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Abstract

Inspired by number series tests to measure human intelligence,
we suggest number sequence prediction tasks to assess neural
network models’ computational powers for solving algorith-
mic problems. We define the complexity and difficulty of a
number sequence prediction task with the structure of the
smallest automaton that can generate the sequence. We sug-
gest two types of number sequence prediction problems: the
number-level and the digit-level problems. The number-level
problems format sequences as 2-dimensional grids of dig-
its and the digit-level problems provide a single digit input
per a time step. The complexity of a number-level sequence
prediction can be defined with the depth of an equivalent com-
binatorial logic, and the complexity of a digit-level sequence
prediction can be defined with an equivalent state automaton
for the generation rule. Experiments with number-level se-
quences suggest that CNN models are capable of learning the
compound operations of sequence generation rules, but the
depths of the compound operations are limited. For the digit-
level problems, simple GRU and LSTM models can solve
some problems with the complexity of finite state automata.
Memory augmented models such as Stack-RNN, Attention,
and Neural Turing Machines can solve the reverse-order task
which has the complexity of simple pushdown automaton.
However, all of above cannot solve general Fibonacci, Arith-
metic or Geometric sequence generation problems that repre-
sent the complexity of queue automata or Turing machines.
The results show that our number sequence prediction prob-
lems effectively evaluate machine learning models’ computa-
tional capabilities.

Introduction
Well-defined machine learning tasks have been crucial for the
researches. Major deep learning breakthroughs in the field
of computer vision such as AlexNet (Krizhevsky, Sutskever,
and Hinton 2012), VGGNet (Simonyan and Zisserman 2014)
and ResNet (He et al. 2016) could not be possible without
Imagenet dataset and challenges (Deng et al. 2009). In the
field of reinforcement learning, open platforms like MuJoCo
(Todorov, Erez, and Tassa 2012) and Deepmind Lab (Beattie
et al. 2016) provide challenging environments for the studies.
However, it is hard to find machine learning task suite for
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algorithmic reasoning although reasoning has always been a
significant subject for many machine learning studies.

It is theoretically proven that carefully designed neural net-
work models can simulate any Turing machine (Siegelmann
and Sontag 1995). Hence, there have been studies applying
neural network models to solve algorithmic tasks such as
learning context-sensitive languages (Gers and Schmidhu-
ber 2001), solving graph questions (Graves et al. 2016), and
composing low-level programs (Reed and de Freitas 2015).
Also, there have been attempts to train neural networks with
simple numerical rules such as copy, addition or multiplica-
tion (Joulin and Mikolov 2015; Kaiser and Sutskever 2015;
Kalchbrenner, Danihelka, and Graves 2015; Graves, Wayne,
and Danihelka 2014). However, it has been unclear whether
the proposed models express computational powers equiv-
alent to Turing machines in practice. To provide a method
to test the computational powers of neural network models,
we propose a set of number sequence prediction problems
designed to fit deep learning methods.

A number sequence prediction problem is a kind of intelli-
gence test for machine learning models inspired by number
series tests, which are conventional methods to evaluate non-
verbal human intelligence (Bracken and McCallum 1998).
A typical number series test gives a sequence of numbers
with a certain rule and requires a person to infer the rule and
fill in the blanks. Similarly, a number sequence prediction
problem requires a machine learning model to predict the
following numbers from a given sequence. The numbers are
represented as a sequence of digit symbols; hence the model
has to learn discrete transition rules between the symbols
such as carry or borrow rules.

