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Abstract

Most existing facial landmark detection algorithms regard the
manually annotated landmarks as precise hard labels, there-
fore, the accurate annotated landmarks are essential to the
training of these algorithms. However, in many cases, there
exist deviations in manual annotations, and the landmarks
marked for facial parts with occlusion and large poses are not
always accurate, which means that the “ground truth” land-
marks are usually not annotated precisely. In such case, it is
more reasonable to use soft labels rather than explicit hard
labels. Therefore, this paper proposes to associate a bivari-
ate label distribution (BLD) to each landmark of an image. A
BLD covers the neighboring pixels around the original man-
ually annotated point, alleviating the problem of inaccurate
landmarks. After generating a BLD for each landmark, the
proposed method firstly learns the mappings from an image
patch to the BLD of each landmark, and then the predicted
BLDs are used in a deformable model fitting process to obtain
the final facial shape for the image. Experimental results show
that the proposed method performs better than the compared
state-of-the-art facial landmark detection algorithms. Further-
more, the proposed method appears to be much more robust
against the landmark noise in the training set than other com-
pared baselines.

Introduction
Facial landmark detection aims to localize feature points on
a face image, such as the nose, chin, eyes and mouth. It is a
prerequisite of many automatic facial analysis systems, e.g.,
face recognition (Zhao et al. 2003) and facial age estimation
(Geng, Yin, and Zhou 2013). Thus, this task has attracted
more and more attention in recent years. A large number of
approaches have been proposed for facial landmark detec-
tion, which can be roughly classified into two families, i.e.,
model based methods and regression based methods.

Active Shape Models (ASM) (Cootes et al. 1995) and
Active Appearance Models (AAM) (Matthews and Baker
2004) are two early typical model based methods. ASM
applies Principal Component Analysis (PCA) to a set of
aligned training shapes to build its shape model. AAM is an
extension of ASM, generating both shape and appearance
models for an image. Constrained Local Models (CLM)
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(Cristinacce and Cootes 2008; Zhu and Ramanan 2012) is
another widely-used class of model based approaches for
the facial landmark detection. The shape model of CLM is
the same point distribution model as the one used by ASM
and AAM. Unlike AAM building holistic appearance model,
CLM uses a set of local appearance patches cropped around
each current landmark to represent a face. Generally speak-
ing, model based methods attempt to optimize the model pa-
rameters by maximizing the probability of a facial image
being reconstructed by their deformable models. However,
building powerful deformable models requires a massive
amount of training images with carefully annotated land-
marks (Sagonas et al. 2013b), while most existing model
based methods have not taken into consideration the issue
of inaccurate “ground truth” landmarks.

The most representative way of regression based meth-
ods is the Cascaded Shape Regression (CSR) framework
(Cao et al. 2014; Ren et al. 2014; Trigeorgis et al. 2016;
Xiong and De la Torre 2013; Zhang et al. 2014), which di-
rectly learns a set of regressors to update the estimated shape
iteratively in a coarse-to-fine manner. For example, ESR
(Cao et al. 2014) tries to directly learn a regression function
with shape-indexed features to infer the whole facial shape
for an image. SDM (Xiong and De la Torre 2013) learns a
cascaded descent direction to minimize the shape residuals
on the hand-crafted SIFT features. LBF (Ren et al. 2014)
learns a set of local binary features for each landmark inde-
pendently, and then uses these features to jointly learn a lin-
ear regressor to minimize errors between the predicted and
ground truth shape. In recent years, deep learning techniques
have also been applied to the CSR framework. For example,
CFAN (Zhang et al. 2014) uses cascaded Auto-Encoder net-
works with different resolution image inputs to predict accu-
rate landmarks. MDM (Trigeorgis et al. 2016) adopts pow-
erful CNN-based features and RNN-based memory units to
perform coarse-to-fine shape refinement. The optimization
target of the shape regression methods is to directly mini-
mize the residuals between the predicted and ground truth
shapes in a cascaded manner. That is to say, accurate ground
truth landmarks are essential to their training process.

