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Abstract

Survival analysis is a hotspot in statistical research for model-
ing time-to-event information with data censorship handling,
which has been widely used in many applications such as
clinical research, information system and other fields with
survivorship bias. Many works have been proposed for sur-
vival analysis ranging from traditional statistic methods to
machine learning models. However, the existing methodolo-
gies either utilize counting-based statistics on the segmented
data, or have a pre-assumption on the event probability distri-
bution w.r.t. time. Moreover, few works consider sequential
patterns within the feature space. In this paper, we propose
a Deep Recurrent Survival Analysis model which combines
deep learning for conditional probability prediction at fine-
grained level of the data, and survival analysis for tackling
the censorship. By capturing the time dependency through
modeling the conditional probability of the event for each
sample, our method predicts the likelihood of the true event
occurrence and estimates the survival rate over time, i.e., the
probability of the non-occurrence of the event, for the cen-
sored data. Meanwhile, without assuming any specific form
of the event probability distribution, our model shows great
advantages over the previous works on fitting various sophis-
ticated data distributions. In the experiments on the three real-
world tasks from different fields, our model significantly out-
performs the state-of-the-art solutions under various metrics.

Introduction
Recent advances of modern technology makes redundant
data collection available for time-to-event information,
which facilitates observing and tracking the event of inter-
ests. However, due to different reasons, many events would
lose tracking during observation period, which makes the
data censored. We only know that the true time to the occur-
rence of the event is larger or smaller than, or within the ob-
servation time, which have been defined as survivorship bias
categorized into right-censored, left-censored and internal-
censored respectively (Lee and Wang 2003). Survival anal-
ysis, a.k.a. time-to-event analysis (Lee et al. 2018), is a typ-
ical statistical methodology for modeling time-to-event data
while handling censorship, which is a traditional research
problem and has been studied over decades.
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The goal of survival analysis is to estimate the time until
occurrence of the particular event of interest, which can be
regarded as a regression problem (Lee and Wang 2003; Wu,
Yeh, and Chen 2015). It can also be viewed as to predict the
probability of the event occurring over the whole timeline
(Wang et al. 2016; Lee et al. 2018). Specifically, given the
information of the observing object, survival analysis would
predict the probability of the event occurrence at each time
point.

Nowadays, survival analysis has been widely used in real-
world applications, such as clinical analysis in medicine re-
search (Zhu et al. 2017b; Luck et al. 2017; Katzman et al.
2018) taking diseases as events and predicting survival time
of patients; customer lifetime estimation in information sys-
tems (Jing and Smola 2017; Grob et al. 2018) which esti-
mates the time until the next visit of users; market mod-
eling in game theory fields (Wu, Yeh, and Chen 2015;
Wang et al. 2016) that predicts the event (i.e., winning) prob-
ability over the whole referral space.

Because of the essential applications in the real world,
the researchers in both academic and industrial fields have
devoted great efforts to studying survival analysis in recent
decades. Many works of survival analysis are from the view
of traditional statistic methodology. Among them, Kaplan-
Meier estimator (Kaplan and Meier 1958) bases on non-
parametric counting statistics and forecasts the survival rate
at coarse-grained level where different observing objects
may share the same forecasting result, which is not suitable
in recent personalized applications. Cox proportional haz-
ard method (Cox 1992) and its variants such as Lasso-Cox
(Tibshirani 1997) assume specific stochastic process or base
distribution with semi-parametric scaling coefficients for
fine-tuning the final survival rate prediction. Other paramet-
ric methods either make specific distributional assumptions,
such as Exponential distribution (Lee and Wang 2003) and
Weibull distribution (Ranganath et al. 2016). These methods
pre-assume distributional forms for the survival rate func-
tion, which may not generalize very well in real-world situ-
ations.

Recently, deep learning, i.e., deep neural network, has
been paid huge attention and introduced to survival analy-
sis in many tasks (Ranganath et al. 2016; Grob et al. 2018;
Lee et al. 2018). However, in fact, many deep learning
models for survival analysis (Katzman et al. 2018; Ran-
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ganath et al. 2016) actually utilize deep neural network as
the enhanced feature extraction method (Lao et al. 2017;
Grob et al. 2018) and, worse still, rely on some assump-
tions of the base distributions for the survival rate prediction,
which also suffers from the generalization problem. Lately,
Lee et al. (2018) proposed a deep learning method for mod-
eling the event probability without assumptions of the prob-
ability distribution. Nevertheless, they regard the event prob-
ability estimation as a pointwise prediction problem, and ig-
nores the sequential patterns within neighboring time slices.
Moreover, the gradient signal is too sparse and has little ef-
fect on most of the prediction outputs of this model, which
is not effective enough for modeling time-to-event data.