To be specific, we suggest two types of number sequence
prediction problems: the number-level problems and the
digit-level problems. A number-level problem provides a
two-dimensional grid of digits as an input where each row
represents a multi-digit number. The target would be a grid of
the same format filled with the following numbers. Solving a
number-level problem is equivalent to constructing the com-
binatorial logic for the transition rules. On the other hand, a
digit-level task provides a single digit as an input per each
time step. A model needs to simulate a sequential state au-
tomaton to predict the outputs. The type of the state machine
required can vary from a finite state machine to a Turing
machine, depending on the generation rule of the sequence.
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The number sequence prediction problems are good ma-
chine learning tasks for several reasons. First, typical deep
learning models can easily fit into the problems. Generative
models for 2D images can be directly applied to solve the
number-level problems, and recurrent language models can
fit into the digit-level problems after minimal modifications.
Next, it is possible to define the complexity and difficulty of
the problem. Like Kolmogorov complexity (Chaitin 1977),
we can define the complexity of a problem with the structure
of the minimal automaton needs to be simulated. Finally, we
can generate an arbitrarily large number of examples, which
is hard for many machine learning tasks.

To empirically prove that the number sequence prediction
problems can effectively evaluate the computational capabil-
ities of machine learning models, we conduct experiments
with typical deep learning methods. We apply residual con-
volution neural network (CNN) (He et al. 2016) models for
the number-level problems, and recurrent neural network
(RNN) models with GRU (Chung et al. 2014) or LSTM
(Hochreiter and Schmidhuber 1997) cells to the digit-level
problems. We also augment RNN models with stack (Joulin
and Mikolov 2015), external memory (Graves, Wayne, and
Danihelka 2014) and attention (Bahdanau, Cho, and Ben-
gio 2014) which might help models solve more complex
digit-level sequence prediction tasks. One-dimensional CNN
models can be applied to digit-level sequences, but it is not
equivalent to solving digit-level problems because for the
CNN models the data needs to be given at the same time in
parallel, losing the sequential nature of the problems. For
each type of sequences, we measure the complexity of it by
designing an automaton equivalent to the generation rule. In
the experiments of the number-level problems, sequences are
generated by various linear homogeneous recurrence rela-
tions. Since the digit transition rules of the relations can be
implemented with combinatorial logic, we measure the com-
plexity and the difficulty of a sequence from the width and the
depth of the logic. Experiments show that CNN models are
capable of learning the compound operations of number-level
sequence generation rules but limited to certain complexity.
Digit-level sequence prediction problems can be solved with
state automata. Therefore, we define the complexity of a
problem with the computing power of the automaton and
choose sequences with complexities of finite state automata,
pushdown automata, and linear bound Turing machines.

The contributions of this work are as follows:
• We propose a set of number sequence prediction problems

for evaluating a machine learning model’s algorithmic
computing power.

• We define methods to measure complexities and difficulties
of the problems based on the structure of automata to be
simulated, which can predict the difficulty of training.

• Number-level sequence prediction experiments show that
CNN models can simulate deep combinatorial logics up to
certain depth.

• Digit-level sequence prediction tasks reveal that the com-
putational powers of existing recurrent neural network
models are limited to that of finite state automata or push-
down automata.

Overall, the set of our problems can be a well-defined
method to verify whether a new machine learning architec-
ture extends the computing power of previous models. There
are some possible directions to extend the computational ca-
pabilities of neural network models. The first way is to apply
training methods other than the typical methods we used in
the experiments. For instance, reinforcement learning meth-
ods can be applied to the algorithmic tasks (Zaremba et al.
2016). Next, non-backpropagation methods such as dynamic
routing (Sabour, Frosst, and Hinton 2017) might help neural
network models learn more complex rules. Our number se-
quence prediction tasks would provide a well-defined basis
for those possible future works.

Problem Definition
Number-level Sequence Prediction
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Figure 1: Input and target sequence examples of a number-
level problem with the Fibonacci sequence. The number-level
sequence example is with length n = 4, shift s = 2 and digit
l = 4. A number in a cell is represented by an one-hot vector.

Figure 1 illustrates a number-level sequence prediction
problem. The model is given with an input sequence
A1 · · ·An which is formatted as a two-dimensional grid with
n rows. Each row corresponds to a term Ai which is a multi-
digit number of l digits. A digit cell is a one-hot vector where
the number of channels is equal to the base b of the digits.
The target data An+1 · · ·An+s is a sequence of following
numbers with the length shift s with the same data layout. In
the experiments, we use sequence data of n = 8, l = 8 and
s = 4. We denote this {0, 1}l×b binary one-hot row tensor
representation of a natural number A as 〈A〉.

