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Abstract
Domain adaptation improves a target task by knowledge
transfer from a source domain with rich annotations. It is
not uncommon that “source-domain engineering” becomes a
cumbersome process in domain adaptation: the high-quality
source domains highly related to the target domain are hardly
available. Thus, weakly-supervised domain adaptation has
been introduced to address this difficulty, where we can toler-
ate the source domain with noises in labels, features, or both.
As such, for a particular target task, we simply collect the
source domain with coarse labeling or corrupted data. In this
paper, we try to address two entangled challenges of weakly-
supervised domain adaptation: sample noises of the source
domain and distribution shift across domains. To disentangle
these challenges, a Transferable Curriculum Learning (TCL)
approach is proposed to train the deep networks, guided by
a transferable curriculum informing which of the source ex-
amples are noiseless and transferable. The approach enhances
positive transfer from clean source examples to the target and
mitigates negative transfer of noisy source examples. A thor-
ough evaluation shows that our approach significantly outper-
forms the state-of-the-art on weakly-supervised domain adap-
tation tasks.

Introduction
Modern deep networks have pushed forward the boundary of
various machine perception tasks, at the expenses of large-
scale annotated training samples. The high cost of human
labeling effectively limits these approaches to many target
tasks with insufficient annotations. Thus, there is strong need
to leverage or reuse rich labeled data from a different but re-
lated source domain. Such a learning paradigm to establish
a discriminative model that reduces the underlying distribu-
tion shift between domains is known as domain adaptation
(Pan and Yang 2010).

Domain adaptation is an important research problem that
finds a wide range of application in machine learning (Pan
et al. 2011; Duan, Tsang, and Xu 2012; Zhang et al. 2013;
Wang and Schneider 2014), computer vision (Saenko et al.
2010; Gong et al. 2012; Hoffman et al. 2014) and natural
language processing (Collobert et al. 2011). A rich literature
has revealed that deep networks learn distributed represen-
tations that disentangle the explanatory factors of variations
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behind data which can reduce the domain discrepancy (Don-
ahue et al. 2014; Yosinski et al. 2014). In light of this, recent
deep domain adaptation approaches embed domain adapta-
tion modules into deep architectures to match feature dis-
tributions across domains, yielding evident performance im-
provement (Tzeng et al. 2014; Long et al. 2015; Ganin and
Lempitsky 2015; Tzeng et al. 2015; Long et al. 2016; 2017;
Tzeng et al. 2017).

Existing domain adaptation works assume that the source
domains are clean datasets with accurate annotations, free
of noises. However, this is an ideal scenario. In real domain
adaptation problems, we usually have no access to clean and
high-quality datasets, which are time consuming and expen-
sive to collect. It is even rarer that such high-quality datasets
can be relevant enough to serve as the source domain from
which we can leverage useful knowledge to our target task
of interest. In contract, we have to collect data from crowd-
sourcing platform or crawl from Internet or social media.
Such datasets are large-scale and to which we have easier
access, but are inevitably corrupted with noises.

clean source clean target feature noise label noiseclassifier

Standard DAMethod Proposed DAMethod

Figure 1: The technical challenge of weakly-supervised do-
main adaptation. The main idea of the proposed approach is
to undo the negative effect of both label and feature noises in
the process of distribution matching for domain adaptation.

Thus, it is meaningful to establish methods that can adapt
both the representation and classification models from noisy
source datasets to our target datasets. This more practical
scenario (Figure 1) is known as weakly-supervised domain
adaptation, which is under-explored compared to standard
domain adaptation. In practice, noises mainly present in the
two forms of label noise and feature noise. Label noise refers
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to incorrect labels of images, which may be possibly due to
errors in manual annotation, low-quality social tagging, la-
bel polysemy, or the bias of a crowd-sourcing system etc.
Feature noise refers to low-quality pixels of images, which
may come from blur, overlap, occlusion, or corruption etc.
Thus, weakly-supervised domain adaptation is more gen-
eral and challenging compared with standard domain adap-
tation, since the classification model tends to overfit on noisy
source data (Zhang et al. 2017), degrading its generalization
performance on the target domain. A direct application of
existing domain adaptation approaches to the new scenario
will simply match the target domain with the entire noisy
source domain, resulting in serious negative transfer.