With the consideration of all the drawbacks within the
existing literatures, in this paper we propose our Deep Re-
current Survival Analysis (DRSA) model for predicting the
survival rate over time at fine-grained level, i.e., for each in-
dividual sample. To the best of our knowledge, this is the
first work utilizing auto-regressive model for capturing the
sequential patterns of the feature over time in survival anal-
ysis.

Our model proposes a novel modeling view for time-to-
event data, which aims at flexibly modeling the survival
probability function rather than making any assumptions
for the distribution form. Specifically, DRSA creatively pre-
dicts the conditional probability of the event at each time
given that the event non-occurred before, and combines
them through probability chain rule for estimating both the
probability density function and the cumulative distribution
function of the event over time, eventually forecasts the sur-
vival rate at each time, which is more reasonable and math-
ematically efficient for survival analysis. We train DRSA
model by end-to-end optimization through maximum likeli-
hood estimation, not only on the observed event among un-
censored data, but also on the censored samples to reduce
the survivorship bias. Through these modeling methods, our
DRSA model can capture the sequential patterns embedded
in the feature space along the time, and output more effec-
tive distributions for each individual sample at fine-grained
level. The comprehensive experiments over three large-scale
real-world datasets demonstrate that our model achieves sig-
nificant improvements against state-of-the-art models under
various metrics.

Related Works
Learning over Censored Data
The event occurrence information of some samples may be
lost, due to some limitation of the observation period or los-
ing tracks during the study procedure (Wang, Li, and Reddy
2017), which is called data censorship. When dealing with
time-to-event information, a more complex learning prob-
lem is to estimate the probability of the event occurrence
at each time, especially for those samples without tracking
logs after (or before) the observation time which is defined
as right-censored (or left-censored) (Wang, Li, and Reddy
2017). Survival analysis is a typical statistical methodology
for modeling time-to-event data while handling censorship.
There are two main streams of survival analysis.

The first view is based on traditional statistics scatter-
ing in three categories. (i) Non-parametric methods includ-
ing Kaplan-Meier estimator (Kaplan and Meier 1958) and
Nelson-Aalen estimator (Andersen et al. 2012) are solely
based on counting statistics, which is too coarse-grained to
perform personalized modeling. (ii) Semi-parametric meth-
ods such as Cox proportional hazard model (Cox 1992)
and its variants Lasso-Cox (Tibshirani 1997) assumes some
base distribution functions with the scaling coefficients for
fine-tuning the final survival rate prediction. (iii) Parametric
models assume that the survival time or its logarithm result
follows a particular theoretical distribution such as Expo-
nential distribution (Lee and Wang 2003) and Weibull dis-
tribution (Ranganath et al. 2016). These methods either base
on statistical counting information or pre-assume distribu-
tional forms for the survival rate function, which generalizes
not very well in real-world situations.

The second school of survival analysis takes from ma-
chine learning perspective. Survival random forest which
was first proposed in (Gordon and Olshen 1985) derives
from standard decision tree by modeling the censored data
(Wang et al. 2016) while its idea is mainly based on
counting-based statistics. Other machine learning method-
ologies include Bayesian models (Ranganath et al. 2015;
2016), support vector machine (Khan and Zubek 2008)
and multi-task learning solutions (Li et al. 2016; Alaa and
van der Schaar 2017). Note that, deep learning models
have emerged in recent years. Faraggi and Simon (1995)
first embedded neural network into Cox model to improve
covariate relationship modeling. From that, many works
applied deep neural networks into well-studied statistical
models to improve feature extraction and survival analysis
through end-to-end learning, such as (Ranganath et al. 2016;
Luck et al. 2017; Lao et al. 2017; Katzman et al. 2018;
Grob et al. 2018). Almost all the above models assume par-
ticular distribution forms which also suffers from the gener-
alization problem in practice.

Biganzoli et al. (1998) utilized neural network directly to
predict the survival rate for each sample and Lisboa et al.
(2003) extended it to a Bayesian network method. In (Lee et
al. 2018) the authors proposed a feed forward deep model to
directly predict the probability density values at each time
point and sum them for estimating the survival rate. How-
ever, in that paper, the gradient signal is quite sparse for
the prediction outputs from the neural network. Moreover, to
our best knowledge, none of the related literatures considers
the sequential patterns within the feature space over time.
We propose a recurrent neural network model predicting the
conditional probability of event at each time and estimate
the survival rate through the probability chain rule, which
captures the sequential dependency patterns between neigh-
boring time slices and back-propagate the gradient more ef-
ficiently.

