus-
trial applications, which are generally ignored in scientific
research. In other words, breathtaking results of many DNNs
algorithms under the condition of applying GPUs lag behind
the demand of industry. DNNs can hardly be applied in mo-
bile phones and embedded devices (as typical industrial ap-
plications) directly due to their limited memory and calcula-
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tion resources. Therefore, the compression and acceleration
of networks are especially important in future development
and commercial applications.

In recent years, many solutions have been proposed to
improve the energy efficiency of hardware, achieve model
compression or computational acceleration, such as net-
work sparse and pruning (Hassibi and Stork 1993; Wen et
al. 2016; Han et al. 2015), low-rank approximation (Den-
ton et al. 2014; Jaderberg, Vedaldi, and Zisserman 2014;
Tai et al. 2015), architecture design (Howard et al. 2017;
Sandler et al. 2018; Luo et al. 2018), model quantization
(Hubara et al. 2017; Rastegari et al. 2016; Lin, Zhao, and
Pan 2017), and so on. Network sparse and pruning can dra-
matically reduce the redundant connections, and thus re-
duce the computational load in the inference process with-
out large accuracy drop. Tai et al. (2015) used low-rank
tensor decomposition to remove the redundancy in the ker-
nels which can be as a generic tool for speeding up. Since
there is some redundant information in the networks, the
most direct approach of cutting down those information is
to optimize the structure and yield small networks (Ioffe and
Szegedy 2015; Iandola et al. 2016). For example, Howard
et al. (2017) proposed to use bitwise separable convolu-
tions to build light networks for mobile applications. Most
of those networks still utilize floating-point number rep-
resentations (i.e., full-precision values). However, Gupta
et al. (2015) discussed that the representation of the full-
precision weights and activations in networks is not neces-
sary during the training of DNNs, and a nearly identical or
slightly better accuracy rate may be obtained under lower-
precision representation and calculation.

Since non-differentiable discrete functions are applied in
QNNs generally, there obviously exists the gradient mis-
match problem in training process. Therefore, the backprop-
agation algorithm cannot be directly used to train QNNs.
Many scholars (Mishra and Marr 2017; Polino, Pascanu,
and Alistarh 2018; Tang, Hua, and Wang 2017; Wang et al.
2018) are devoted themselves to improving the performance
(e.g., accuracy and compression ratio) of QNNs, but few re-
searchers have studied their acceleration, which is an impor-
tant reason for hindering industrial promotion. To the best
of our knowledge, the accelerated method used in binarized
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neural networks (BNNs) (Hubara et al. 2016) is the most
efficient strategy at present. This strategy uses bitwise op-
erations (xnor and bitcount) to replace full-precision matrix
multiplication, and results 58× faster and 32×memory sav-
ing in CPU (Rastegari et al. 2016). As discussed in (Liang et
al. 2017), it has a higher acceleration ratio on FPGA, which
can speed up to about 705× in the peak condition compared
with CPU and is 70× faster than GPU. In particular, they
quantized activation values and weights to bits and used bit-
wise logic operations to achieve extreme acceleration ratio
in inference process, but they could suffer significant perfor-
mance degradation. However, most models were proposed
for a fixed precision, and cannot extend to other precision
models. They may easily fall into local optimal solutions and
suffer from slow convergence speed in training process.

The representation capability of binary parameters is in-
sufficient for many practical applications, especially for
large-scale image classification (e.g., ImageNet) and regres-
sion tasks. In order to address various complex problems and
take full advantage of bitwise operations, Lin, Zhao, and
Pan (2017) used the linear combination of multiple binary
parameters {-1, +1} to approximate full-precision weights
and activations. Therefore, the complex full-precision ma-
trix multiplication can be decomposed into some simpler
operations. This is the first time to use binary networks for
image classification on ImageNet. Guo et al. (2017) and Xu
et al. (2018) used the same technique to accelerate the train-
ing of CNNs and RNNs. In addition, those methods not only
increase the number of parameters many times, but also in-
troduce a scale factor to transform the original problem into
an NP-hard problem, which naturally makes the solution dif-
ficult and high complexity.