This paper presents a Transferable Curriculum Learning
(TCL) approach to weakly-supervised domain adaptation,
extending from curriculum learning (Bengio et al. 2009) and
adversarial learning (Goodfellow et al. 2014). There are two
challenges of weakly-supervised domain adaptation: sample
noises of the source domain and distribution shift across do-
mains. TCL disentangles these challenges into two alternat-
ing optimization subproblems: 1) Learning with transferable
curriculum, which trains our learning model from easy to
hard examples and from transferable examples to untrans-
ferable examples; 2) Constructing the transferable curricu-
lum to quantify the transferability of source examples based
on their contributions to the target task. As such, the noisy
examples are often hard examples and will be selected out
and the irrelevant source examples will also be diminished in
model training. The final TCL algorithm alternates between
these two subproblems to progressively improve both the
transferable curriculum and the adaptation model, making
the model robust to noises and transferable to target tasks.
Experiments show that our method outperforms the state-of-
the-art for weakly-supervised domain adaptation problems.

Related Work
Domain adaptation (Pan and Yang 2010) aims to build learn-
ing machines that generalize across different but relevant
domains. Recent deep domain adaptation methods embed
some adaptation modules in deep networks by adding adap-
tation layers to match the high-order moments of distribu-
tions (Tzeng et al. 2014; Long et al. 2015; 2016; 2017), or by
exploiting a domain discriminator to distinguish the source
and target while learning deep features to confuse the dis-
criminator in an adversarial training paradigm (Ganin and
Lempitsky 2015; Tzeng et al. 2015; 2017; Pei et al. 2018;
Long et al. 2018). Although these methods have achieved
significant improvements, they all assume a clean source do-
main which is limited and expensive in many real-world ap-
plications. State-of-the-art domain adaptation methods may
suffer from negative transfer caused by noisy source data
in weakly-supervised domain adaptation, which will dete-
riorate the generalization power of networks trained on the
noisy source domain when applied to the target domain.

Learning discriminative models from datasets with noisy
labels is an active area of research. Zhang et al. (2017)
empirically demonstrated that noisy labels will be memo-
rized by DNNs which destroys their generalization capabil-
ity. One strategy focuses on modeling label noise and class

conditional label noise is modeled for binary classification
problems (Natarajan et al. 2013). The counterpart for multi-
class classification is considered, which introduces an ex-
tra noise layer to adapt network outputs to match the noisy
label distribution (Sukhbaatar et al. 2014). The noises can
be modeled better by learning from privileged information
(Vapnik and Izmailov 2015). More recently, a multi-task net-
work is proposed to jointly clean noisy annotations and clas-
sify images (Veit et al. 2017). Li et al. (2017) proposed a
distillation method, utilizing side information from a clean
dataset coupled with a knowledge graph. MentorNet is pro-
posed to supervise the training of base networks by learning
a data-driven curriculum and assigning appropriate weights
to different examples (Jiang et al. 2018). CleanNet is pro-
posed to provide knowledge of label noise with a fraction
of manually verified classes (Lee et al. 2018). Another type
of methods adjust the loss functions. A bootstrap technique
is proposed to alleviate the influence of corrupted labels by
augmenting the prediction objective with a notion of consis-
tency (Reed et al. 2014). A dimensionality-driven method is
proposed which combines the noisy labels and predicted la-
bels with a local intrinsic dimensionality weight (Ma et al.
2018). Different from these works, we focus on the prob-
lem of weakly-supervised domain adaptation, where distri-
bution shift between the source and target domains exists
along with noises in the source domain examples.

Weakly-supervised domain adaptation, where the source
data constitute noises and distribute dissimilarly to the tar-
get data, is an under-explored setting. Probabilistic graphi-
cal models are utilized to model the relationships between
images, labels and label noises and further integrated into a
deep learning system (Xiao et al. 2015). Zeng et al. (2014)
proposed a scene-specific pedestrian detector by transferring
knowledge from a clean dataset. They simply train the model
on the target domain of noisy data and thus the clean source
domain is needed as an auxiliary dataset. Different from
these works, this paper addresses the weakly-supervised do-
main adaptation problem where the source domain is noisy
in labels or features, and the target domain is fully unlabeled.
In this setting, the target domain cannot be trained separately
due to the lack of supervision. Since the source domain is
noisy, it is difficult to enable transfer of only noiseless and
relevant source examples.

The proposed Transferable Curriculum Learning (TCL)
approach is motivated by curriculum learning (Bengio et al.
2009) which organizes examples in a meaningful order to
promote convergence and optimization (Kumar, Packer, and
Koller 2010). It prioritizes easier examples of smaller loss by
assigning higher weights to them. Different from all previ-
ous works, this paper designs a transferable curriculum that
simultaneously prioritizes easier and transferable examples.