Deep Learning and Recurrent Model
Due to its adequate model capability and the support
of big data, deep learning, a.k.a. deep neural network,
has drawn great attention ranging from computer vision
(Krizhevsky, Sutskever, and Hinton 2012) and speech recog-
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nition (Graves, Mohamed, and Hinton 2013) to natural lan-
guage processing (Bahdanau, Cho, and Bengio 2015) during
the recent decades. Among them, recurrent neural network
(RNN) whose idea firstly emerged two decades ago and its
variants like long short-term memory (LSTM) (Hochreiter
and Schmidhuber 1997) employ memory structures to model
the conditional probability which captures dynamic sequen-
tial patterns. In this paper we borrow the idea of RNN and
well design the modeling methodology for survival function
regression.

Deep Recurrent Survival Analysis
In this section, we formulate the survival analysis prob-
lem and discuss the details of our proposed model. We
take the view of right-censorship which is the most com-
mon scenario in survival analysis (Kaplan and Meier 1958;
Cox 1992; Wang, Li, and Reddy 2017; Lee et al. 2018).

Problem Definition

We define z as the variable of the true occurrence time for
the event of interest if it has been tracked. We just simplify
the occurrence of the event of interest as event, and define
the probabilistic density function (P.D.F.) of the true event
time as p(z), which means the probability that the event tru-
ely occurs at time z.

Now that we have the P.D.F. of the event time, we can
derive the survival rate at each time t as the C.D.F. as

S(t) = Pr(z > t) =

∫ ∞
t

p(z)dz , (1)

which is the probability of the observing object surviving,
i.e., event not occurring, until the observed time t. Then the
straightforward definition of the event rate, i.e., the proba-
bility of event occurring before the observing time t, as that

W (t) = Pr(z ≤ t) = 1− S(t) =

∫ t

0

p(z)dz . (2)

The data of the survival analysis logs are represented as
a set of N triples {x, z, t}Ni=1, where t > 0 is the observa-
tion time for the given sample. Here z is left unknown (and
we marked z as null) for the censored samples without the
observation of the true event time. x is the feature vector of
the observation which encodes different information under
various scenarios.

Our goal is to model the distribution of the true event time
p(z) over all the historical time-to-event logs with handling
the censored data of which the true event time is unknown.
So the main problem of survival analysis is to estimate the
probability distribution p(z|x) of the event time with regard
to the sample feature x, for each sample. Formally speaking,
the derived model is a “mapping” function T which learns
the patterns within the data and predicts the event time dis-
tribution over the time space as

p(z|x) = T (x) . (3)

Discrete Time Model
First of all, we present the definition of the conditional haz-
ard rate over continuous time as

h(t) = lim
4t→0

Pr(t < z ≤ t+4t | z > t)

4t
, (4)

which models the instant occurrence probability of the event
at time t given that the event has not occurred before. Note
that the concept of hazard rate has been commonly utilized
in many survival analysis literatures (Cox 1992; Faraggi and
Simon 1995; Luck et al. 2017).

In the discrete context, a set of L time slices 0 < t1 <
t2 < . . . < tL is obtained which arises from the finite preci-
sion of time determinations. Analogously we may also con-
sider the grouping of continuous time as l = 1, 2, . . . , L
and uniformly divide disjoint intervals Vl = (tl−1, tl] where
t0 = 0 and tl is the last observation interval boundary
for the given sample, i.e., the tracked observation time in
the logs. VL is the last time interval in the whole data
space. This setting is appropriately suited in our task and
has been widely used in clinical research (Li et al. 2016;
Lee et al. 2018), information systems (Jing and Smola 2017;
Grob et al. 2018) and other related fields (Wu, Yeh, and Chen
2015; Wang et al. 2016).

As such, our event rate function and survival rate function
over discrete time space is

W (tl) = Pr(z ≤ tl) =
∑
j≤l

Pr(z ∈ Vj) ,

S(tl) = Pr(z > tl) =
∑
j>l

Pr(z ∈ Vj) ,
(5)

where the input to the two functions is the observed time tl
from the log. And the discrete event time probability func-
tion at the l-th time interval is

pl = Pr(z ∈ Vl) = W (tl)−W (tl−1) = S(tl−1)− S(tl) .
(6)

The discrete conditional hazard rate hl, defined as the
conditional probability as

hl = Pr(z ∈ Vl|z > tl−1) =
Pr(z ∈ Vl)

Pr(z > tl−1)
=

pl
S(tl−1)

,

(7)
which approximates the continuous conditional hazard rate
function h(tl) in Eq. (4) as the intervals Vl become infinites-
imal.