However, obtaining accurate facial landmarks for a face
image may be a serious issue. Currently, there are two kinds
of landmark annotation methods (Sagonas et al. 2013b):
manual and semi-automatic. Manual annotation of facial im-
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Figure 1: (a) The example of the inaccurate annotated land-
marks in the 300-W database. (b) The annotated point with a
red cross is inaccurate, which is significantly deviated from
the ground truth (the red point). (c) The example of a BLD
is assigned to the red cross point. Higher intensity (brighter)
in the BLD means stronger relevance. Better view in color.

ages requires trained human experts. The heavy annotation
workload often makes people tired, which will cause sub-
jective deviations in the manual annotations. Moreover, it is
usually difficult for the annotators to mark the landmarks for
the facial parts with occlusions, large illumination or pose
variations. Semi-automatic annotation methods usually con-
tain three steps (Sagonas et al. 2013b): first of all, use the
existing annotated facial image subsets to train an Active
Orientation Models (AOM), and then fit the trained AOM
to the non-annotated facial image subsets. The fitting results
are manually classified into the “Bad” and “Good” subsets.
A new AOM for the non-annotated subsets is trained from
the “Good” fitting subsets, and the remaining images with
the “Bad” results are re-fit using the re-trained AOM un-
til convergence. However, semi-automatic methods still can
not completely avoid the subjective errors of manual clas-
sification. Moreover, it may introduce errors caused by the
AOM. In short, either manual or semi-automatic, the land-
mark annotation methods cannot avoid inaccurate points that
are significantly deviated from the ground truth. For exam-
ple, Fig. 1 shows a typical facial image with 68 annotated
landmarks from the 300-W (Sagonas et al. 2013a) database.
The green points are the manually annotated landmarks from
the dataset. A close observation of the enlarged left eye patch
(Fig. 1(b)) reveals that the original landmark for the eye cor-
ner (the point with a red cross) is actually significantly de-
viated from the ground truth (the red point). Such case is
unfortunately very common in the current datasets. How-
ever, most existing facial landmark detection algorithms pay
little attention to this issue, which might cause serious per-
formance deterioration.

Based on the above observation, we propose a soft facial
landmark detection method in this paper. As shown in Fig.
1, without further information, we can only assume that the
annotated point with the red cross is the most relevant la-
bel to the ground truth red point. Meanwhile, the neighbor-
ing points around the red cross point can also be regarded
as candidates for the ground truth. Of course, with the ba-
sic assumption that the ground truth point should not be far
away from the annotated point, the possibility of the neigh-

boring point being the ground truth will decrease with the
increase of the distance to the annotated point. This will
create a data structure matching a recently proposed ma-
chine learning paradigm called Label Distribution Learning
(LDL) (Geng 2016). The label distribution covers a certain
number of labels, each label has its own description degree,
representing the degree to which each label describes the in-
stance. In this paper, a label distribution is assigned to each
annotated landmark. The label in the label distribution refers
to the candidate point for the ground truth landmark, and the
corresponding description degree is explained as the degree
to which the point can describe the ground truth landmark.
The description degree of a point fades away when the Eu-
clidean distance between this point and the annotated land-
mark increases. In the two-dimensional image space, the de-
scription degrees of all possible points form a bivariate prob-
ability distribution, which is called bivariate label distribu-
tion (BLD). As shown in Fig. 1, the example of a BLD can
be seen in (c), which is generated from the red cross point
in the image patch (b). If we crop a patch centered at the red
cross point, all the pixels in the patch form the label space.
Then, the BLD assigned to the red cross point is generated
via a bivariate Gaussian distribution centered at the red cross
point. Higher intensity in Fig. 1(c) means higher possibility
of being the ground truth. In this way, we obtain a soft facial
landmark covering a small neighborhood around the original
annotation. As long as the ground truth landmarks are not
far away from the annotated points, the BLDs assigned to
the annotated points can cover the likelihoods of the ground
truth landmarks, which alleviates the effects of the inaccu-
rate annotated landmarks. After generating a BLD for each
landmark, our proposed method firstly learns the mappings
from an image patch to the BLD of each landmark, and then
the predicted BLDs are used in a deformable model fitting
process to obtain the final predicted facial shape.

The rest of this paper is organized as follows. First, prior
works on the LDL and the CLM framework are reviewed.
Second, Soft Facial Landmark Detection by LDL is pro-
posed. After that, the experimental results are reported. Fi-
nally, a conclusion and future work are drawn.