We use various order-k homogeneous linear recurrence
of the form An = c1An−1 + · · · + ckAn−k with constant
integer coefficients c1, . . . , ck to generate number sequences
starting from randomly selected initial terms A1, . . . , Ak.
For instance, k = 2, c1 = 1, c2 = 1 imply a general-
Fibonacci sequence and k = 2, c1 = 2, c2 = −1 give
an arithmetic progression. Likewise, a progression with
arithmetic sequence as its difference whose recurrence is
An − An−1 = An−1 − An−2 + c can be re-written in
An = 3An−1 − 3An−2 + An−3. In the perspective of com-
binatorial logic, the generation rules of the sequences can be
seen as k-ary operations of the binary tensors. For example,
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Figure 2: Conceptual schema of a binary operation (left), a
ternary operation (middle) and an equivalent composition of
two binary operations (right). The formulas represent combi-
natorial widths.

the generation rule of arithmetic sequences can be repre-
sented with a binary operation of (〈A〉, 〈B〉) 7→ 〈2A − B〉.
Since all inputs and outputs of an operation are binary, there
exists a shortest disjunctive normal form (DNF) for the oper-
ation. We first define a combinatorial width of an operation
with its disjunctive normal form, i.e. sum of minterms1.

Definition 1. If the smallest DNF of a function f :
{0, 1}n → {0, 1}m has Θ(w)2 minterms, Θ(w) is called the
combinatorial width of the function. If functions f1, . . . , fk
have corresponding widths of Θ(w1), . . . ,Θ(wk), the com-
pound width of a composition f1 ◦ · · · ◦ fk is defined as
Θ(w1 + · · ·+ wk).

The decimal digit addition, for example, requires at least
Θ(102) products since it has to memorize the consequences
of all possible digit pair inputs. Therefore, the combinatorial
width of a linear binary operation is Θ(b2) where b is the base
of the digits. Note that the compound width of a function is
not unique. Consider a logical circuit for the ternary operation
of (〈A〉, 〈B〉, 〈C〉) 7→ 〈2A − B + C〉. As seen in Figure 2,
the operation can be implemented with a single function of
combinatorial width Θ(b3), or a compound of two binary
operations resulting in the compound width of Θ(b2) in at
the cost of a deeper data path. This depth of the path can
define the complexity of the operation.

Definition 2. The complexity of a function f : {0, 1}n →
{0, 1}m is the minimum number n of functions which make
the compound width of f1 ◦ · · · ◦ fn = f the smallest. Such
smallest compound width is called the difficulty of the func-
tion.

For example, the length of a row l is the complexity of
the carry rule since the carry digit of the most significant
digit sequentially depends on all other digits. To eliminate
the dependence on the dimensions, we ignore the carry or
borrow rule while calculating a complexity. Since a logical
product can be approximated with a neuron with a nonlinear
activation, the difficulty should correspond to the number of
neurons in the network. Also, since the complexity reflects
the depth of a logical circuit, it should correspond to the
number of layers in the network. Note that it is possible

1A logical AND of literals in which each variable appears exactly
once in true or complemented form (Katz 2000)

2w is a function of input and output dimensions

to compromise the width for the depth as seen in Figure 2.
We expect deep neural networks to learn narrow but deeper
representations.

Digit-level Sequence Prediction

𝟗 𝟏𝟎 𝟏𝟏 𝟏𝟐

Digit-level Model
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Figure 3: Input and target sequence examples of a digit-level
problem with the Fibonacci sequence. The example is with
n = 8 and s = 4. The order of the digits is little-endian (least
significant digits first).