Deep Recurrent Model
Till now, we have presented the discrete time model and
discuss the death (i.e., event) and survival probability over
the discrete time space. We here propose our DRSA model
based on recurrent neural network with the parameter θ,
which captures the sequential patterns for conditional prob-
ability hil at every time interval Vl for the ith sample.

The detailed structure of DRSA network is illustrated in
Figure 1. At each time interval Vl, the l-th RNN cell predicts
the instant hazard rate hil given the sample feature xi and the
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Figure 1: Detailed illustration of Deep Recurrent Survival
Analysis (DRSA) model. Note that only the uncensored logs
have the true event time and can calculate pz for the loss
Lz . The calculation of pz and S(t) have been derived in
Eqs. (11) and (9) respectively.

current time tl conditioned upon the previous events as

hil = Pr(z ∈ Vl | z > tl−1, x
i;θ)

= fθ(xi, tl | rl−1) ,
(8)

where fθ is the RNN function taking (xi, tl) as input and
hil as output. rl−1 is the hidden vector calculated from the
RNN cell at the last time step which contains the informa-
tion about the conditional. It is quite natural for using the
recurrent cell to model the conditional probability over time
(Bahdanau, Cho, and Bengio 2015). In our paper we imple-
ment the RNN function as a standard LSTM unit (Hochreiter
and Schmidhuber 1997), which has been widely used in se-
quence data modeling. The details of the implementation of
our RNN architecture can be referred in our supplemental
materials and our reproductive code published in the exper-
iment part.

From Eqs. (5), (7) and (8), we can easily derive the sur-
vival rate function S(t) through probability chain rule, and
the corresponding event rate function W (t) at the time t for
the ith individual sample as

S(t|xi;θ) = Pr(t < z|xi;θ)

= Pr(z 6∈ V1, z 6∈ V2, . . . , z 6∈ Vli |x
i;θ)

= Pr(z 6∈ V1|xi;θ) · Pr(z 6∈ V2|z 6∈ V1,x
i;θ) · · ·

· Pr(z 6∈ Vli |z 6∈ V1, . . . , z 6∈ Vli−1,x
i;θ)

=
∏

l:l≤li

[
1− Pr(z ∈ Vl | z > tl−1, x

i;θ)
]

=
∏

l:l≤li

(1− hi
l) ,

(9)

W (t|xi;θ) = Pr(t ≥ z|xi;θ) = 1−
∏
l:l≤li

(1− hil) ,

(10)
where li is the time interval index for the ith sample at ti.

Moreover, taking Eqs. (6) and (7) into consideration, the
probability of time z lying in the interval of Vli for the ith
sample is

pil = Pr(z ∈ Vli |xi;θ) = hili
∏
l:l<li

(1− hil) . (11)

By means of probability chain rule, it connects all the
outputs of the conditional hazard rate h at each individual
time to the final prediction, i.e., the probability p(z) of the
true event time z and the survival rate S(t) at each time
t. This feed-forward calculation guarantees that the gradi-
ent signal from the loss function can be transmitted through
back-propagation more effectively comparing with (Lee et
al. 2018), which will be discussed below.

Loss Functions
Since there is no ground truth of either the event time distri-
bution or survival rate, here we maximize the log-likelihood
over the empirical data distribution to learn our deep model.
Specifically, we take three objectives as our losses.

The first loss is to minimize the negative log-likelihood of
the true event time z = zi over the uncensored logs as

Lz = − log
∏

(xi,zi)∈Duncensored

Pr(z ∈ Vli |xi;θ)

= − log
∏

(xi,zi)∈Duncensored

hili
∏
l:l<li

(1− hil)

= −
∑

(xi,zi)∈Duncensored

[
log hili +

∑
l:l<li

log(1− hil)

]
,

(12)
where li is the index of the interval of the true event time
zi ∈ Vli .

The second loss is to minimize the negative partial log-
likelihood of the event rate over the uncensored logs as

Luncensored = − log
∏

(xi,ti)∈Duncensored

Pr(ti ≥ z|xi;θ)

= − log
∏

(xi,ti)∈Duncensored

W (ti|xi;θ)

= −
∑

(xi,ti)∈Duncensored

log
[
1−

∏
l:l≤li

(1− hil)
]
.