Related Work
Label Distribution Learning
Label Distribution Learning (LDL) (Geng 2016) is a novel
learning paradigm, which mainly focuses on the ambigu-
ity at the label side. The label distribution covers a certain
number of labels, each label has its own description degree,
representing the degree to which each label describes the in-
stance. The description degrees of all the labels sum up to 1.
LDL is a more general learning framework which includes
both single-label and multi-label learning (Tsoumakas and
Katakis 2006) as its special cases. LDL has been success-
fully applied to many real applications, such as age estima-
tion (Geng, Yin, and Zhou 2013), facial expression recog-
nition (Zhou, Xue, and Geng 2015) and action detection in
videos (Geng and Ling 2017). In this paper, a bivariate label
distribution (BLD) is assigned to each landmark, modeling
the likelihoods of the neighboring points.
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Figure 2: Overview of our Multi-scale Cascaded BLD Regression (MCBR). White points are the currently estimated shapes.
Green points are the annotated shapes. The blue rectangles are the image patches centered at two selected example white
landmarks. Their BLDs are on the right-side of each image. Higher intensity (brighter) means stronger relevance. Better view
in color.

Constrained Local Model
Deformable model fitting is often performed in the Con-
strained Local Model (CLM) framework (Cristinacce and
Cootes 2008). More specifically, the CLM framework is
mainly composed of three parts: a point distribution model
(PDM), local patch experts and the deformable model fitting
approach.

Point Distribution Model Point Distribution Model
(PDM) (Cootes et al. 1995) is a typical parameterized shape
model, which applies PCA to obtain a linear approxima-
tion about the shape variations (e.g., facial expressions, head
poses). In order to place a shape in the image frame, the PCA
model is composed with a 2D global similarity transform
(translation t, in-plane rotationR and scale s):

xl = sR(xl + Φlq) + t. (1)
The parameters describing the PDM is denoted as p =
{s,R, t, q}, where q is the shape variation parameter vector.
xl denotes the mean location of the l-th facial landmark, and
Φl denotes the related sub-matrix of the shape eigenvectors
Φ. Generally, assume the shape variation parameters follow
a Gaussian distribution, and the global similarity transform
parameters have a uniform prior, then PDM parameters have
the following prior (Saragih, Lucey, and Cohn 2011):

fN (q; 0,Λ) =
1√

2πΛ
exp(− q2

2Λ2
),

p(p) ∝ fN (q; 0,Λ),

(2)

where Λ is a diagonal matrix containing the eigenvalues as-
sociated to the shape eigenvectors.

Local Patch Experts Local patch experts are a very im-
portant part of the CLM framework. For the l-th landmark,
a local patch expert evaluates the probability of the land-
mark being aligned at point y, i.e., p(gl = 1|y), where
gl ∈ {−1, 1} is a variable denoting whether l-th landmark is
misaligned or aligned at point y. There have been a number
of different methods proposed as local patch experts, e.g.,
Logistic Regression (LR) (Saragih, Lucey, and Cohn 2011),

Minimum Output Sum of Squared Errors (MOSSE) filters
(Bolme et al. 2010).

Deformable Model Fitting The goal of deformable
model fitting is to register a parameterized shape model
(e.g., PDM) to a face image I such that landmarks recon-
structed by the model is as close to the consistent locations in
the image as possible (Saragih, Lucey, and Cohn 2011). Fit-
ting process can be viewed as a search for the model param-
eters p, that jointly maximizes the probability of all land-
marks being well aligned, with the regularizations over p.
Assuming the alignments for each landmark (L landmarks
totally) are conditionally independent, a Maximum A Poste-
rior (MAP) estimation function of p is:

p(p|{gl = 1}Ll=1, I) ∝ p(p|Λ)

L∏
l=1

p(gl = 1|xl, I,p), (3)

This can be solved using various methods, and the most pop-
ular one is the RLMS approach proposed in (Saragih, Lucey,
and Cohn 2011):