Figure 3 illustrates a digit-level sequence prediction prob-
lem. The model is given with sequential inputs of a1 . . . an,
each of which is an integer number corresponds to a charac-
ter. With the base of b, the numbers 0 . . . b− 1 correspond to
the digits. The second last number b is a blank, and the last
number b+1 is a delimiter. After n inputs, we give delimiters
as inputs for s time steps. The target sequence consists of n
delimiters followed by an+1 . . . an+s. Because digit calcula-
tions must start from the smallest digit, we order the digits in
the little-endian order which is the reverse of the typical digit
order. In the experiments, we use sequences of n = 12 and
s = 12.

The sequential nature of the data makes it more difficult to
solve the problems. Since the model has to retain information
from the previous inputs, solving the problem is equivalent
to modeling a sequential state automaton of the generation
rule. The computing power of a state automaton falls into
one of the four categories: finite state machine, pushdown
automaton, linear bounded automaton, and Turing machine.
All Turing machines are linearly bounded in the problems be-
cause the computation time is linearly bounded to the length
of the sequence. Therefore, three levels of state automata
are possible in the digit-level sequence prediction problems.
We define the complexity of a sequence by the smallest state
automaton required.
Definition 3. The complexity of a number sequence predic-
tion problem is the complexity of a state automaton which
can simulate the sequence generation rule with the smallest
number of states. The minimal grammar of the sequences is
the formal grammar can be recognized with the automaton.

To illustrate, we can think about the most straightforward
sequence of number counting. If the numbers have at most l
digits of base b, the counter can be implemented with Θ(lb)
shift registers which can be translated to the same number
of non-deterministic finite state automaton. Hence, the com-
plexity of counting numbers is the complexity of finite state
automata, and its minimal grammar is a regular grammar.
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In the experiments, we use progressions with a fixed differ-
ence because they can be understood as generalized forms
of number counting sequences. Arithmetic, geometric and
general-Fibonacci sequences can also be represented as digit-
level sequences. The most straightforward automata capable
of generating them are queue automata, which share the same
computational powers with Turing machines. Since Turing
machines must be linearly bounded in the digit-level prob-
lems, the minimal grammars of both arithmetic and general-
Fibonacci sequences are context-sensitive grammars.

0

1

0

1

In: 0 Out: B

0

1

0

1

In: 1 Out: B

0

1

0

1

In: B Out: 0

0

1

0

1

In: B Out: 1

Figure 4: Nondeterministic finite state automaton that can
solve reverse-order task with n = 2 and b = 2. Automata for
fixed difference arithmetic sequence can be built in similar
manners.

Between regular and context-sensitive languages, there are
context-free languages which require pushdown automata.
Palindromes are proper examples of context-free languages
which cannot be expressed by lesser languages. Therefore,
we add the experiment of a reverse-order task where the target
sequence is the reverse of the input sequence. The input data
consists of n random digits followed by n delimiters, and the
target data is n delimiters followed by n digits, which is the
reverse of the input sequence. If n is limited, it is possible to
solve the reverse-order task with a finite state automaton as
seen in Figure 4. Therefore, we train the models with n =
1 . . . 12 and validate with n = 16 to force the complexity of
the problem equivalent to a pushdown automaton.

Method
Model Architecture
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Figure 5: Schematic of number-level CNN models. The
number of neurons in the convolution layers can be one of
64, 128, 192. The residual blocks can be repeated once, twice
or thrice, making 12, 21 or 30-layer CNN model.

The number-level sequence prediction models described
on Figure 5 are based on WaveNet model (van den Oord

et al. 2016) which is also a generative model for sequential
data. Since the data layout of number-level sequences is two-
dimensional, we use 3×3 convolution kernels with dilation
on the second dimension of the kernels where large recep-
tive fields are necessary for the carry rules. Unlike WaveNet,
we use ReLU activation because we empirically observe
that the gate activation slows down the training speed but
shows no improvement on the accuracy. The number of neu-
rons per convolution layer can be 64, 128 or 192, which can
correspond to the difficulty of a problem. Inspired by the
bottleneck architectures of residual CNN (He et al. 2016),
the first layer of each residual block has half the number of
neurons. By stacking more residual blocks to the model, we
can change the depth of the model. The base 12-layer model
has three residual blocks of dilation (0,2,4), and they can be
repeated to make 21-layer and 30-layer models. BatchNorm
(Ioffe and Szegedy 2015) and Dropout (Srivastava et al. 2014)
methods are applied to all residual blocks.