(13)
This loss adds more supervisions onto the predictions over
the time range (zi, ti) for the uncensored data than those
(Katzman et al. 2018; Lee et al. 2018; Tibshirani 1997)
merely supervise on the true event time zi.

Though the censored logs do not contain any information
about the true event time, we would only know that the true
event time z is greater than our logged observing time ti
then. Here we incorporate the partial log-likelihood embed-
ded in the censored logs as the third loss to correct the learn-
ing bias of our model as

Lcensored = − log
∏

(xi,ti)∈Dcensored

Pr(z > ti|xi;θ)

= − log
∏

(xi,ti)∈Dcensored

S(ti|xi;θ)

= −
∑

(xi,ti)∈Dcensored

∑
l:l≤li

log(1− hil) .

(14)

4801



Model Realization
In this section, we unscramble some intrinsic properties of
our deep survival model.

First of all, we analyze the model effectiveness of DRSA.
In (Lee et al. 2018), the proposed deep model directly pre-
dicts the event probability p(t) and combines to estimate the
survival rate as S(t) =

∑
t′≤t p(t

′) while ignoring the se-
quential patterns. As a result, the gradient signal would only
have effect on the prediction at time t individually. On the
contrary, from Figure 1, we can see that our DRSA model
is obviously more effective since the supervision would be
directly back-propagated through the chain rule calculation
to all the units with strict mathematical derivation, which
guarantees to transmit the gradient more efficiently and ef-
fectively. We also explicitly model the sequential patterns by
conditional hazard rate prediction and we will illustrate the
advantage of that in the experiments.

Then we take the view of censorship prediction of our
methodology. As is known that there is a censoring status as
an indicator of survival at the given time, for each sample as

ci(ti) =

{
0, if ti ≥ zi ,
1, otherwise ti < zi .

(15)

In the tracking logs, each sample (xi, zi, ti) is uncensored
where ci = 0. While for the censored logs losing tracking at
the observation time, the true event time zi is unknown but
the tracker only has the idea that zi > ti, thus ci = 1.

Moreover, for the uncensored data, it is natural to “push
down” the probability of survival S(ti). And for the cen-
sored data, it needs to “pull up” S(ti) since we “observe
event not occurred” at time ti. However, using only Lz to
supervise the prediction of p(zi) at time zi in Eq. (12) is in-
sufficient. So that we incorporate the two partial likelihood
losses Luncensored and Lcensored in Eqs. (13) and (14).

Therefore, taking Eqs. (13) and (14) altogether, we may
find that the combination ofLuncensored andLcensored describes
the classification of survival status at time ti of each sample
as

Lc = Luncensored + Lcensored

= − log
∏

(xi,ti)∈Dfull

[
S(ti|xi;θ)

]ci · [1− S(ti|xi;θ)
]1−ci

(16)

= −
∑

(xi,ti)∈Dfull

{
ci · logS(ti|xi;θ)

+ (1− ci) log
[
1− S(ti|xi;θ)

]}
,

which is the cross entropy loss for predicting the sur-
vival status at time ti given xi over all the data Dfull =
Duncensored

⋃
Dcensored.

Combining all the objective functions and our goal is to
minimize the negative log-likelihood over all the data sam-
ples including both uncensored and censored data as

arg min
θ

αLz + (1− α)Lc , (17)

where θ is the model parameter in Eq. (8) and the hyper-
parameter α controls the loss value balance between them.

Specifically, α controls the magnitudes of the two losses at
the same level to stabilize the model training.

We also analyze the model efficiency in the supplemen-
tal material of this paper and the time complexity of model
inference is the same as the traditional RNN model which
has proven practical efficiency in the industrial applications
(Zhang et al. 2014).

Experiments
We evaluate our model with strong baselines in three real-
world tasks. Moreover, we have published the implementa-
tion code for reproductive experiments1.

Tasks and Datasets
We evaluate all the compared models in three real-world
tasks. We also published the processed full datasets2.

CLINIC is a dataset for tracking the patient clinic status
(Knaus et al. 1995). Here the goal of survival analysis is
to estimate the time till the event (death), and predict the
probability of the event with waning effects of baseline
physiologic variables over time.

MUSIC is a user lifetime analysis dataset (Jing and Smola
2017) that contains roughly 1,000 users with entire listen-
ing history from 2004 to 2009 on last.fm, a famous online
music service. Here the event is the user visit to the music
service and the goal is to predict the time elapsed from the
last visit of one user to her next visit.