∆p = −(ρΛ̃−1 + JTJ)−1(ρΛ̃−1p− JTv),

p∗ = p+ ∆p,
(4)

where J = [J1; ...;JL] is the Jacobian of PDM, v =
[v1; ...;vL] is the concatenation of the mean shift vectors of
each landmark:

vl = (
∑
y∈Ψl

p(gl = 1|y, I)fN (xl;y, ρE)∑
z∈Ψl

p(gl = 1|z, I)fN (xl; z, ρE)
y)− xl,

(5)
where ρ is a free parameter denoting the variance of the PCA
reconstructed noise, E denotes the identity matrix, xl is the
currently estimated position of the l-th landmark, Ψl de-
notes all integer pixels in the l-th cropped image patch cen-
tered at xl. For a detailed derivation, the interested reader
is referred to (Saragih, Lucey, and Cohn 2011). Then, the
mean shifts are calculated and the update of the PDM pa-
rameter ∆p is computed iteratively until convergence.
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Soft Facial Landmark Detection by LDL
Given a face Image I , the purpose of facial landmark de-
tection is to estimate a shape s, which is as close as possi-
ble to the ground truth shape s∗. Formally, a 2D face shape
s = [x1; ...;xL]T consists of L facial landmarks, where
xl = [xl, yl] denotes the coordinate of the l-th landmark.

Multi-scale Cascaded BLD Regression
In this paper, we propose an architecture named Multi-
scale Cascaded BLD Regression (MCBR), as illustrated in
Fig. 2. Given a facial image, our method starts from a
low resolution image with an initial estimated shape s0 =
[x0

1, ...,x
0
L]T , to recover the ground truth shapes s∗ progres-

sively. In our implementation, we first conduct the BLD re-
gression at the low resolution layer. At each later layer, we
double the image resolution and conduct the BLD regres-
sion stage by stage (e.g., we perform the BLD regression
twice in the later experiments), each stage with an updated
shape. As shown in Fig. 2, the cropped image patch (the blue
rectangle) of the same size for the annotated landmark at the
lower resolution face covers more context information and
constrains the BLD in a larger search region. On the other
hand, the cropped image patch of the same size at the higher
resolution face then constrains the BLD within a small re-
gion, which leads to finer adjustments. Thus, adopting the
multi-scale strategy can accelerate the shape convergence,
meanwhile avoid the trapping in local optimum.

Our training is conducted at m different resolution layers,
each layer has n stages. Therefore, there are totally T =
m×n stages in our training. The optimization target of each
stage is to learn the mappings from an image patch to the
BLD of each landmark independently. For example, during
the t-th training stage, firstly, we crop an image patch (the
blue rectangle in Fig. 2) centered at each currently estimated
landmark xt (the white point). Then, based on the annotated
shapes ŝ (the green points), we can obtain the BLD for each
image patch. The mapping parameters Θt are optimized to
generate a predicted BLD most similar to the true BLD.

During the test process, given an unseen image, we start
from a coarse initial shape s0, and crop the image patch
centered at the currently estimated shape. Then we use the
trained mapping parameter matrix Θ at this stage to obtain
the predicted BLD for each image patch. These predicted
BLDs are used in a deformable model fitting process to ob-
tain the refined predicted facial shape, which will be used as
an input shape for the next stage.

Training of Our Model
Bivariate Label Distribution Initialization At the t-th
training stage of the Multi-scale Cascaded BLD Regression
(MCBR), the first step is to initialize the BLD for each land-
mark independently. Assume the currently estimated shape
is st = [xt

1, ...,x
t
L]T . If we crop an image patch centered at

the l-th estimated landmark xt
l , then, the label space Yl =

{y1,y2, ...,yC} is obtained for the l-th landmark, where yc
represents the c-th pixel in the cropped image patch, i.e., a
label in the label space, C is the number of all pixels in the
patch. The BLD at the t-th stage for the l-th landmark of the

image I is defined as a vector dtl,I , which contains the de-
scription degrees of all labels yc in Yl. Suppose the descrip-
tion degree of a point yc in the cropped space to the image
I is represented by dtl,I,yc

, and the l-th annotated point is
x̂l, then, dtl,I,x̂l

should be the highest among all possible
pixels in the l-th cropped label space. The description de-
gree dtl,I,yc

decreases with the increase of the distance be-
tween yc and x̂l, i.e., the farther a point yc is away from
x̂l, the lower dtl,I,yc

is. The desired bivariate facial land-
mark label distribution should satisfy two criteria. First is
dtl,I,yc