In order to bridge the gap between low-bit and full-
precision and apply to many cases, we propose a novel
encoding scheme of using {−1,+1} to easily decompose
trained QNNs into multi-branch binary networks. Therefore,
the inference process can be efficiently implemented by bit-
wise operations (xnor and bitcount) to achieve model com-
pression, computational acceleration and resource saving.
Thus, our encoding mechanism can improve the utilization
of hardware resources, and achieve parameter compression
and computation acceleration. In our experiments, we not
only validate the performance of our method for image clas-
sification on CIFAR-10 and large-scale datasets, e.g., Ima-
geNet, but also implement object detection tasks. The ad-
vantages of our method are summarized as follows:

• We can directly use the high-bit model parameters to ini-
tialize a low-bit model for faster training. Hence, our net-
works can be trained in a short time, and only dozens
of times fine-tuning are needed to achieve the accura-
cies in our experiments. Of course, we can get better per-
formance if we continue training the network. Thus, our
multi-precision quantized networks can be easily popular-
ized and applied to engineering practices.

• We propose a range of functions (called MBitEncoder) to
decompose activations (for example, we can use M func-
tions to get the state {−1,+1} ofM encoded bits), which
are used for inference computation. Therefore, those de-

composed bits can be directly used in network computa-
tion without other judgments and mapping calculations.

• After the process of decomposition, instead of storing all
encoding bits in data types, e.g., char, int, float or double,
the parameters can be individually stored by bit vectors.
Thus, the smallest unit of data in electronic equipments
can be reduced to 1-bit from 8-bit, 16-bit, 32-bit or 64-
bit, which raised the utilization rate of resources and com-
pression ratio of the model. Then the data can be encoded,
calculated and stored in various encoding precisions.

Related Work
QNNs can effectively implement model compression, even
to 32× memory saving. Many researchers are focusing on
the following three classes of methods: quantification meth-
ods, the methods of optimization in training process and ac-
celeration computation in inference process.

Quantification methods play a significant role in QNNs,
and determine the state and distribution of weights and acti-
vation values. Gupta et al. (2015) used the notation of integer
and fractional to denote a 16-bit fixed-point representation,
and proposed a stochastic rounding method to quantify val-
ues. Vanhoucke, Senior, and Mao (2011) used 8-bit quan-
tization to convert weights into signed char and activation
values into unsigned char, and all the values are integer. For
multi-state quantification (8-bit to 2-bit), linear quantization
is usually used in (Hubara et al. 2017; Wang et al. 2018;
Zhuang et al. 2018). Besides, Miyashita, Lee, and Mur-
mann (2016) proposed logarithmic quantization to represent
data and used bitshift operation in log-domain to compute
dot products. For ternary weight networks (Li, Zhang, and
Liu 2017), the weights are quantized to {−∆∗, 0,+∆∗},
where ∆∗ = 0.7 · E(|W |). In (Zhu et al. 2017), the posi-
tive and negative states are trained together with other pa-
rameters. When the states are constrained to 1-bit, Hubara et
al. (2016) applied the sign function to binarize weights and
activation values {-1, +1}. In (Rastegari et al. 2016), the au-
thors also used {−α∗,+α∗} to represent the binary states,
where α∗ = 1

n‖W‖l1 .
It is obvious that discrete functions, which are non-

differentiable or have zero derivatives everywhere, need to
quantize weights or activation values. The traditional gra-
dient descent method is unsuitable for the training of deep
networks. Recently, there are many researchers devoting
themselves to addressing this issue. Li et al. (2017) di-
vided optimization methods into two categories: quantizing
pre-trained models with or without retraining (Lin, Talathi,
and Annapureddy 2016; Zhou et al. 2017; Li, Zhang, and
Liu 2017; Lin, Zhao, and Pan 2017) and directly training
quantized networks (Courbariaux, Bengio, and David 2015;
Hubara et al. 2016; Rastegari et al. 2016; Wang et al. 2018).
(Hubara et al. 2016; 2017) used the straight-through esti-
mator (STE) in (Bengio, Léonard, and Courville 2013) to
train networks. STE uses the nonzero gradient to approx-
imate the function gradient, which is not-differentiable or
whose derivative is zero, and then applies the stochastic gra-
dient descent (SGD) to update the parameters. Mishra and
Marr; Polino, Pascanu, and Alistarh (2017; 2018) applied
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knowledge distillation techniques, which use high-precision
teacher network to guide low-precision student network to
improve network performance. In addition, some networks
as in (Guo et al. 2017; Lin, Zhao, and Pan 2017) use the
linear combination of binary values to approximate the full-
precision weights and activation values. They not only in-
crease the number of parameters many times, but also intro-
duce the scale factor to transform the original problem into
an NP-hard problem, which naturally makes the solution dif-
ficult and high complexity. Xu et al. (2018) used the two
valued search tree to optimize the scale factor and achieved
better performance in the language model by using the quan-
tized recurrent neural networks.