BIDDING is a real-time bidding dataset in the compu-
tational advertising field (Ren et al. 2018; Wang et al.
2016). In this scenario, the time is correspondent to the
bid price of the bidder and the event is just winning of
the auction. The feature contains the auction request in-
formation. Many researchers (Wu, Yeh, and Chen 2015;
Wang et al. 2016) utilized survival analysis for unbiased
winning probability estimation of a single auction while
handling the losing (censored) logs without knowing the
true winning price.

The statistics of the three datasets are provided in Table 1.
We split the CLINIC and MUSIC datasets to training and
test sets with ratio of 4:1 and 6:1, respectively. For feature
engineering, all the datasets have been one-hot encoded for
both categorical and numerical features. The original BID-
DING data have already been feature engineered and pro-
cessed as training and test datasets. Note that, the true time
of the event of all the testing data have been preserved for
the performance evaluation. In these datasets, since all the
time is integer value, we bucketize the discrete time interval
as interval size sintv = 1 and the maximal time interval num-
ber L is equal to the largest integer time in each dataset. The
discussion about various interval sizes has been included in
the supplemental materials.

1Reproductive code link: https://github.com/rk2900/drsa.
2We have put sampled data in the published code. The three

processed full datasets link: https://goo.gl/nUFND4.
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Table 1: The statistics of the datasets. #: number; AET: av-
eraged event time. There are 9 independent subsets in BID-
DING dataset so that we provide the overall statistics in this
table and present the details in supplemental materials.

Dataset Total # Censored Censored AET AET AET Feature
Data # Rate (Dfull) (Duncensored) (Dcensored) #

CLINIC 6,036 797 0.1320 9.1141 5.3319 33.9762 14
MUSIC 3,296,328 1,157,572 0.3511 122.1709 105.2404 153.4522 6

BIDDING 19,495,974 14,848,243 0.7616 82.0744 25.0484 99.9244 12

Evaluation Metrics
The first evaluation metric is the time-dependent concor-
dance index (C-index), which is the most common evalu-
ation used in survival analysis (Li et al. 2016; Luck et al.
2017; Lee et al. 2018) and reflects a measure of how well
a model predicts the ordering of sample event times. That
is, given the observing time t, two samples d1 = (x1, z1)
with large event time z1 > t and d2 = (x2, z2) with small
event time z2 ≤ t should be ordered as d1 ≺ d2 where d1
is placed before d2. This evaluation is quite similar to the
area under ROC curve (AUC) metric in the binary classifi-
cation tasks (Wang, Li, and Reddy 2017). From the ranking
view of event probability estimation at time t, C-index as-
sesses the ordering performance among all the uncensored
and censored pairs at t among the test data.

We also use average negative log probability (ANLP) to
evaluate the regression performance among different fore-
casting models. ANLP is to assess the likelihood of the co-
occurrence of the test sample with the corresponding true
event time, which is correspondent to the event time likeli-
hood loss Lz in Eq. (12). Here we compute ANLP as

P̄ = − 1

|Dtest|
∑

(xi,zi)∈Dtest

log p(zi|xi) , (18)

where p(z|x) is the learned time-to-event probability func-
tion of each model.

Finally, we conduct the significance test to verify the sta-
tistical significance of the performance improvement of our
model w.r.t. the baseline models. Specifically, we deploy a
MannWhitney U test (Mason and Graham 2002) under C-
index metric, and a t-test (Bhattacharya and Habtzghi 2002)
under ANLP metric.

Compared Settings
We compare our model with two traditional statistic meth-
ods and five machine learning methods including two deep
learning models.
• KM is Kaplan-Meier estimator (Kaplan and Meier 1958)

which is a statistic-based non-parametric method counting
on the event probability at each time over the whole set of
samples.
• Lasso-Cox is a semi-parametric method (Zhang and Lu

2007) based on Cox proportional hazard model (Cox 1992)
with l1-regularization.
• Gamma is a parametric gamma distribution-based regres-

sion model (Zhu et al. 2017a). The event time of each sam-
ple is modeled by a unique gamma distribution with respect
to its features.

