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Abstract

We consider the problem of performing dimension reduc-
tion on heteroscedastic functional data where the variance
is in different scales over entire domain. The aim of this
paper is to propose a novel multiscale functional principal
component analysis (MFPCA) approach to address such het-
eroscedastic issue. The key ideas of MFPCA are to partition
the whole domain into several subdomains according to the
scale of variance, and then to conduct the usual functional
principal component analysis (FPCA) on each individual sub-
domain. Both theoretically and numerically, we show that
MFPCA can capture features on areas of low variance with-
out estimating high-order principal components, leading to
overall improvement of performance on dimension reduction
for heteroscedastic functional data. In contrast, traditional
FPCA prioritizes optimizing performance on the subdomain
of larger data variance and requires a practically prohibitive
number of components to characterize data in the region bear-
ing relatively small variance.

1 Introduction
Functional principal component analysis (FPCA) is a key
tool for performing dimension reduction on functional data
that features infinite dimensionality and emerges in many
machine learning applications (Ghebreab, Smeulders, and
Adriaans 2008; Ramsay and Silverman 2005; Ferraty and
Vieu 2006; Hsing and Eubank 2015). In classic FPCA re-
ferred to as single-scale FPCA in this paper, a single eigen-
analysis is conducted for observed functions on the entire
domain. Specifically, FPCA is built on eigen-analysis of the
covariance function of functional data, analogous to the co-
variance matrix, from which we derive functional princi-
pal components. For the purpose of dimension reduction,
only the principal components corresponding to the first few
largest eigenvalues are retained. Related works include early
development of FPCA (Rao 1958; Dauxois, Pousse, and Ro-
main 1982; Besse and Ramsay 1986), and more recent ad-
vances such regularization techniques (Rice and Silverman
1991; Silverman 1996), estimation and theory (Yao, Müller,
and Wang 2005; Hall, Müller, and Wang 2006; Li and Hs-
ing 2010; Zhang and Wang 2016) for functional data that are
sparsely observed, and interpretability (Chen and Lei 2015;
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Lin, Wang, and Cao 2016), to name a few. All of these works
adopt the single-scale paradigm, which is briefly described
in the next section.

Such one-size-fits-all scheme, as we show in Section 2,
inevitably comes with a side effect that the leading principal
components prioritize producing good approximation qual-
ity for functions on the subdomain that holds large data vari-
ance. However, for heteroscedastic functional data, where
the variance of the data has substantially different scales
over the domain, single-scale FPCA approach often needs
a large number of principal components in order to charac-
terize the behavior of the data on the subdomain with rel-
atively small variance. However, it is notoriously difficult
to accurately estimate high-order principal components. For
example, for a fixed sample size, the estimation error for
the kth principal components is approximately of the order
k2 (Mas and Ruymgaart 2015). This quadratic decay in es-
timation quality prohibits one from obtaining reliable esti-
mates of principal components for a moderate sample size
except for the first few leading ones. Consequently, for het-
eroscedastic functional data, single-scale FPCA may not be
able to discover useful features in the area of low variance.

To address the issue of FPCA for heteroscedastic func-
tional data, we consider a question, which states

“Could we modify standard FPCA to efficiently deal with
heteroscedastic functional data?”

Our solution to the above question is the development of a
novel multiscale FPCA framework. The key ideas of MF-
PCA are to partition the whole domain into several subdo-
mains in the way that the variance of the data within a sub-
domain is approximately on the same scale, and then to con-
duct FPCA on each subdomain separately. Compared with
the existing methods in the literature, three major method-
ological contributions in this paper are as follows:
• Our MFPCA approach is simple and yet powerful. Specif-

ically, compared to single-scale FPCA, the multiscale ap-
proach alleviates the issue of estimating high-order princi-
pal components and leads to overall improvement of data
representation, since fewer components are required for
sufficient approximation of the data within each subdo-
main.

• Our MFPCA is able to discover useful patterns in the area
of low variance, as demonstrated in the analysis of the
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brain microstructure in relation to multiple sclerosis us-
ing diffusion tensor imaging techniques; see Section 4 for
details.

• Theoretically, we show that MFPCA has larger capac-
ity of representation for functional data and yields higher
estimation quality for principal components than single-
scale FPCA. The theoretical analysis is complemented by
numerical simulation in Section 4.

2 Classic Functional Principal Component
Analysis

Without loss of generality, let X be a random process de-
fined on an interval I such that E‖X‖2L2 <∞ and EX = 0.
FPCA is built on the concept of Karhunen-Loève expansion
of X . Specifically, X(t) admits the following representation

X(t) =
∞∑
k=1

ξkφk(t), (1)

where ξk are centered uncorrelated random variables, φk(·)
are normalized eigenfunctions of the covariance function
C(s, t) = Cov{X(s), X(t)}, and Var(ξk), often denoted by
λk, is the eigenvalue of C corresponding to φk, i.e.,∫

I

C(·, t)φk(t)dt = λkφk(·). (2)

It is also conventionally assumed that λ1 > λ2 > · · · > 0.
The eigenfunctions φ1(·), φ2(·), . . ., referred to as principal
components in the context of FPCA, form an orthonormal
basis of L2(I).