After quantizing, weights or activation values are repre-
sented in a low-bit form, which has the potential of accel-
eration computation and memory saving. Because the hard-
ware implementation has a certain threshold, many schol-
ars have avoided considering their engineering accelera-
tion. This is also an important reason for hindering indus-
trial promotion. The most direct quantization is to convert
floating-point parameters into their fixed-point (e.g., 16-bit,
8-bit), which can achieve hardware acceleration for fixed-
point based computation (Gupta et al. 2015; Vanhoucke, Se-
nior, and Mao 2011). When the weight is extremely quan-
tized to the binary weight {-1, +1} as in (Courbariaux,
Bengio, and David 2015) or ternary weight {-1, 0, +1}
as in (Li, Zhang, and Liu 2017), the matrix multiplication
can be transformed into full-precision matrix addition and
subtraction to accelerate computation. Especially when the
weight and activation values are binarized, matrix multi-
plication operations can be transformed into highly effi-
cient logical and bitcounting operations (Hubara et al. 2016;
Rastegari et al. 2016). Guo et al.; Lin, Zhao, and Pan (2017;
2017) used a series of linear combinations of {-1, +1} to ap-
proach the parameters of full-precision convolution model,
and then converted floating point operations into multiple
binary weight operations to achieve model compression and
computation acceleration.

Multi-Precision Quantized Neural Networks
In this section, we use the multiplication of two vectors to
introduce the novel encoding scheme of using {−1,+1}
to decompose QNNs into multi-branch binary networks. In
each branch binary network, we use -1 and +1 as the basic
elements to efficiently achieve model compression and for-
ward inference acceleration for QNNs. Different from fixed-
precision neural networks (e.g., binary, ternary), our method
can yield multi-precision networks and make full use of the
advantage of bitwise operations to accelerate QNNs.

Model Decomposition
As the basic computation in most neural network layers, ma-
trix multiplication costs lots of resources and also is the most
time consuming operation. Modern computers store and pro-
cess data in binary format, thus non-negative integers can be
directly encoded by {0, 1}. We propose a novel decompo-
sition method to accelerate matrix multiplication as follows:
Let x= [x1, x2, ..., xN ]T and w= [w1,w2, ...,wN ]T be two

vectors of non-negative integers, where xi,wi ∈ {0, 1, 2, ...}
for i= 1, 2, ..., N . The dot product of those two vectors can
be represented as follows:

xT · w = [x1, x2, ..., xN ][w1,w2, ...,wN ]T (1)

=

N∑
n=1

xn · wn. (2)

All of the above operations consist of N multiplications
and (N − 1) additions. Based on the above {0, 1} encoding
scheme, the vector x can be encoded to binary form using
M bits, i.e.,

x=[

︷ ︸︸ ︷
c1M c1M−1...c

1
1,

︷ ︸︸ ︷
c2M c2M−1...c

2
1, ...,

︷ ︸︸ ︷
cNM cNM−1...c

N
1 ]T . (3)

Then the right-hand side of (3) can be converted into the
following form:

c1M c2M · · · cNM
c1M−1 c2M−1 · · · cNM−1

...
... · · ·

...
c11 c21 · · · cN1

 =


cM

cM−1
...
c1

 , (4)

where

xj =

M∑
m=1

2m−1 · cjm, cjm ∈ {0, 1}, (5)

ci = [c1i , c
2
i , ..., c

N
i ]. (6)

In such an encoding scheme, the number of represented
states is not greater than 2M . In addition, we encode another
vector w with K-bit numbers in the same way. Therefore,
the dot product of the two vectors can be computed as fol-
lows:

xT · w =

N∑
n=1

xn · wn (7)

=

N∑
n=1

(
M∑
m=1

2m−1 · cnm

)
·

(
K∑
k=1

2k−1 · dnk

)
(8)

=

M∑
m=1

K∑
k=1

2m−1 · 2k−1 · cm · dTk . (9)

From the above formulas, the dot product is decomposed
intoM×K sub-operations, in which every element is 0 or 1.
Because of the restriction of encoding and without using the
sign bit, the above representation can only be used to encode
non-negative integers. However, it’s impossible to limit the
weights and the values of the activation functions to non-
negative integers.