∈ [0, 1], and the second is
∑

yc∈Yl
dtl,I,yc

= 1.
In order to generate a reasonable BLD for the l-th facial

landmark of the image I , one way is to use a discretized
bivariate Gaussian distributionN (yc; x̂l,Σ) centered at the
l-th annotated landmark x̂l, i.e.,

dtl,I,yc
=

1

2π
√
|Σ|Z

exp(−1

2
(yc − x̂l)

TΣ−1(yc − x̂l)),

(6)
where Σ is a 2 × 2 covariance matrix, Z is a normalization
factor that makes sure

∑
yc
dtl,I,yc

= 1.
Fig. 2 shows some examples of the BLDs. Blue rectan-

gles are the cropped image patches centered at the currently
estimated landmarks (the white points). Then in the cropped
label space, the annotated landmark (the green point) has
the highest description degree, neighboring pixels around
the annotated landmark have a lower degree. The description
degrees of the points far away from the annotated landmark
are nearly zero, which displays black color in the BLD of
Fig. 2.

After generating the BLD for each landmark, the training
set at the t-th stage becomes Gt = {Gt

1, G
t
2, ..., G

t
L}, where

Gt
l = {(I1,dtl,I1), ..., (IN ,d

t
l,IN

)} is the training set for the
l-th landmark, N is the number of the total training images.

Bivariate Label Distribution Learning The description
degree dl,I,y can be represented by the form of conditional
probability, i.e., dl,I,y = pl(y|I). It can be explained as
that the probability of y equals to its description degree. As-
sume pl(y|I) to be a parametric model pl(y|I; Θl), where
Θl ∈ RD×C is the parametric matrix for the l-th landmark,
D is the dimensions of image features extracted from the
cropped patch, and C is the number of all pixels in the
cropped label space Yl. Our target is the optimization of
the parameter matrix Θl. This problem matches the Label
Distribution Learning (Geng 2016). There are many criteria
to measure the similarity between the ground truth and pre-
dicted distributions. If Kullback-Leibler (KL) divergence is
used to measure the distance between the true and predicted
BLD, then, the best parameter Θt

l at the t-th stage is deter-
mined by

Θt
l = arg min

Θ

∑
i,c

(dtl,Ii,yc
ln(

dtl,Ii,yc

pl(yc|Ii; Θl)
))

= arg max
Θ

∑
i,c

(dtl,Ii,yc
ln(pl(yc|Ii; Θl))).

(7)
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As to the form of pl(yc|Ii; Θl), similar to (Geng 2016),
we use the maximum entropy model to embody the mapping
from the image patch to the corresponding BLD:

pl(yc|Ii; Θl) =
1

Γi
exp(

∑
r

Θc,rϕ
r
i ), (8)

where Γi =
∑

c exp(
∑

r Θc,rϕ
r
i ) is the normalization fac-

tor, ϕr
i is the r-th element in the image features ϕi, Θc,r is

an element in Θl corresponding to the label yc and the r-th
image feature. For the image features ϕ, we apply multi-
scale HOG features to the cropped image patches centered
at each currently estimated landmark, and then concatenate
all the features into a long vector.

Substituting Equation (8) to (7) yields:

Θt
l = arg max

Θ

∑
i,c

dtl,Ii,yc

∑
r

Θc,rϕ
r
i

−
∑
i

ln
∑
c

exp(
∑
r

Θc,rϕ
r
i ).

(9)

The limited-memory quasi-Newton method L-BFGS (Liu
and Nocedal 1989) is used to optimize Equation (9). After
obtaining the optimal parameter Θl, given an unseen image
I , we can have the predicted BLDs in the cropped patch
for each landmark by pl(y|I; Θl), which are used in a de-
formable fitting process to obtain the predicted facial shapes.

Test of Our Model
At the t-th test stage, our target is to use the predicted BLD
for each estimated landmark to refine the currently estimated
shapes, with the help of the deformable model fitting ap-
proach. For an unseen image I , first, we cropped the image
patch Ψl centered at each currently estimated landmark xt

l ,
then, we extracted image features from the patch, and use
pl(y|I; Θt

l) to predict the BLD for the l-th landmark. The
predicted BLDs are used to calculate the mean shifts of each
landmark, i.e., substitute pl(y|I; Θt

l) to Equation (5) yields

vl = (
∑
y∈Ψl

pl(y|I; Θt
l)fN (xt

l ;y, ρE)∑
z∈Ψl

pl(z|I; Θt
l)fN (xt

l ; z, ρE)
y)− xt

l .