Preliminary on Curriculum Learning
We review the formulation of curriculum learning based on
the approach in (Kumar, Packer, and Koller 2010) and (Jiang
et al. 2015). Consider a classification task with the training
set D = {(xi,yi}ni=1 of n examples, where xi denotes the
feature vector of the ith example and yi is the associated
label over m classes. Denote by f(xi;θ) a discriminative
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function of a deep network called label classifier, parameter-
ized by θ. Further, let L(yi, f(xi;θ)) be the loss to quantify
the goodness of fit. And a latent weight variable w ∈ Rn is
introduced in curriculum learning to optimize the objective:

min
θ,w

E (θ,w) =
1

n

n∑
i=1

wiL (yi, f (xi;θ)) +R (w; γ) (1)

where wi ∈ [0, 1] is a weight to quantify the contribution
for the i-th example. The function R defines a curriculum,
parameterized by γ. For notation brevity, denote the loss
L (yi, f (xi;θ)) = `i.

An alternating minimization algorithm is widely used to
solve the above objective (Kumar, Packer, and Koller 2010;
Jiang et al. 2015), a procedure where the objective is alter-
natively minimized over θ and w, one at a time with the
other fixed. When weight w is fixed, E (θ,w) is a weighted
loss minimized by stochastic gradient descent. When θ is
fixed, we can calculate as wk = argminw E

(
θk,wk−1

)
using the most recently updated θk at epoch k. A classic cur-
riculum in (Kumar, Packer, and Koller 2010) is R (w; γ) =
−γ‖w‖1, which yields the optimal weight w as follows,

w∗
i = 1 (`i 6 γ) , i = 1, . . . , n, (2)

where 1 is the indicator function. This update rule interprets
the predefined curriculum introduced in (Kumar, Packer, and
Koller 2010), known as self-paced learning. First, when up-
dating w with a fixed model θ, a sample of smaller loss than
the threshold γ will be selected as “easy” samples into train-
ing (w∗

i = 1). Second, when updating θ with a fixed weight
w, the classification model is trained only on the selected
“easy” samples. The hyper-parameter γ > 0 controls the
learning pace and implies the “age” of the model. The model
f(x;θ) can grow up during training, which well imitates the
behavior of human learning.

The predefined curriculum specifies a particular sequence
of samples with their corresponding weights to be used for
self-paced training, where the weights specify the timing and
attention to learn each sample. Recent work discovered sev-
eral curriculums and verified them in many real applications
(Jiang et al. 2014; Ma et al. 2017; Fan et al. 2017).

It is worth noting that, when the test data follows simi-
lar distribution as the training data, existing curriculum will
steadily improve learning. However, when the test data has a
distribution shift from the training data, the existing curricu-
lum will be less specified. Due to the distribution shift, the
test data will be substantially dissimilar to the training data.
That is, even the training samples with smaller loss will be
noise-free, they are not necessarily relevant to the learning
task of the test data. Thus, there is a need to learn a transfer-
able curriculum able to select samples useful for test data.

Transferable Curriculum Learning
This paper addresses weakly-supervised domain adaptation,
an under-explored domain adaptation scenario in which the
target domain is fully unlabeled and the source domain is
partially corrupted with noises in either labels or features.
We consider this scenario meaningful and more applicable in

practice, since we have much easier access to noisy datasets,
e.g., images crawled from social media and search engines
are partially annotated with noisy labels and even corrupted
with noisy pixels.

The weakly-supervised domain adaptation scenario con-
stitutes a labeled source domain Ds = {(xs

i ,y
s
i )}

ns
i=1 and

an unlabeled target domain Dt = {xt
i}

nt
i=1, while the source

and target domains follow different distributions p 6= q. Note
in particular that, we relax the assumption of clean data in
standard domain adaptation to that the source domain may
be corrupted with noises in either labels or features. Our
goal is to train a deep network with a transferable curricu-
lum to eliminate the negative influence of noisy source sam-
ples and enable positive transfer of noiseless source samples.
The model should also close the domain gap and bound the
target risk E(x,y)∼q [Gy (Gf (x)) 6= y], by learning transfer-
able features f = Gf (x) and a robust classifier y = Gy (f)
across noisy source domain and clean target domain.

We may consider tackling the weakly-supervised domain
adaptation problem by the curriculum learning introduced
in the previous section. In curriculum learning, a curriculum
can be specified to select those source samples with smaller
losses into training, thus eliminating the negative influence
of noisy source samples. However, things become complex
when the target domain follows a different distribution from
the source domain. First, due to the distribution shift across
domains, a classification model trained on the source domain
cannot generalize to the target domain. Second, the sample
noises introduce difficulty in identifying which fraction of
the source samples are transferable to the target task. Thus,
the two challenges in distribution shift and sample noises
are entangled, making the existing curriculum learning and
domain adaptation approaches infeasible.