In order to extend encoding space to negative integer and
reduce the computational complexity, we propose a new en-
coding scheme, which uses {-1, +1} as the basic elements of
our encoder rather than {0, 1}. Except for the difference of
basic elements, the encoding scheme is similar to the rules
shown in the formula (5), and is formulated as follows:

xi =

M∑
m=1

2m−1 · cim, cim ∈ {−1, 1}. (10)
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Figure 1: Architecture of fully connected layer by 2-bit encoding. We use 2BitEncoder (ϕ1
2(x) and ϕ2

2(x)) to encode input data
and weights in Encoder part and sum over those four results by fixing scale factors to achieve the final output in Decoder part.

where M denotes the number of encode bit, that can repre-
sent 2M states. At this time, we can use multiple bitwise op-
erations (xnor and bitcount) to effectively achieve the above
vector multiplications. This operation mechanism is suitable
for all vector/matrix multiplications.

In neural networks, matrix multiplication is the basic
computation in both the fully connected and convolution
layers. Based on the above decomposition mechanism of
vector multiplication, we propose the following model de-
composition method for quantized networks. We first use
2-bit encoding for fully connected layer as an example to
introduce the mechanism of our model decomposition, the
details are shown in Figure 1. x is the input data and w is
the weight matrix. Here, we suppose the bias does not ex-
ist. We define an ”Encoder” that can be used in the 2BitEn-
coder function (ϕ1

2(·) and ϕ2
2(·)), which will be described in

the next section, to encode input data. For example, x can
be encoded by x1 ∈ {−1,+1}N and x2 ∈ {−1,+1}N ,
where x2 represents high bit data and x1 represents low
bit data. These variables meet the following formula: x =
x1 + 2x2. In the same way, the weight w can be converted
into w1 ∈ {−1,+1}M×N and w2 ∈ {−1,+1}M×N . Af-
ter cross multiplications, we get four intermediate variables
{y1, y2, y3, y4}. Each multiplication can be considered as a
binarized fully connected layer, whose elements are -1 or
+1. This decomposition can result multi-branch layers, thus
we call it as Multi-Branch Binary Networks (MBNs). For
instance, we decompose the 2-bit fully connection operation
into four branches binary operations, which can be acceler-
ated by bitwise operations, and then sum over those four re-
sults by fixing scale factors to achieve the final output. This
operation mechanism can be suitable for all vector/matrix
multiplications. In addition to fully connected layers, con-
volution and deconvolution layers are also suit for neural
networks.

M-bit Encoding Functions
As an important part in neural networks, activation functions
can enhance the nonlinear characterization of networks. In
our proposed model decomposition method, encoding func-
tion plays a critical role and can encode input data to multi-
bits (-1 or +1). Those numbers represent the encoding of

input data. For some other QNNs, several quantization func-
tions have been given. However, it is not clear that what’s the
affine mapping between quantized numbers and encode bits.
In this part, a list of M -bit encoding functions are proposed
to produce the element of each bit that follows the rules for
encoding data.

Table 1: Activation functions to limit input data to a fixed
numerical range.