(10)
Using Equation (8), (10) and (4) iteratively to update p

until convergence. Then, we have the updated PDM parame-
ter pt = pt−1 +∆p at the t-th stage, simultaneously obtain-
ing refined estimated shape st = [xt

1, ...,x
t
L] using Equa-

tion (1). st is then sent to the next cascaded stage, until t is
not less than T .

Experiments
There are three parts in our experiments. The first experi-
ment compares the accuracy of our proposed MCBR method
with respect to other baselines based on the CLM frame-
work. Second, we will test the performance of our proposed
MCBR method, compared with the state-of-the-art methods.
Finally, we will test the robustness against the increase of the
annotated landmark noise.
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Figure 3: Cumulative Error Distributions over 20 landmarks
on the BioID database (Jesorsky, Kirchberg, and Frischholz
2001).

Comparison with CLMs
We perform an experiment to see how our proposed MCBR
method outperforms other CLM methods. The experiment
is performed on the BioID database (Jesorsky, Kirchberg,
and Frischholz 2001), consisting of 1521 frontal and close
to frontal images with 20 landmarks. 1000 images are ran-
domly selected for the training and the rest 521 images
are used for the test. In this experiment, two effective and
popular patch experts are evaluated: MOSSE (Bolme et al.
2010) and MCCF (Galoogahi, Sim, and Lucey 2013) filters.
During the training of the MOSSE and MCCF filters, each
aligned patch sample is represented using DSIFT, and then
requires a normalization step, and finally it is multiplied by a
cosine window. For our proposed MCBR method, the num-
ber of iterations in L-BFGS is set to 60. All methods are
conducted at m = 3 resolution layers (e.g., 64, 128, 256),
and each layer contains n = 1 stage. For all methods, the
size of local patches and desired output is set to 21 × 21,
and the standard deviation in the desired output is set to 2.
The deformable model fitting approach that best evaluates
the local patch experts is the method that relies the most on
the output of the patch experts, i.e., the Active Shape Model
(ASM) (Cootes et al. 1995). The other fitting approach used
is the RLMS (Saragih, Lucey, and Cohn 2011) method. The
average run time for our proposed MCBR method on an In-
tel Core i7 2.20-GHz machine is 140 ms per image with 20
landmarks.

The Cumulative Error Distributions (CED) for this ex-
periment is presented in Fig. 3, which shows the percent-
age of faces that achieved a given inter-pupil distance nor-
malized landmark error (Ren et al. 2014) amount. The pre-
sented Initial curve represents the initial estimate, provided
by the mean shape. This experiment shows that our proposed
MCBR method always outperforms the others when using
the same fitting approach, and maximum performance can
be achieved by using our proposed MCBR method and the
RLMS fitting approach.

Comparison with state of the art
Dataset Evaluations are conducted on the 300-W dataset
(Sagonas et al. 2013a), which is a well known database with
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Table 1: The inter-pupil distance normalized landmark error
(%) of the compared methods on the 300-W (Sagonas et al.
2013a) dataset.

Method Full Set Common
SubSet

Challenging
SubSet

Zhu et al. 10.20 8.22 18.33
DRMF 9.22 6.65 19.79

MOSSE+RLMS * 8.48 6.89 15.00
GN-DPM - 5.78 -

RCPR 8.35 6.18 17.26
CFAN 7.69 5.50 16.78
ESR 7.58 5.28 17.00

MCCF+RLMS * 7.39 5.99 13.11
SDM * 6.67 5.39 11.93

LBF Fast * 6.61 5.24 12.25
MDM * 6.35 5.23 10.95

MCBR (ours) 6.33 5.07 11.50

68 annotated facial points for robustness evaluation of facial
landmark detection algorithms. Following the same dataset
configuration as in (Ren et al. 2014) , our training set con-
sists of the training set of LFPW (Belhumeur et al. 2013)
and Helen (Le et al. 2012), the whole AFW set (Zhu and
Ramanan 2012), totally 3148 training images. Our test set
consists of the test set of LFPW and Helen, and the whole
IBUG set, totally 689 test images.

Implementation Details In this experiment, we conduct
our proposed MCBR method at m = 3 different resolution
layers, each layer contains n = 2 stages. The standard devi-
ation in Equation (6) to compute the BLDs is set to 2. And
the size of cropped patch is set to 31 × 31. The number of
iterations in L-BFGS is set to 66.