The above FPCA is a single-scale approach in the sense
that both (1) and (2) are defined on the entire interval I . It
has the following global optimality of Karhunen-Loève ex-
pansion for approximation of X using the first few eigen-
functions. For any fixed K > 0, let B = {B1, . . . , BK}
be a collection of K orthonormal real-valued functions in
L2(I), and define PB the projection operator of the space
spanned by B1, . . . , BK , i.e., PBX =

∑K
k=1〈Bk, X〉Bk,

where 〈Bk, X〉 =
∫
I
Bk(t)X(t)dt. In principle, PBX is the

approximation of X using the basis functions B1, . . . , BK .
The approximation error is often measured by E(B) =
E
(
‖X − PBX‖2L2

)
. It can then be shown that E(Φ) ≤

E(B) for Φ = {φ1, . . . , φK} and any B of K orthonormal
functions in L2(I).

Although such optimality of single-scale FPCA is attrac-
tive for approximating functional data, it has an undesired
side-effect for functional data with different scales of vari-
ability on the interval I . To elaborate, we divide I into J
equal subintervals I1, . . . , IJ that form a partition of I , in the
sense that

⋃J
j=1 Ij = I and Ij ∩ Ik = ∅ for 1 ≤ j 6= k ≤ J .

Denote X(j)(t) as the restriction of X(t) to the subinterval
Ij , i.e., X(j)(t) = X(t) if t ∈ Ij and X(j)(t) = 0 if t 6∈ Ij .

Then, we have

E(B) = E
(
‖X − PBX‖2L2

)
=

J∑
j=1

E
(
‖X(j) − (PBX)(j)‖2L2

)
= E

(
‖X‖2L2

)
×

J∑
j=1

E
(
‖X(j) − (PBX)(j)‖2L2

)
E
(
‖X(j)‖2L2

) E
(
‖X(j)‖2L2

)
E
(
‖X‖2L2

) ,

where (PBX)(j) denotes the restriction of PBX to Ij . Let
wj = E

(
‖X(j)‖2L2

)
/E
(
‖X‖2L2

)
for all j ≤ J , which

are constants that are independent of B. We interpret the
weights wj as the variance density of X on Ij . Then, find-
ing B to optimize E(B), which the single-scale FPCA does,
prioritizes minimizing the approximation error for the pieces
with larger weights, i.e., with relatively larger variance den-
sity. Therefore, in order to capture features of pieces that
have small weights, one needs a large number of principal
components. As the principal components φk are unknown,
one needs to estimate them from a finite sample. However, it
is difficult to estimate the high-order principal components,
in light of the fact that any estimate for φk based on n in-
dependently and identically distributed (i.i.d.) samples of X
cannot have an estimation error less than ck2/n for some
constant c > 0 (Mas and Ruymgaart 2015). Thus, if one
applies single-scale FPCA to X(t) that exhibits multiscale
variability over I , then the features in the area with low vari-
ance density might be concealed by those in the region of
high variance density.

3 Multiscale Karhunen-Loève Expansion
To overcome the aforementioned shortcoming of single-
scale FPCA, for heteroscedastic functional data, we adopt
the following simple divide-and-conquer strategy to con-
duct FPCA: divide the interval I into several subintervals
according to the scale of variance on I , and then per-
form FPCA on each subinterval. To be more precise, let
I1, . . . , IJ and X(1), . . . , X(J) be defined as in Section
2. Applying single-scale FPCA to each X(j) on Ij , we
can obtain the Karhunen-Loève approximation X(j)(t) ≈∑Kj

k=1 ξ
(j)
k φ

(j)
k (t), where φ(j)k is the kth leading eigenfunc-

tion of the multiscale covariance function C(j) that is defined
by C(j)(s, t) = Cov{X(j)(s)X(j)(t)} on the square Ij×Ij .
The approximation for X is then obtained by

X(t) ≈
J∑
j=1

Kj∑
k=1

ξ
(j)
k φ

(j)
k (t). (3)

Although there are
∑J
j=1Kj terms in (3), for each t ∈ Ij ,

only Kj of them are nonzero as φ(j)k is zero outside Ij . The
number of principal components,Kj required for a good ap-
proximation ofX(j) can vary among the subintervals, which
allows for the adaptive approximation of X over different
subintervals. For example, if sample paths of X are rough
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on Ij , then a relatively larger number of principal compo-
nents can be used to obtain a good approximation, while
for relatively smooth pieces, X(k), a small number might
be sufficient. In contrast, single-scale FPCA uses the same
number of principal components for each t ∈ I and hence
does not enjoy such extra adaptivity. Note that (3) automati-
cally takes into account the fact that the sub-domains where
the data have small variance contribute less than others to
approximating the process X(t), by observing that the prin-
cipal component scores ξ(j)k have different scales of vari-
ance on different sub-domains. For those sub-domains with
small variance, the scale of the corresponding principal com-
ponent scores is also small. Nevertheless, the features of a
small scale could be influential in supervised learning tasks,
as demonstrated in Section 4.