Tanh(x) = ex−e−x

ex+e−x HTanh(x) =


+1, x > 1

x, −1 6 x 6 1

−1, −1 6 x

Sigmoid(x) = 1
1+e−x HReLU(x) =


+1, x > 1

x, 0 6 x 6 1

0, x 6 0

Before encoding, the data should be limited to a fixed
numerical range. Table 1 lists four activation functions.
HTanh(·) brings the range of input data to [-1, +1], and
it consists with sign function to achieve binary encoding
of weights and activations (Hubara et al. 2016; Liang et
al. 2017). Since the convergence of SGD obtained by us-
ing ReLU(·) is faster than other activation functions, we
propose a new activation function HReLU(·) that retains
the linear characteristics in the specific range and limits the
range of input data to [0, 1]. Different from general activa-
tion functions mentioned above, the output of our M -bit en-
coding function defined below should beM numbers, which
is -1 or +1. Those numbers represent the encoding of input
data. Therefore, the dot product can be computed by the for-
mula (9). In addition, at the above described experimental
condition, when we use 2-bit to encode the data x and con-
strain to [-1, 1], there are 4 encoded states, as shown in Table
2. The affine mapping between quantized real numbers and
their encoded states is given in the following table.

From the above results, we can see that there is a linear
factor α between quantized real numbers and encoded states
(e.g., α=3 for Table 2). When we use formula (9) to com-
pute the multiplication of two encoded vectors, the value
will be expanded α2 times. Therefore, the result can mul-
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Figure 2: Encoding functions. (a) and (b) denote the encoding functions of the second bit and the first bit of 2BitEncoder. (c),
(d) and (e) denote the encoding functions of the third bit, the second bit and the first bit of 3BitEncoder.

Table 2: Quantized real numbers and their Encoded states.

Quantized numbers -1 -1/3 1/3 1

Encoded states {-1,-1} {-1,1} {1,-1} {1,1}

tiply its scale factor to get the final result, shown as 1/9 in
Figure 1. Figure 2 shows the illustration of 2-bit and 3-bit
encoding functions, we can see that those encoding func-
tions are required periodic, and each function has different
periods. Naturally, we apply trigonometric functions as the
basic encoder functions, which are signed as red lines. Af-
ter all, we use sign function to hard divide to -1 or +1. The
mathematical expression can be formulated as follows:

2BitEncoder(x) =

{
ϕ2
2(x) : sign(sin( 3

4π · x)),

ϕ1
2(x) : sign(−sin( 3

2π · x)),
(11)

where ϕ1
2(x) denotes the encoding function of the first bit

(xi1) of 2BitEncoder, and ϕ2
2(x) represents the encoder func-

tion of the second bit (xi2) of 2BitEncoder. The periodicity
is obviously different from others because it needs to denote
more states.

Networks Training
QNNs face the problem that the derivative is not defined,
thus traditional gradient optimization methods are not ap-
plicable. Hubara et al. (2016) presented the HTanh func-
tion to binary quantize both weights and activations, and
also defined the derivative to support back-propagation (BP)
training process. They used the loss computed by binarized
parameters to update full precision parameters. Similarly,
Rastegari et al. (2016) also proposed to update the weights

with the help of the second parameters. Bengio, Léonard,
and Courville (2013) discussed that using STE to train net-
work models containing discrete variables can obtain faster
training speed and better performance.

Multi-Branch Binary Networks Training
Generated by the decomposition of QNNs, MBNs need to
useM -bit encoding functions to get the elements of each bit,
which can be used by more efficient bitwise operations to re-
place arithmetic operations. We take the 2-bit encoding as an
example to describe the optimization method of MBNs. The
sign function of the encoder makes it difficult to implement
the BP process. Thus, we approximate the derivation of the
encoder function with respect to x as follows:

∂ϕ2
2(x)

∂x
=

{ 3
4πcos(

3
4πx), −1 6 x 6 1

0 otherwise,
(12)

∂ϕ1
2(x)

∂x
=

{
− 3

2πcos(
3
2πx), −1 6 x 6 1

0 otherwise.
(13)

Besides activations, all weights of networks also need
to be quantized to binary values. We retain the real-valued
weight w and binarized weight wb in the training process,
and apply wb to compute loss and gradient, which is used
to update w. w is constrained between -1 to +1 to avoid ex-
cessive growth. Different from weights, the binary function
for w is not needed for the encoding function and directly
defined as follows:

Binarize(x) = sign(HTanh(x)). (14)

For this function, we have defined the gradient function
of each component to constrain the search space. That is,
the input of sign function can be constrained to [-1,+1]
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by HTanh(x), and it can also speed up the convergence.
The parameters of the whole network are updated by Adam
(Kingma and Ba 2014) in the condition for differentiability.