To provide a better initial shape for an image, we di-
vide the training set into three view-specific subsets, i.e., left
(−30◦,−0◦), frontal (−15◦, 15◦) and right (0◦, 30◦). The
overlaps between adjacent views are considered for fault tol-
erance. We decide which view range a face image belongs to
by the distance between the pose of this image and the cen-
tral poses of the three subsets, i.e., −15◦, 0◦, 15◦ 1. Then,
we assign the mean shape of the corresponding view sub-
sets as an initial shape for an image during the test phase.
The average run time for our proposed MCBR method us-
ing unoptimized Python implementations on an Intel Core i7
2.20-GHz machine is 800 ms per image with 68 landmarks.

During training, we use data augmentation to enlarge the
training data. For each training image, we randomly select
the shape of other training images in the same view-specific
subset as the initial shape four times. In this way, we gener-
ate 4 perturbed initial shapes for each training image. During
test, we only use the view-specific mean shape as the initial
shape without multiple initializations. Note that we only use
view-specific subsets to provide better initial shapes, rather
than training our method separately in each view.

1We apply the open source pose estimator to the 300-W dataset:
https://github.com/mpatacchiola/deepgaze

Baselines We choose several existing state-of-the-art fa-
cial landmark detection algorithms for comparison, includ-
ing Zhu et al. (Zhu and Ramanan 2012), DMRF (Asthana
et al. 2013), GN-DPM (Tzimiropoulos and Pantic 2014),
RCPR (Burgos-Artizzu, Perona, and Dollár 2013), CFAN
(Zhang et al. 2014), ESR (Cao et al. 2014), SDM (Xiong
and De la Torre 2013), LBF Fast (Ren et al. 2014) and MDM
(Trigeorgis et al. 2016). Also, we add two best CLM meth-
ods, i.e., MOSSE+RLMS and MCCF+RLMS. The mean
landmark errors (Ren et al. 2014) of different methods are
reported in Table 1. The results of methods marked with *
are obtained by our implementation, and others are directly
obtained from the corresponding papers. It is worth noting
that we only sample initial shapes for each training image 4
times to augment the training set, which is far less than the
amount of training data for other trained models mentioned
in their paper. MOSSE+RLMS, MCCF+RLMS, SDM and
LBF Fast are all conducted in the Multi-scale Cascaded
manner. The size of local patches in MOSSE/MCCF+RLMS
is set to 31 × 31. SDM uses the same HOG descriptors as
ours. For LBF Fast, we set the number of trees at each stage
to 68× 6 = 408, and each tree depth is set to 5. The radiuses
of two stages at each resolution layer are set to [0.3, 0.2],
and the number of the randomly sampled candidate features
in the local region is set to 500. For MDM, we set all param-
eters the same as described in their paper. Bounding boxes
provided by 300-W set are used for all implemented meth-
ods. Initial shapes for the test images are set the same for all
implemented methods.

Results We compare our method with the baseline meth-
ods in Table 1. The MOSSE/MCCF+RLMS method per-
forms worst in all implemented methods. MDM adopts the
powerful CNN to learn the data-driven features and RNN
to impose the memory constraint on the descent directions,
so it performs better than LBF Fast and SDM on the Full
Set. LBF Fast performs better than SDM, which benefits
from its highly discriminative local binary features. While
all baseline methods do not consider the issue of the inaccu-
rate annotated landmarks, our method uses soft landmarks,
i.e., BLD, to deal with the landmark noise, and thus achieve
the best performance on the Full Set.

To further analyze, as the previous work (Ren et al. 2014)
did, we split the full test set into two parts. First is the 554
face images from the test set of LFPW and Helen, which is
called Common Subset. Second is the 135 face images from
the whole IBUG, which is called Challenging Subset. It is
worth noticing that IBUG dataset is extremely challenging
as its face images have large variations in head poses, facial
expression, illumination, etc. For the Common Subset, our
method shows a greater superiority to the baseline methods.
For the Challenging Subset, since MDM uses the end-to-
end CNN features in the shape regression, which is much
effective than the hand-crafted features for the quite chal-
lenging cases, it performs better than our method. However,
our method still performs better than other compared meth-
ods.
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Figure 4: Results on the 300-W dataset (Sagonas et al. 2013a) when increasing the inaccurate annotated landmark noise.