The digit-level sequence prediction models on the left side
of Figure 6 are based on the simple character-level RNN lan-
guage model (Karpathy 2015) with minimal modifications.
LSTM (Hochreiter and Schmidhuber 1997), GRU (Chung et
al. 2014), Stack-RNN (Joulin and Mikolov 2015) and Neu-
ral Turing Machine (NTM) (Graves, Wayne, and Danihelka
2014) are used for the recurrent modules in the middle. A
Stack-RNN module uses a number of stacks equal to the
base b, and an NTM module uses 4 read and write heads. A
digit-level model with attention (Bahdanau, Cho, and Bengio
2014) follows the encoder-decoder architecture on the right
side of Figure 6. The first half of an input sequence and the
second half of a target sequence begun with the delimiter
(〈Go〉 symbol) are fed into the encoder and the decoder. We
use both unidirectional and bidirectional LSTM modules for
the models with attention. We set the number of neurons in
all hidden layers to 128.

Figure 6: Schematics of digit-level neural network mod-
els. A recurrent module in a digit-level model can be either
LSTM, GRU, Stack-RNN or Neural Turing Machine. Unlike
other digit-level models, an attention model must follow the
encoder-decoder structure which is illustrated on the right
side.

Training and Validation Method
We follow the end-to-end training fashion. Thus the models
have to learn the logical rules without any domain-specific
prior knowledge. A batch of size 32 is randomly generated
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Figure 7: Validation error curves of the deep and wide models on the sequences generated by a ternary relation (left), the mixture
of the four types of binary relations (middle) and the quaternary relation with different base digits (right). Y-axes are validation
error rates, and the X-axes are training example counts. The value following the number of layers denotes the number of neurons
in a convolution layer. The third experiment uses a 30-layer model with 128 neurons per layer.

for each iteration by choosing the initial numbers and apply-
ing the generation rules. The space of all possible training
sequences should be large enough to avoid overfitting. We
evaluate the validation prediction error rate with a pre-defined
validation dataset after every 32 iterations. We define a pre-
diction error rate as a ratio of wrong predictions to the total
predictions. The total predictions are counted as l×s = 32 in
number-level sequences and s = 12 in digit-level sequences.
A prediction is determined by the digit channel with the maxi-
mum output value. Both number-level and digit-level models
are trained to minimize the cross-entropy loss function. The
validation dataset is also randomly generated from the space
outside of the training data space. For example, we choose the
first two terms of number-level arithmetic sequences from the
range of (0, 20000) for the training dataset, but we choose
them from the range of (20000, 30000) for the validation
dataset.

Experiment
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Figure 8: The learning curves of the 12-layer number-level
model with 64 neurons on the five types of the basic se-
quences. (p, q) denotes the coefficients of binary opera-
tions (A,B) 7→ pA + qB. (1, 0, 1) denotes the relation of
An = An−1 + An−3.

Number-level Sequence Prediction Experiment
Setup The objective of the experiments is to verify that
complexity and difficulty of a number-level problem cor-
respond to the depth and the parameter size of a CNN
model. Total eight types of sequences are used in this part
of the experiments. First four types of the sequences have
recurrence relations in the form of An = pAn−1 + qAn−2