We present a new transferable curriculum learning (TCL)
approach to disentangle the challenges behind the sample
noises and distribution shift. TCL is an alternating optimiza-
tion framework comprised of two dependent subproblems:
one is learning with a given transferable curriculum and the
other is constructing the desirable transferable curriculum.

Learning with Transferable Curriculum
The focus of the first subproblem is learning a domain adap-
tation model robust to both sample noises and distribution
shift, given the transferable curriculum represented by the
weighting scheme w(xs

1), . . . , w(x
s
n). Note that how to con-

struct the curriculum will be described in the next section.
Similar to standard curriculum learning (Kumar, Packer, and
Koller 2010; Jiang et al. 2015), we will employ this curricu-
lum to train the model from easy samples to hard samples.
But unlike standard curriculum learning, we further enforce
the model to learn progressively from transferable samples
to untransferable samples. Thus, the transferable curriculum
constructed in the second subproblem should tell whether a
sample is easy and transferable.

Furthermore, the noises in labels and features will intro-
duce a general dataset bias, which cannot be undone without
exploiting additional data (Ren et al. 2018). We thus believe
that the exploitation of unlabeled target examples by semi-
supervised learning is also indispensable. We make use of

4953



fe
at
ur
e

cl
as
s
la
be
l𝑦"

do
m
ai
n
la
be
l 𝑑
$

input

GRL

W
ei
gh
tw

feature extractor Gf

label classifier Gy

domain discriminator Gd

tr
an
sf
er
ab
le

cu
rr
ic
ul
um

x

f

entropy Hy

cross-
entropy Ly

cross-
entropy Ld

Figure 2: The proposed architecture to learn a transferable curriculum for weakly-supervised domain adaptation. In the diagram,
f is the deep feature extracted by a feature extractor Gf , ŷ is the class label predicted by a label classifier Gy , and d̂ is the
domain label predicted by a domain discriminator Gd; The corresponding losses are Ly , Ld and Hy , and GRL is the Gradient
Reversal Layer introduced in (Ganin and Lempitsky 2015) for domain adversarial training. In particular, w is a binary weighting
scheme for the transferable curriculum, indicating the selection and timing of each example into training. Best viewed in color.

the entropy minimization principle (Grandvalet and Bengio
2005). Letting ŷt

j = Gy(Gf (x
t
j)), the entropy loss to quan-

tify the uncertainty of a target example’s label predictions is
Hy

(
Gy

(
Gf

(
xt
j

)))
= −

∑m
c=1 ŷ

t
j,c log ŷ

t
j,c. Integrating the

entropy loss to the curriculum learning in Eq. (1), we obtain

EGy
=

1

ns

ns∑
i=1

w(xs
i )Ly (y

s
i , Gy (Gf (x

s
i )))

+
1

nt

nt∑
j=1

Hy

(
Gy

(
Gf

(
xt
j

)))
,

(3)

where Ly is the cross-entropy loss, w(xs
i ) is the weight in

the curriculum that informs whether a source example xs
i is

noiseless and transferable. Note that given w(xs
i ), the cur-

riculum regularizer R (w; γ) = −γ‖w‖1 is not involved in
training. The model parameters θ are left out for clarify.

Another technical problem of weakly-supervised domain
adaptation is the minimization of distribution shift between
the source and target domains. To address this, we use do-
main adversarial learning (Ganin and Lempitsky 2015) to
learn transferable features f in a two-player minimax game:
the first player is a domain discriminator Gd trained to dis-
tinguish the feature representations of the source domain
from the target domain, and the second player is a feature
extractor Gf trained simultaneously to deceive the domain
discriminator. Unlike previous work (Ganin and Lempitsky
2015) aligning the entire source domain to the target domain,
we only align the target samples with the transferable source
samples indicated by the curriculum w(xs

1), . . . , w(x
s
n).

This leads to a novel domain discriminator trained by cur-
riculum learning for weakly-supervised domain adaptation:

EGd
= − 1

ns

ns∑
i=1

w (xs
i ) log (Gd (Gf (x

s
i )))

− 1

nt

nt∑
j=1

log
(
1−Gd

(
Gf

(
xt
j

)))
.

(4)

The curriculum learning enables a progressive growth of the
domain discriminator, making it robust to the sample noises
from the source domain. In return, the domain discriminator
will not align the noisy source samples to the target domain,
thus mitigating their negative effects to generalization.