Robustness against annotation noise
Our model appears robust against the increase of the in-
accurate facial landmarks annotations since it associates a
BLD for each landmark, which considers the neighboring
pixels around the originally annotated landmark. To further
demonstrate this, we design an experiment that gradually in-
creases the annotated landmarks noise in the training set. In
order to observe the performance of the algorithm, we keep
the test set unchanged while the noise of the training land-
marks gradually increases.

For the training images in the 300-W database, we im-
pose annotation noise on the original landmarks. Annota-
tion noise can be modeled as Gaussian distribution ε ∼
N (ε; 0,ρ2), which can be explained as the deviation pixel
distance from the original landmark. ρ2 denotes the variance
of the noise, which reflects the inaccuracy of the annotated
landmarks. In our experiments, we conduct 5 different vari-
ances of the noise, i.e., ρ2 = [0, 1, 3, 5, 7]. We choose five
compared methods from Table 1, the top three baseline al-
gorithms, i.e., SDM (Xiong and De la Torre 2013), LBF Fast
(Ren et al. 2014) and MDM (Trigeorgis et al. 2016), and two
CLM method, i.e., MOSSE/MCCF+RLMS. The implemen-
tation details of all algorithms are set to the same as men-
tioned above.

The performances of different algorithms against the in-
crease of the landmark noise are shown in Fig. 4. Our model
deals with facial landmark detection well not only in the
value of the averaged landmark error, but also the robustness
against more and more training annotated landmark noise.
Generally speaking, for the Full Set in Fig. 4(a), although
MOSSE/MCCF+RLMS does not seem to be sensitive to the
landmark noise, their averaged landmark error is too high,
which makes no sense. SDM deteriorates quickly with the
increase of the inaccurate landmark noise. Compared with
SDM, LBF Fast considers the shape constraints between the
landmarks, the curve of it shows a relatively gentler ten-
dency. Since MDM adopts effective convolutional features,
it starts from a lower mean landmark error than LBF Fast.
However, the data-driven MDM deteriorates faster than LBF
Fast, revealing that the performance of MDM is sensitive to
the landmark noise. Furthermore, our method deteriorates
most slowly with the increase of the landmark noise.

For the Common Subset shown in Fig. 4(b), our method

shows the most slowest rising trend among all compared
baselines against the increased landmark noise. For the
Challenging SubSet shown in Fig. 4(c), since hand-crafted
features are sub-optimal compared with convolutional fea-
tures, our method starts from a higher position than MDM.
However, with the increased landmark noise, our method
gradually performs better than MDM. Note that there exist
a phenomenon that some methods achieve a slightly better
performance when increasing the landmark noise. For exam-
ple, in Fig. 4(c), our method shows a slight improvement in
the experiments of noise 1 than in noise 0. The reason might
be that the performances in the Challenging Subset are sen-
sitive to the initial shapes, and when increasing landmark
noise, the initial shapes calculated from the training set for
the test images also changed, which may cause experimental
random improvements.

In summary, performance curves of our method on the
different test subsets are rather stable than all compared
baselines, which validates the robustness of our algorithm
against the increased training landmark noise.

Conclusion and Future Work
This paper is motivated by the inaccurate manually anno-
tated facial landmarks. Towards this, we propose a soft facial
landmark detection algorithm by Label Distribution Learn-
ing. By associating a bivariate label distribution (BLD) to
each landmark of an image, we consider the neighboring
pixels around the original manually annotated landmark,
which can alleviate the effects of the inaccurate landmarks.
By minimizing the Kullback-Leibler (KL) divergence be-
tween the true and predicted BLD, we can obtain mapping
functions from an image patch to the BLD of each landmark,
which are used to generate the predicted BLDs for the land-
marks of unseen images. Then, these BLDs are used in a
deformable model fitting process to achieve the final facial
shape. Experimental results show that our proposed MCBR
method performs better than compared state-of-the-art al-
gorithms and appears more robust against the increase of
inaccurate landmark noise than compared baselines. As the
results of the Challenging Subset in Table 1 and Fig. 4(c)
shown, in the future work, we will adopt powerful end-to-
end features in our method to achieve greater performance.
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