where (p, q) ∈ {(1, 1), (2,−1), (3,−2), (1, 2)}. These four
sequences represent binary operations with the complex-
ity of one. The fifth type of sequences has a relation of
An = An−1+An−3 which represents a binary operation with
the complexity of two because the model has to see through
at least two layers to catch the relation between An−1 and
An−3 with 3× 3 convolution kernels. The sixth type of the
sequences is a mixture of the first four types of the sequences.
This is equivalent to building a ternary combinatorial logic
with four times more width. For comparison, the seventh
type of sequences is generated by a recurrence relation of
An = 2An−1 −An−2 +An−3 which can be a compound of
two binary operations. The last type sequence is a progression
with a relation of An = 4An−1 − 6An−2 + 4An−3 −An−4

whose general term can be calculated with a fourth-order
polynomial. For the training data, the first k terms3 of the
sequences are chosen from (0, 20000), while they are chosen
from (20000, 30000) in the validation dataset. We compare
the learning curve patterns over various model configurations.

Result Figure 8 and Figure 9 show the validation error
curves and the error examples of a CNN number-level model
during the training on the five types of sequences generated
by the binary operations. Although the numbers of possible
sequences exceed a hundred million, the model can achieve
error rates near zero in less than a hundred thousand exam-
ples. Since the validation data comes from the outside of the
training data space, we can conclude that the model can learn
the exact logic rules for the operations. The error examples
show that it is hard to catch long-term carry rules, which
is expected because the carry rules have complexities equal
to l = 8. Deploying deeper models reduce the errors from

3k is the order of a recurrence relation
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Figure 9: The error examples from number-level model
trained with general-Fibonacci sequences. Shaded cells show
the locations of the errors. The numbers are shown in little-
endian order.

those long-term carry rules, occasionally achieving a zero
prediction error. The fifth sequence of rule An−1 + An−3

shows a different learning curve pattern since 3× 3 convo-
lution kernels force the model to simulate the logic with the
complexity of two. The results show that complexities of
number-level sequence prediction problems can effectively
predict the hardness of learning.

Figure 7 compares the learning curves of the models with
various configurations and sequence data. The models suc-
cessfully learn the rules from both the mixed set of primary
sequences and the sequences generated by a ternary relation.
However, the patterns of the learning curves are different.
With the mixed set of primary sequences, the learning curves
of the models show uniform convexity without a saddle point.
Also, there is no clear advantage of using deeper models.
However, the learning curves with the sequences of a com-
pound rule have saddle points, where we suspect the models
find breakthroughs. Moreover, we can observe the advantages
of using deeper models. Therefore, it can be concluded that
deep learning models tend to learn complex but less difficult
combinatorial logic, rather than the equivalent shallow but
wide representations. Meanwhile, the last learning curves
show that the CNN model finds it hard to learn the logic with
the complexities more than three. The quaternary operator
with base 5 has a smaller combinatorial width than a decimal
ternary operator, but the model cannot learn the rule of the
former.

Digit-level Sequence Prediction Experiment
Setup The purpose of the digit-level sequence prediction
experiments is to find complexity limits of the models. The
first type of the sequences is a progression with a fixed dif-
ference, which can be understood as a variation of number
counting sequences. We use the difference of 17 to observe
the carry rules more often. The first term of a training data
is chosen from the range of (0, 9000), and that of a vali-
dation data is chosen from (9000, 9900). In the second ex-
periment, we use arithmetic sequences or general-Fibonacci
sequences. The first two terms are chosen from the range
of (0, 4000) during the training and (4000, 6000) for valida-
tions. Since it is impractical to build finite state automata for
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Figure 10: Validation error curves of LSTM and GRU digit-
level sequence prediction models on the arithmetic sequences
with fixed difference of 17.

Figure 11: Error examples from the digit-level LSTM model
trained with general-Fibonacci sequences. The numbers are
shown in little-endian order. Shaded cells show locations of
the errors.

all cases, the model must simulate queue automata to solve
the problems. The third experiment uses rounded geometric
sequences with the relation An+1 = b1.3Anc where the first
terms are randomly chosen from (0, 4000) during the train-
ing and (4000, 6000) for validations. The task also requires
a smaller queue automaton since it has to remember only
one previous number at a time. The last experiment tests the
models with the reverse-order task, which has the complexity
of a pushdown automaton. Since a reverse-order problem of
fixed length can be solved by a finite automaton, we train
the models with n ∈ {1 . . . 12} and validate the models with
n = 16 to force the models to learn a pushdown automaton.