Table 2: Performance comparison on C-index (the higher,
the better) and ANLP (the lower, the better). (* indicates p-
value < 10−6 in significance test)

Models C-index ANLP
CLINIC MUSIC BIDDING CLINIC MUSIC BIDDING

KM 0.710 0.877 0.700 9.012 7.270 15.366
Lasso-Cox 0.752 0.868 0.834 5.307 28.983 38.620

Gamma 0.515 0.772 0.703 4.610 6.326 6.310
STM 0.520 0.875 0.807 3.780 5.707 5.148

MTLSA 0.643 0.509 0.513 17.759 25.121 9.668
DeepSurv 0.753 0.862 0.840 5.345 29.002 39.096
DeepHit 0.733 0.878 0.858 5.027 5.523 5.544
DRSA 0.774* 0.892* 0.911* 3.337* 5.132* 4.774*

• STM is a survival random tree (Wang et al. 2016) model
which splits the data into small segments using between-
node heterogeneity and utilizes Kaplan-Meier estimator to
derive the survival analysis for each segment.

• MTLSA is the recently proposed multi-task learning with
survival analysis model (Li et al. 2016). It transforms the
original survival analysis problem into a series of binary
classification subproblems, and uses a multi-task learning
method to model the event probability at different time.

• DeepSurv is a Cox proportional hazard model with deep
neural network (Katzman et al. 2018) for feature extraction
upon the sample covariates.

• DeepHit is a deep neural network model (Lee et al. 2018)
which predicts the probability p(z) of event over the whole
time space with the input x. This method achieved state-
of-the-art performance in survival analysis problem.

• DRSA is our proposed model which has been described
above. The implementation details can be referred to sup-
plemental materials and the published code.

Results and Analysis
We present the evaluation results according to the category
which the compared models belong to. KM and Lasso-Cox
model are statistic-based methods, while Gamma, STM and
MTLSA are machine learning based models. The rest mod-
els are deep neural network models with end-to-end learning
paradigm.

Estimation for Event Rate over Time The left part of
Table 2 has illustrated the performance of the event rate es-
timation, i.e., C-index metric. From the table, we may ob-
serve the following facts. (i) Deep learning models illus-
trated relatively better C-index performance, which may be
caused by the higher model capacity for feature extraction.
(ii) Not only within the deep learning models, but also over
all the compared methods, our DRSA model achieved the
best C-index scores with significant improvements on all
the datasets, which proves the effectiveness of our model.
(iii) The traditional statistical models, i.e., KM and Lasso-
Cox provided stable performance over the three datasets.
(iv) The models with pre-assumptions about the event time
distribution, i.e., Gamma and DeepSurv, did not perform
well because the strong assumptions lack generalization in
real-world tasks. (v) Within the deep models, no assump-
tion about the latent distribution of time-to-event data makes
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DeepHit and DRSA flexibly model the data and perform bet-
ter.

Event Time Prediction ANLP is a metric to measure the
regression performance on the true event time prediction,
i.e., the forecasting of the likelihood of the true event time.

From the right part of Table 2, it also shows the simi-
lar findings to the C-index results discussed above, e.g., our
DRSA model has the best performance among all the meth-
ods. Moreover, STM segmented the data well so it achieved
relatively better performance than other normal machine
learning methods. With effective sequential pattern mining
over time, our DRSA model performed relatively better than
other deep models. Note that DeepHit directly predicts the
probability of time-to-event while our modeling method is
based on hazard rate prediction and optimize through prob-
ability chain rule. The results reflect the advantage of the se-
quential pattern mining with the novel modeling perspective
of our model.

0.0 0.5 1.0
epoch

0

2

4

6

lo
ga

rit
hm

 lo
ss

 v
al

ue Total Loss
CLINIC
MUSIC

0.0 0.5 1.0
epoch

0.7

0.8

0.9

va
lu

e

C-index

CLINIC
MUSIC

0.0 0.5 1.0
epoch

0

5

10

15

lo
ss

 v
al

ue

ANLP loss Lz
CLINIC
MUSIC

0.0 0.5 1.0
epoch

0

2

4

lo
ga

rit
hm

 lo
ss

 v
al

ue Cross Entropy Loss Lc
CLINIC
MUSIC

Figure 2: Learning curves. Here “epoch” means one itera-
tion over the whole training data and α = 0.25 in Eq. (17).
Learning curves over BIDDING dataset can be referred in
our supplemental material.

Model Convergence To illustrate the model training and
convergence of DRSA model, we plot the learning curves
and the C-index results on CLINIC and MUSIC datasets
in Figure 2. Recall that our model optimizes over two loss
functions, i.e., the ANLP loss Lz and the cross entropy loss
Lc. From the figure, we may find that DRSA converges
quickly and the values of both loss function drop to stable
convergence at about the first complete iteration over the
whole training dataset. Moreover, the two losses are alterna-
tively optimizing and facilitate each other during the train-
ing, which proves the learning stability of our model.