The proposed architecture for learning with transferable
curriculum is shown in Figure 2. By weighting the losses of
the source classifier Gy and the domain discriminator Gd

by the transferable curriculum w(xs
i ), and combining the

entropy minimization criterion, we achieve a new form of
domain-adversarial learning. Letting θf , θy , and θd be the
parameters of Gf , Gy , and Gd respectively, the objective
is trained by a minimax optimization procedure yielding a
saddle-point solution (θ̂f , θ̂y, θ̂d):

(θ̂f , θ̂y) = arg min
θf ,θy

EGy − EGd
,

(θ̂d) = argmin
θd

EGd
.

(5)

The simultaneous curriculum learning of label classifier Gy

and domain discriminatorGd can effectively disentangle the
challenges behind sample noises and distribution shift. Thus,
we can improve generalization by harnessing noisy samples
and mitigate negative transfer by reducing distribution shift.

Constructing the Transferable Curriculum
Through the aforementioned transferable curriculum learn-
ing framework in Eq. (5), the remaining technical problem is
how to construct the transferable curriculum, represented by
a latent weight w(xs

i ) for each source example. This consti-
tutes our second subproblem. A straightforward and reason-
able solution is to directly adopt the self-paced curriculum
in Eq. (2). While such a predefined curriculum can quantify
the easiness of each source example, it cannot quantify the
transferability of that example.

The transferability implies the contribution of that source
sample to the target task, which can be measured by the sim-
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ilarity of that source sample to the target domain. Following
this idea, we notice that the domain discriminatorGd trained
by curriculum learning in Eq. (5) naturally measures such
similarity information. Specifically, the predicted probabil-
ity Gd(Gf (x

s
i )) indicates the probability of classifying xs

i
as from the source domain, while 1−Gd(Gf (x

s
i )) indicates

the probability of classifying xs
i as from the target domain.

Thus, 1−Gd(Gf (x
s
i )) is a good indicator to the transferabil-

ity (similarity) of a source example xs
i to the target domain.

To make it comparable to the measure of easiness, which is
in terms of the loss values as in Eq. (2), we denote the corre-
sponding cross-entropy loss τi = − log (1−Gd(Gf (x

s
i )))

as the measure of transferability.
To achieve a best tradeoff between the easiness and trans-

ferability, in this paper, we construct the following linearly-
combined weighting scheme as the transferable curriculum:

w(xs
i ) = 1 (`i + λτi 6 γ)where
`i = Ly (y

s
i , Gy (Gf (x

s
i ))) ,

τi = − log (1−Gd(Gf (x
s
i ))) ,

(6)

where λ > 0 is a hyper-parameter to tradeoff easiness from
transferability. We can verify the validity of the curriculum
as follows. First, if a source sample xs

i is easy, it will have
smaller loss `i. Second, if that example is transferable (sim-
ilar) to the target domain, then Gd(Gf (x

s
i )) will approach

zero, thus implying smaller loss τi. In summary, if a source
example is both easy and transferable, it will have a smaller
combined loss `i+λτi, highly possible to be smaller than the
model threshold γ and will be selected into the curriculum
learning procedure. Therefore, the latent weighting scheme
in Eq. (6) can be served as a valid transferable curriculum.

Alternating Minimax Optimization
Finally, we unify the learning with transferable curriculum
and construction of transferable curriculum in an alternating
minimax problem, which delivers a saddle-point solution to
the proposed transferable curriculum learning (TCL) model:

(θ̂f , θ̂y) = arg min
θf ,θy

EGy
− EGd

,

(θ̂d) = argmin
θd

EGd
,

w(xs
i ) = 1 (`i + λτi 6 γ) .

(7)

TCL can simultaneously filter out the noisy samples from
hurting the label classifier and domain discriminator through
curriculum learning; and transfer the relevant samples to the
target domain through domain-adversarial learning guided
by a transferable curriculum. This yields a novel end-to-end
deep architecture for weakly-supervised domain adaptation.

Experiments
We evaluate TCL with state-of-the-art curriculum schemes
and deep domain adaptation methods on three datasets. Code
and datasets will be available at github.com/thuml.

Setup
Office-31 (Saenko et al. 2010) is a standard dataset for do-
main adaptation, consisting of 4652 images with 31 classes

in 3 distinct domains: Amazon (A), with images collected
from amazon.com, Webcam (W) and DSLR (D), with images
shot by web camera and digital SLR camera respectively. By
permuting the 3 domains, we obtain 6 transfer tasks.

Office-Home (Venkateswara et al. 2017) is a more chal-
lenging dataset for visual domain adaptation, consisting of
15,500 images from 65 classes in 4 domains: Artistic (Ar),
Clip Art (Cl), Product (Pr) and Real-World (Rw). Similarly,
we obtain 12 transfer tasks by permuting the 4 domains.