Quantized Networks Training
The above training scheme is proposed to optimize bi-
nary networks, which can be converted into multi-state net-
works. However, this converter can produce many times
more parameters than the original network. If we optimize
the binarized network, it may easily fall into local opti-
mal solutions and face slow convergence speed. Based on
the affine mapping between quantized numbers and fixed-
point integers, we can directly optimize the quantized net-
work and then use multi-branch binary operations in infer-
ence process. There are two quantization schemes usually
applied in QNNs (Hubara et al. 2016; Zhou et al. 2016;
Miyashita, Lee, and Murmann 2016), named linear quanti-
zation and logarithmic quantization. Due to the requirement
of our encoding mechanism, linear quantization is used to
quantize networks, and is defined as follows:

qk(x) = 2

(
< (2k − 1)(x+1

2 ) >

2k − 1
− 1

2

)
, (15)

where < · > denotes the rounding operation, which can
quantize a real number x ∈ [−1,+1] to a certainty state.
We call it a hard ladder function, which can segment in-
put codomain to multi-states. Table 2 lists the four states
that quantized by formula (15). However, the derivative of
this function is almost zero everywhere, it cannot be used
in training process. Inspired by STE, we use the same tech-
nique to speed up computing process and yield better perfor-
mance. We use the loss computed by quantized parameters
to update full precision parameters. Note that for our encod-
ing scheme with low-precision quantization (e.g., binary),
we use Adam to train our model, otherwise stochastic gradi-
ent descent is used.

Experiments
Many scholars are devoted to improving the performance
(e.g., accuracy and compression ratio) of QNNs, while very
few researchers have studied their engineering accelera-
tion, which is an important reason for hindering industrial
promotion. Therefore, we mainly focus on an acceleration
method, which is especially suitable for engineering ap-
plications. In this section, we compare the performance of
our method with BWN (Courbariaux, Bengio, and David
2015), BNN (Hubara et al. 2016), XNOR-Net (Rastegari et
al. 2016), TWN (Li, Zhang, and Liu 2017), and ABC-Net
(Lin, Zhao, and Pan 2017) for image classification tasks on
CIFAR-10 and ImageNet, and object detection tasks on Pas-
cal VOC2007/2012 datasets.

Image Classification
CIFAR-10: CIFAR-10 is an image classification benchmark
dataset, which has 50000 training images and 10000 test-
ing images. All the images are 32 × 32 color images repre-
senting airplanes, automobiles, birds, cats, deer, dogs, frogs,
horses, ships and trucks.

We validated our method by different bit encoding
schemes, in which activations and weights are equally
treated, that is, both of them use the same bit-encoding. Ta-
ble 3 lists the results of our method and several state-of-the-
art models mentioned above. Here we use the same network
architecture as in (Courbariaux, Bengio, and David 2015;
Hubara et al. 2016) except for the encoding functions. We
use HTanh(·) as the activation function and employ Adam
to optimize all parameters of the network. From all the re-
sults, we can see that the representation capabilities of 1-
bit and 2-bit are completely enough for small-scale datasets,
e.g., CIFAR-10. Our method with low-precision encoding
achieves nearly the same classification accuracy as high pre-
cision and full-precision models, while we can attain ∼16×
memory saving compared with its full-precision counterpart.
When activations and weights are constrained to 1-bit, our
network structure is similar to BNN (Hubara et al. 2016),
and our method yields even better accuracy mainly because
of our proposed encoding functions.

ImageNet: We further examined the performance of
our method with different bit encoders on the ImageNet
ILSVRC-2012 dataset (Russakovsky et al. 2015). This
dataset consists of 1K categories images, and has over 1.2M
images in the training set and 50K images in the validation
set. We use Top-1 and Top-5 accuracies to report the classifi-
cation performance. For large-scale training sets (e.g., Ima-
geNet), it usually costs plenty of time and requires sufficient
computing resources for classical full-precision models. It
will be more hard to train quantized networks, thus the ini-
tialization of parameter values is particularly important. In
this paper, we present HReLU(·) as the activation function to
constraint activations. In particular, the full-precision model
parameters activated by ReLU(·) can be directly used as ini-
tialization parameters for our 8-bit quantized network. Af-
ter a little number of fine-tuning, 8-bit quantized networks
can be well-trained. Similarly, we use the 8-bit model pa-
rameters as the initialization parameters to train 7-bit quan-
tized networks, and so on. There has a special case, if we
use HReLU(·) and 1BitEncoder function to encode activa-
tions, all the activations will be constrained to +1. Here, we
use HTanh(·) as the activation function for 1-bit encoding.
Note that we use SGD to optimize parameters when en-
coding bit is not less than 3, and the learning rate is set to
0.1. When the encode bit is 1 or 2, the convergent speed of
Adam is faster than SGD, as discussed in (Hubara et al. 2016;
Rastegari et al. 2016).