Model Forecasting Visualization Figure 3 illustrates the
estimated survival rate curve S(t|xi) over time and the
forecasted event time probability p(z|xi) for an arbitrarily
selected test sample (xi, zi, ti). Note that the KM model
makes the same prediction for all the samples in the dataset,

zi=67
time

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 R
at

e 
S(
t)

Survival Curve of Different Models
KM
Lasso-Cox
Gamma
STM
DeepSurv
DeepHit
DRSA

zi=67
time

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y 
of

 E
ve

nt
 p

(z
)

Probability Curve of Different Models
KM
Lasso-Cox
Gamma
STM
DeepSurv
DeepHit
DRSA

Figure 3: A comprehensive visualization of survival rate
S(t|xi) estimation and event time probability p(z|xi) pre-
diction over different models. The vertical dotted line is the
true event time zi of this sample.

Table 3: Ablation study on the losses.
Models C-index ANLP

CLINIC MUSIC BIDDING CLINIC MUSIC BIDDING
DeepHit 0.733 0.878 0.858 5.027 5.523 5.544
DRSAunc 0.765 0.881 0.823 3.441 5.412 12.255
DRSAcen 0.760 0.882 0.900 3.136 5.459 4.990

DRSA 0.774 0.892 0.911 3.337 5.132 4.774

which is not personalized well. Our DRSA model accu-
rately placed the highest probability on the true event time
zi, which explains the result of ANLP metric where DRSA
achieved the best ANLP scores. Since DeepHit directly pre-
dicted the probability of the event time p(zi) without any
considerations of the previous conditional. And it has no
supervision onto the predictions in the time range (zi, ti)
which makes the gradient signal too sparse only onto the
true event time zi. As a result, DeepHit did not place the
probability well over the whole time space.

Ablation Study on the Losses In this ablation study,
we compare the model performance on the three losses.
DRSAunc optimizes under (Lz+Luncensored) over only the un-
censored data, and DRSAcen optimizes under (Lz+Lcensored)
without the loss Luncensored. Note that our full model DRSA
optimizes under all the three losses (Lz + Luncensored +
Lcensored) as stated in Eq. (17). From Table 3, we may find
that both two partial likelihood lossesLuncensored andLcensored
contribute to the final prediction. Moreover, our DRSA over
all the three losses achieved the best performance, which
reflects the effectiveness of our classification loss Lc =
Luncensored + Lcensored as that in Eq. (16), which optimizes
the C-index metric directly.

Conclusion
In this paper, we comprehensively surveyed the survival
analysis works from the modeling view and discussed the
pros and cons of them. To make flexibly modeling over time,
we proposed a deep recurrent neural network with novel
modeling view for conditional hazard rate prediction. And
probability chain rule connects the predicted hazard rate at
each time, for the event time probability forecasting and sur-
vival rate estimation. The experiments on three large-scale
datasets in three real-world tasks from different fields illus-
trated the significant advantages of our model against the
strong baselines including state-of-the-art model.
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For the future work, it is natural to apply our model for
competing risks prediction (Alaa and van der Schaar 2017;
Lee et al. 2018) with shared feature embedding at the base
architecture and multi-task learning for loss function.

Acknowledgments
The corresponding authors Weinan Zhang and Yong Yu
thank the support of National Natural Science Foundation
of China (61632017, 61702327, 61772333), Shanghai Sail-
ing Program (17YF1428200).

References
Alaa, A. M., and van der Schaar, M. 2017. Deep multi-task gaus-
sian processes for survival analysis with competing risks. In NIPS.
Andersen, P. K.; Borgan, O.; Gill, R. D.; and Keiding, N. 2012.
Statistical models based on counting processes. Springer Science
& Business Media.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural machine
translation by jointly learning to align and translate. ICLR.
Bhattacharya, B., and Habtzghi, D. 2002. Median of the p value
under the alternative hypothesis. The American Statistician.
Biganzoli, E.; Boracchi, P.; Mariani, L.; and Marubini, E. 1998.
Feed forward neural networks for the analysis of censored survival
data: a partial logistic regression approach. Statistics in medicine
17(10):1169–1186.
Cox, D. R. 1992. Regression models and life-tables. In Break-
throughs in statistics. Springer.
Faraggi, D., and Simon, R. 1995. A neural network model for
survival data. Statistics in medicine.
Gordon, L., and Olshen, R. A. 1985. Tree-structured survival anal-
ysis. Cancer treatment reports.
Graves, A.; Mohamed, A.-r.; and Hinton, G. 2013. Speech recog-
nition with deep recurrent neural networks. In ICASSP. IEEE.
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