Since these two datasets are almost clean, we create their
corrupted counterparts following exactly the protocol in the
latest state-of-the-art curriculum learning method Mentor-
Net (Jiang et al. 2018). We create noisy source domains
from the original clean dataset in 3 different ways:label cor-
ruption, feature corruption, and mixed corruption. For label
corruption, we change the label of each image uniformly to
a random class with probability pnoise. For feature corrup-
tion, each image is corrupted by Gaussian blur and salt-and-
pepper noise with probability pnoise. As for mixed corrup-
tion, each image is processed by label corruption and fea-
ture corruption with probability pnoise/2 independently. In
all experiments, we use noisy domains as source domains,
and clean domains as target domains. Here pnoise is the noise
level. All three types of noise can represent the performance
of weakly-supervised domain adaptation, while the past lit-
erature generally studied the label corruption.

Bing-Caltech (Bergamo and Torresani 2010) was created
with Bing and Caltech-256 datasets. The Bing dataset was
formed by collecting images retrieved by Bing image search
for each of the Caltech-256 category labels. Apart from the
statistical differences between Bing images and Caltech im-
ages, the Bing dataset consists of rich noises, with presence
of multiple objects in the same image, polysemy and carica-
turization. We simply use Bing as the noisy source domain
and Caltech-256 as the clean target domain. While the ex-
periments on Office-31 and Office-Home are random noisy
data, the experiments here represent the performance in real-
world weakly-supervised domain adaptation.

We compare Transferable Curriculum Learning (TCL)
with state-of-the-art deep learning, curriculum learning and
domain adaptation methods: ResNet-50 (He et al. 2016),
Self-Paced Learning (SPL) (Kumar, Packer, and Koller
2010), MentorNet (Jiang et al. 2018), Deep Adaptation Net-
work (DAN) (Long et al. 2015), Residual Transfer Network
(RTN) (Long et al. 2016), Domain Adversarial Neural Net-
work (DANN) (Ganin et al. 2016), and Adversarial Discrim-
inative Domain Adaptation (ADDA) (Tzeng et al. 2017). We
use ResNet-50 as the network backbone. SPL is a classic
curriculum learning algorithm that presents training samples
in a meaningful order with higher weights assigned to eas-
ier samples. MentorNet learns data-driven curriculum for
training very deep networks from data with corrupted la-
bels. DAN learns transferable features by matching high-
order moments of cross-domain distributions (Gretton et al.
2012). RTN adds the entropy minimization criterion into
DAN. DANN matches different domains by making them
indistinguishable for a domain discriminator. ADDA is an
asymmetric domain adaptation framework combining dis-
criminative modeling, untied weight sharing and GAN loss.
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Table 1: Classification Accuracy (%) on Office-31 with 40% Corruption of Labels, Features and Both
Method Label Corruption Feature Corruption Mixed Corruption

A→W W→A A→D D→A W→D D→W Avg A→W W→A A→D D→A W→D D→W Avg A→W W→A A→D D→A W→D D→W Avg
ResNet 47.2 33.0 47.1 31.0 68.0 58.8 47.5 70.2 55.1 73.0 55.0 94.5 87.2 72.5 58.8 39.1 69.3 37.7 75.2 75.5 59.3

SPL 72.6 50.0 75.3 38.9 83.3 64.6 64.1 75.8 59.7 75.7 56.7 93.9 87.8 74.9 77.3 57.5 78.4 47.5 93.4 83.5 72.9
MentorNet 74.4 54.2 75.0 43.2 85.9 70.6 67.2 76.0 60.3 75.5 59.1 93.4 89.9 75.7 76.8 59.5 78.2 52.3 94.4 89.0 75.0

DAN 63.2 39.0 58.0 36.7 71.6 61.6 55.0 73.9 60.2 72.2 59.6 92.5 88.0 74.4 64.4 45.1 71.2 44.7 79.3 78.3 63.8
RTN 64.6 56.2 76.1 49.0 82.7 71.7 66.7 81.0 64.6 81.3 62.3 95.2 91.0 79.2 76.7 56.9 84.1 56.4 93.0 86.7 75.6

DANN 61.2 46.2 57.4 42.4 74.5 62.0 57.3 71.3 54.1 69.0 54.1 84.5 84.6 69.6 69.7 50.0 69.5 49.1 80.1 79.7 66.4
ADDA 61.5 49.2 61.2 45.5 74.7 65.1 59.5 76.8 62.0 79.8 60.1 93.7 89.3 77.0 69.7 54.5 72.4 56.0 87.5 85.5 70.9
TCL 82.0 65.7 83.3 60.5 90.8 77.2 76.6 84.9 62.3 83.7 64.0 93.4 91.3 79.9 87.4 64.6 83.1 62.2 99.0 92.7 81.5