Result Figure 10 shows that GRU and LSTM based mod-
els are capable of simulating finite state automata. Although
the GRU model shows better performance than the LSTM
model, both are not able to solve the problems that require
queue or pushdown automata as seen in Table 1. Training
error rates of GRU and LSTM models on reverse-order task
converges around 0.01 suggesting that the models are capable
of simulating finite state automata for generating palindromes
with a limited length. The error examples from the general-
Fibonacci sequence prediction task in Figure 11 show the
strategies of the models. The models remember relationships
between the most significant digits, while relationships be-
tween the least significant digits are more critical for the
digit computations. We can conclude that the computational
powers of typical RNN models are limited to those of finite
state automata if they are trained with typical training meth-
ods. Encoder-decoder model with attention, Stack-RNN and
NTM models are capable of solving reverse-order task, but
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Tasks Reverse-order (training) Geometric Arithmetic Fibonacci

LSTM 28.4% (1.2%) 79.4% 77.1% 80.5%

GRU 51.9% (0.9%) 69.0% 77.1% 79.3%

Attention(unidirectional) 42.0% (8.8%) 62.8% 77.0% 69.3%

Attention(bidirectional) 0.0% (0.0%) 51.0% 72.9% 60.9%

Stack-RNN 0.0% (0.0%) 64.1% 63.8% 69.4%

NTM 0.0% (0.0%) 57.1% 65.7% 68.1%

Table 1: Test error rates of the digit-level sequence prediction experiment. Identical training methods are applied to the models
except the attention model. Parenthesized numbers in the reverse-order task column are training error rates with n = 1 . . . 12.

they are no better than typical RNN models in problems that
require queue automata. The model with attention doesn’t
show significant differences if the model uses unidirectional
LSTM. Using bidirectional LSTM seems to be crucial for
simulating pushdown automata in the models with attention.

Conclusion
We introduced effective machine learning problems of num-
ber sequence prediction which can evaluate a machine learn-
ing model’s capability of solving algorithmic tasks. We also
introduced the methods to define the complexities and dif-
ficulties of the number sequence prediction problems. The
structure of a combinatorial logic measures the complexity
and the difficulty of a number-level sequence prediction prob-
lem. Experiments with the CNN models showed that they
are effective ways to predict the hardness of learning, and
they correspond to structures of neural network models. The
complexity of a digit-level sequence prediction task could
be defined as the complexity of a minimal state automaton
which can solve it. The experimental results showed that the
computational powers of typical RNN models are limited to
those of finite automata. While models augmented with exter-
nal memory could solve the problems that require pushdown
automata, none of the models were capable of simulating
queue automata which are equivalent to Turing machines. To
sum up, our number sequence prediction tasks were proven
to be effective and well-defined for testing neural network
models’ computational capabilities.

There are a few possible ways we suggest to proceed with
the problems. The first way is to propose and test a new net-
work architecture to solve the tasks could not be solved in
this study. If a neural network model can solve digit-level
arithmetic and geometric sequence prediction tasks, we can
say that the model extended the computational capabilities
of neural networks. Another way is applying training meth-
ods other than typical methods we used in the experiments.
Sequence-to-sequence training methods for the digit-level
prediction problems limit the capability of models to lin-
ear bound automata since the computation time is linearly
bounded to the length of a sequence. The training methods
that decouple computation time and the number of outputs
might expand the capability of the neural network models. Fi-
nally, non-backpropagation methods such as dynamic routing

(Sabour, Frosst, and Hinton 2017) might be able to expand
the computing power of neural network models. Our number
sequence prediction tasks would provide a well-defined basis
for those possible future works.
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