Table 3 lists the performance (e.g., accuracy, speedup ra-
tio, memory saving ratio) of our method and several typi-
cal models mentioned above. Those results show that our
method with 1-bit encoding performs much better than BNN
(Hubara et al. 2016). Similarly, our method with 5-bit encod-
ing significantly outperforms ABC-Net[5-bit] (Lin, Zhao,
and Pan 2017). Moreover, our networks can be trained in
such a short time, and to achieve the accuracies in our ex-
periments only needs dozens of times fine-tuning. Of course,
if we continue training the network, we can get better per-
formance. Different from BWN and TWN, whose weights
are only quantized rather than activation values, our method
quantifies both weights and activation values simultane-
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Table 3: Classification accuracies of Lenet on CIFAR-10 and ResNet-18 on ImageNet.

Method CIFAR-10 ImageNet(Top-1) ImageNet(Top-5)
BWN (Courbariaux, Bengio, and David 2015) 90.10% 60.80% 83.00%

BNN (Hubara et al. 2016) 88.60% 42.20% 67.10%
XNOR-Net (Rastegari et al. 2016) - 51.20% 73.20%
TWN (Li, Zhang, and Liu 2017) 92.56% 61.80% 84.20%

ABC-Net[5-bit] (Lin, Zhao, and Pan 2017) - 65.00% 85.90%
Full-Precision 91.40% 68.60% 88.70%

Encoded activations and weights

MBN[M=K=1] 90.39% 47.10% 71.70%
MBN[M=K=2] 91.06% 56.30% 79.48%
MBN[M=K=3] 91.27% 58.69% 81.84%
MBN[M=K=4] 91.15% 59.57% 82.35%
MBN[M=K=5] 90.92% 65.09% 86.42%
MBN[M=K=6] 91.01% 67.04% 87.69%
MBN[M=K=7] 90.20% 68.37% 88.47%
MBN[M=K=8] 90.43% 68.63% 88.70%

Table 4: Comparison with different encoding bits for object detection.

Method Full-Precision MBN[M=K=8] MBN[M=K=6] MBN[M=K=5]

mAP 0.6392 0.6351 0.6131 0.5423

ously. Although BWN and TWN can obtain little higher ac-
curacies than our method with 1-bit quantization model, our
method obtains more speedup, and the speedup ratio of ex-
isting methods such as BWN and TWN is limited to ∼ 2×.
Due to limited and fixed expression ability, existing meth-
ods (such as BWN, TWN, BNN, XNOR-Net) can not sat-
isfy higher precision requirements. In particular, our method
can provide 64 available encoding choices, and hence our
encoded networks with different encoding precisions have
different speedup ratios, memory requirements and experi-
mental precisions.

Object Detection
We also use the trained ResNet-18 with the Single Shot
MultiBox Detector (SSD) framework (Liu et al. 2016) to
validate object detection, in which the coordinate regression
task coexists with classification tasks. The normally regres-
sion task has higher requirement on value precision, there-
fore the application of object detection presents a new chal-
lenge for QNNs.

In this experiment, our model is trained on the VOC2007
and VOC2012 train/val set, and tested on the VOC2007 test
set. ResNet-18 with the SSD framework (Liu et al. 2016) is
used as the basic network. Here we use the trained model
parameters in ImageNet classification to initialize SSD net-
work parameters, after dozens of times fine-tuning the re-
sults are listed in Table 4. We use Mean Average Preci-
sion (mAP) as the criterion to evaluate the performance of

our model. It is clear that our method with 8-bit encod-
ing scheme can yield very similar performance as its full-
precision counterpart. When we use 6-bit to encode parame-
ters, the evaluation index dropped by 0.0261. If the number
of encode bits is constrained to 5, the performance of this
task has visibly deteriorated, while our method can achieve
∼5× memory saving.