Table 2: Classification Accuracy (%) on Office-Home with 40% Mixed Corruption and Bing-Caltech with Native Noises
Method Office-Home Bing-Caltech

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg B→ C
ResNet 27.1 50.7 61.7 41.1 53.8 56.3 40.9 28.0 61.8 51.3 33.0 65.9 47.6 74.4

SPL 32.4 56.0 67.4 41.9 55.3 57.2 47.9 32.9 69.3 60.0 36.2 70.4 52.2 75.3
MentorNet 34.5 57.1 66.7 43.3 56.1 57.6 48.5 34.0 70.2 59.8 37.2 70.4 53.0 75.6

DAN 31.2 52.3 61.2 41.2 53.1 54.6 40.7 30.3 61.5 51.7 36.7 67.4 48.5 75.0
RTN 29.3 57.8 66.3 44.0 58.6 58.3 46.0 30.1 67.5 56.3 32.2 69.9 51.4 75.8

DANN 32.9 50.6 60.1 38.6 49.2 50.6 39.9 32.6 60.4 50.5 38.4 67.4 47.6 72.3
ADDA 32.6 52.0 60.6 42.6 53.5 54.3 43.0 31.6 63.1 52.7 37.7 67.5 49.3 74.7
TCL 38.8 62.1 69.4 46.5 58.5 59.8 51.3 39.9 72.3 63.4 43.5 74.0 56.6 79.0

We investigate different modules of TCL by the abla-
tion study of its four variants: 1) TCL-adversarial w is
the variant by removing the curriculum weight {wi}ns

i=1
for the source data on the domain discriminator; 2) TCL-
classifier w is the variant by removing the curriculum
weight {wi}ns

i=1 for the source data on the label classifier;
3) TCL-easiness is the variant by removing the easiness
term `i from the curriculum weight in Eq. (6); 4) TCL-
transferability is the variant by removing the transferability
term τi from the curriculum weight in Eq. (6).

We follow standard evaluation protocols for unsupervised
domain adaptation (Ganin et al. 2016) and use all labeled
source examples and unlabeled target examples for training.
All deep methods are implemented based on PyTorch. We
use ResNet-50 pre-trained on the ImageNet dataset (Rus-
sakovsky et al. 2015) as our base model, and add a fully-
connected bottleneck layer before its classifier layer. Since
the dataset is relatively small and the source domain is noisy,
we fine-tune only the last residual block of the ResNet-50
model, and train the bottleneck layer, the classifier layer and
the domain discriminator from scratch. Before using the cur-
riculum, we pre-train our network on noisy data for a few
epochs, which is better than random initialization.

The tradeoff hyper-parameter λ is selected according to
magnitudes of the two terms in Eq. (6), and the threshold γ
is selected according to the distribution of loss values using
cross validation. In each dataset, we simply use the same
γ selected from one task for all other tasks under the same
noise level. We use mini-batch SGD with momentum of 0.9
and the same learning rate strategy in (Ganin et al. 2016).

Results
The results on Office-31 under 40% label corruption, fea-
ture corruption, and mixed corruption are shown in Table 1.
Further, those of Office-Home under 40% mixed corruption
and Bing-Caltech are reported in Tabel 2. TCL outperforms
all the comparison methods on almost all the tasks. In par-

ticular, TCL outperforms state-of-the-art deep domain adap-
tation methods DAN, DANN and ADDA with large margins
since these methods suffer from negative transfer and over-
fitting caused by noisy source examples.

More specifically, ResNet cannot learn a model with high
generalization power from the source dataset since it will
overfit on the noisy data and be hurt by the distribution shift.
RTN performs better than other standard domain adaptation
methods, thanks to the entropy minimization criterion that
further exploits the clean (unlabeled) target data to harness
the noisy (labeled) source data. However, it still suffers from
negative transfer and overfitting since all noisy source data
participate in training. SPL and MentorNet can learn a robust
classifier from the noisy source dataset with a curriculum
to eliminate the noisy examples, whilst MentorNet outper-
forms SPL by learning a data-driven curriculum more robust
to noisy examples. However, these methods are still inferior
to TCL since they do not have a domain adaptation module
to bridge the source and target domains. TCL diminishes the
negative impact of noisy source examples on both the label
classifier and domain discriminator by learning with a trans-
ferable curriculum, which simultaneously mitigate negative
transfer caused by noisy source data and promote positive
transfer across noiseless source data and clean target data.

Table 3: Accuracy on Office-31 with 40% Mixed Corruption
Method Office-31 Mixed Corruption

A→W W→A A→D D→A W→D D→W Avg
TCL-adversarial w 85.9 62.9 82.1 64.9 97.4 92.5 81.0
TCL-classifier w 77.3 63.5 80.5 61.2 96.2 91.5 78.4

TCL-easiness 74.0 63.6 77.3 61.9 96.4 90.4 77.3
TCL-transferability 84.7 63.8 83.1 62.6 97.8 92.2 80.7

TCL 87.4 64.6 83.1 62.2 99.0 92.7 81.5

We perform an investigation across different TCL variants
by changing its modules, with results reported in Table 3.
TCL outperforms TCL-easiness and TCL-transferability, in-
dicating the reasonable and effective design of the curricu-
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Figure 3: The t-SNE visualization of DAN, DANN, RTN and TCL with class labels (a–d) and domain labels (e–h).

lum weight. TCL outperforms TCL-adversarial w, validat-
ing that the curriculum weights {w(xs

i )}
ns
i=1 over the do-

main adversarial network can diminish the negative effects
of noisy examples and mitigate negative transfer. Finally,
TCL outperforms TCL-classifier w with large margin. The
reason behind is that the noisy data may severely destroy
the source classifier and further deteriorate the curriculum
learning procedure, which in turn will decay the quality
of the curriculum weights {w(xs

i )}
ns
i=1 and break down the

progressive training of domain adversarial network. Such a
domino effect will cause huge performance crash.

Discussion
Noise Levels: We investigate a wider spectrum of weakly-
supervised domain adaptation by varying the level of noises
(mixed corruption). Figure 4 shows that TCL outperforms
all the comparison methods at each noise level, indicating
that TCL can handle noisy source data under various scenar-
ios of weakly-supervised domain adaptation. In particular,
we observe that when the noise level is 0%, TCL still per-
forms as well as the state-of-the-art domain adaptation meth-
ods DAN, DANN, ADDA and RTN. This proves that TCL
can also fit into the standard domain adaptation scenarios.

0 0.2 0.4 0.6 0.8

Noise level

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

ResNet

SPL

MentorNet

DAN

RTN

DANN

ADDA

TCL

Figure 4: Classification accuracy w.r.t. noise levels.

With increasing levels of noise, the performance of DAN,
DANN, and ADDA drops rapidly because noisy source
data may severely deteriorate the source classifier and do-
main adaptation module in existing domain adaptation meth-
ods. SPL and MentorNet perform relatively stably since
they can down-weigh the negative influence of noisy source
data. While this curriculum learning procedure can learn a
well-performed classification model from the source noisy
dataset, the distribution shift across domains has not been
bridged. TCL outperforms all the other methods while yield-
ing high accuracy even at very high noise levels, proving the
importance of the transferable curriculum.

Curriculum Quality: We show in Figure 5 the num-
bers of source samples selected into training (indicated by

w = 1) when they are label-corrupted, feature-corrupted
or clean without corruption. We run TCL on transfer task
A → W under 40% mixed corruption. We observe that
the fraction of source data with either label noise or feature
noise being selected into training by w = 1 are nearly 0%,
while the fraction of clean source data being selected into
training is approximately 100%. This shows that our trans-
fer curriculum learning mechanism can effectively select out
noisy source data and preserve clean data simultaneously.
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Figure 5: #Examples selected (w = 1) for three noise types.

Feature Visualization: We visualize the t-SNE embed-
dings (Donahue et al. 2014) of the bottleneck representa-
tions by DAN, DANN, RTN and TCL on transfer task A
→W. Figure 3(a)–3(c) display that the features learned by
DAN, DANN, and RTN for different classes are mixed up.
Figure 3(e)–3(g) show that the domains are not well aligned
while even worse, the target data are aligned to the entire
source data with possibly wrong classes, which may cause
negative transfer. Figures 3(d) and 3(h) display that TCL can
discriminate different classes in both source and target while
the target data have similar decision boundary as the source
domain. In particular, the noisy data have little influence on
knowledge transfer to the target domain. These results vali-
date the efficacy of the transferable curriculum learning.

Conclusion
This paper introduced a new approach to weakly-supervised
domain adaptation, an under-explore but more realistic sce-
nario when needing to train from large-scale data with noisy
annotations. We proposed a transferable curriculum learn-
ing approach to transfer relevant and clean source data while
avoiding transfer of noisy or irrelevant source data. The ap-
proach yields state-of-the-art results on several real datasets.
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