As the attempt in object detection tasks, our method yields
good performance on the SSD framework. Similarly, it can
be applied to other frameworks, e.g., R-CNN (Girshick et
al. 2014), Fast R-CNN (Ren et al. 2015), SPP-Net (He et al.
2014) and YOLO (Redmon et al. 2016).

Discussion and Conclusion
{0, 1} Encoding and {-1, +1} Encoding
As described in (Zhou et al. 2016), there exists an affine
mapping between quantized numbers and fixed-point inte-
gers. The quantized numbers are usually restricted to the
closed interval [-1, +1]. For example, the mapping is for-
mulated as follows:

xq =
2

2M − 1
x{0,1} − 1, (16)

where xq denotes a quantized number and x{0,1} denotes
the fixed-point integer encoded by 0 and 1. We use a K-bit
fixed-point integer to represent a quantized number wq . The
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product can be formulated as follows:

xq · wq =
4

(2M − 1)(2K − 1)
x{0,1} · w{0,1} −

2

2M − 1
x{0,1} − 2

2K − 1
w{0,1} + 1. (17)

The right-hand side of (17) is a polynomial, which has four
terms. And each term has its own scaling factor. The com-
putation of x{0,1} · w{0,1} can be accelerated by bitwise op-
erations, however, the polynomial and scaling factor will in-
crease the computational complexity.

For our proposed quantized binary encoding scheme (i.e.,
{−1,+1}), the product of two numbers is defined as

xq · wq =
1

(2M − 1)(2K − 1)
x{−1,1} · w{−1,1}, (18)

where x{−1,1} and w{−1,1} denote the fixed-point integers
encoded by -1 and 1. Obviously, compared with the above
encoding of {0, 1}, the product can be more efficiently cal-
culated by using our proposed encoding scheme.

Linear Approximation and Quantization
As described in (Lin, Zhao, and Pan 2017; Guo et al. 2017;
Xu et al. 2018), the weight w can be approximated by the lin-
ear combination ofK binary subitems {w1,w2, ...,wK} and
wi ∈ {−1,+1}N , which can replace arithmetic operations
with more efficient bitwise operations. In order to obtain the
combination, we need to solve the following problem

min
{αi,wi}Ki=1

∥∥∥∥∥w −
K∑
i=1

αiwi

∥∥∥∥∥
2

, w ∈ RN . (19)

When this approximation is used in neural networks, wi can
be considered as model weights. However, the scale factor
αi is introduced in this approximation, and such a scheme
also expands the parameters K times. Therefore, this ap-
proximation can convert the original model to a complicated
binary network, which is hard to train (Li et al. 2017) and
easily falls into local optimal solutions.

For our method, we use the quantized parameters wq to
approximate w as follows:

w ≈ 1

2K − 1
wq, w ∈ [−1, 1]N , (20)

where wq is a positive or negative odd number, and its abso-
lute value is not larger than 2K−1. Different from the above
linear approximation, our method can achieve the quantized
weights, and directly get the corresponding encoding ele-
ments. Thus, our networks can be more efficiently trained
via our quantization scheme than the linear approximation.

Conclusions
In this paper, we proposed a novel encoding scheme of us-
ing {-1, +1} to decompose QNNs into multi-branch binary
networks, in which we used bitwise operations (xnor and
bitcount) to achieve model compression, computational ac-
celeration and resource saving. In particular, we can use the

high-bit model parameters to initialize a low-bit model and
achieve good results in various applications. Thus, users can
easily achieve different encoding precisions arbitrarily ac-
cording to their requirements (e.g., accuracy and speed) and
hardware resources (e.g., memory). This special data stor-
age and calculation mechanism can yield great performance
in FPGA and ASIC, and thus our mechanism is a feasible
idea for smart chips. Future works will focus on improv-
ing the hardware implementation and chip technology, and
exploring some ways to automatically select proper bits for
various network architectures (e.g., VGG and ResNet).
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