As stated previously, single-scale FPCA has the global
optimality property, which can be equivalently stated as
E‖PΦX‖2L2 ≥ E‖PBX‖2L2 , where Φ and B are defined
in Section 2. The quantity E‖PΦX‖2L2 is often interpreted
as the amount of variance explained by the principal compo-
nents in Φ. The optimality property essentially asserts that
the first K eigenfunctions explain the variance of X more
than any other K orthonormal functions for any K ≥ 1.
However, by exploring local adaptivity, our MFPCA enjoys
larger capacity of representation of functional data, i.e., it
can explain larger variance than single-scale FPCA when
the same number of principal components is used to approx-
imate X(t) for each t ∈ I . The following proposition illus-
trates this point for K = 1.
Proposition 1. Let I1, . . . , IJ form a disjoint partition of I .
Suppose that X is a random process satisfying E‖X‖2L2 <
∞ and (without loss of generality) EX = 0. Let Sj be
the collection of function f such that ‖f‖2L2 = 1 and
support(f) ⊂ Ij . Then

E‖Pφ1
X‖2L2 = E〈X,φ1〉2 ≤ sup

ψ(j)∈Sj

J∑
j=1

E〈X,ψ(j)〉2.

The equality is possible only if E〈X,φ(j)1 〉 = E〈X,φ(k)1 〉 for
all 1 ≤ j, k ≤ J , where φ(j)1 denotes the restriction of the
single-scale eigenfunction φ1 onto Ij .

Proof. It is easy to see that the conclusion holds for J >

2 if it is true for J = 2. Suppose ‖φ(1)1 ‖L2 > 0 and
‖φ(2)1 ‖L2 > 0; otherwise, the conclusion is trivial. Set
φ̃1 = φ

(1)
1 /‖φ(1)1 ‖L2 and φ̃2 = φ

(2)
1 /‖φ(2)1 ‖L2 . Then

E〈X,φ1〉2 = E〈X,φ(1)1 + φ
(2)
1 〉2

= E〈X,φ(1)1 〉2 + E〈X,φ(2)1 〉2 + 2E(〈X,φ(1)1 〉〈X,φ
(2)
1 〉)

= ‖φ(1)1 ‖2L2E〈X, φ̃1〉2 + ‖φ(2)1 ‖2L2E〈X, φ̃2〉2

+ 2‖φ(1)1 ‖L2‖φ(2)1 ‖L2E(〈X, φ̃1〉〈X, φ̃2〉)

≤ ‖φ(1)1 ‖2L2E〈X, φ̃1〉2 + ‖φ(2)1 ‖2L2E〈X, φ̃2〉2

+ ‖φ(1)1 ‖2L2E〈X, φ̃2〉2 + ‖φ(2)1 ‖2L2E〈X, φ̃1〉2

= E〈X, φ̃1〉2 + E〈X, φ̃2〉2,

where the last equality is due to ‖φ(1)1 ‖2L2 + ‖φ(2)1 ‖2L2 = 1.
The equality holds if E〈X,φ(1)1 〉 = E〈X,φ(2)1 〉. The fact
that φ̃1 ∈ S1 and φ̃2 ∈ S2 concludes the proof.

Principal components are unknown and need to be
estimated from data in practice. Given n i.i.d. sam-
ples X1, X2, . . . , Xn, the single-scale covariance func-
tion C is estimated by its empirical version Ĉ(s, t) =
n−1

∑n
i=1Xi(s)Xi(t). The kth single-scale principal com-

ponent φk is then estimated by the kth principal component
φ̂k of Ĉ. The quality of the estimator φ̂k is quantified by the
error E‖Pφ̂k

− Pφk
‖2∞, where ‖ · ‖∞ denotes the operator

norm on L2(I). It is shown that E‖Pφ̂k
− Pφk

‖2∞ ≥ ck2/n

for all k ≥ 1 and a universal constant c > 0 (Mas and
Ruymgaart 2015). In Section 2, we point out that single-
scale FPCA focuses on the region of high variance density.
For heteroscedastic functional data, if one needs to learn fea-
tures in the area of low variance density, then a potentially
large number of principal components are required. How-
ever, due to the quadratic growth in estimation error, it is no-
toriously difficult to obtain reliable estimates for high-order
principal components.

The difficulty of handling high-order principal compo-
nents might be alleviated or even avoided if one takes a
multiscale perspective. To give a more concrete example,
we assume X =

∑J
j=1

∑j
k=1 ξ

(j)
k φ

(j)
k + X⊥, where φ(j)k

are orthonormal, X⊥ is orthogonal to all φ(j)k , and ξ(j)k are
uncorrelated and centered random variables with variance
λ
(j)
k ≡ E(ξ

(j)
k )2 � {J(J + 1)/2− j(j−1)/2 + (k− j)}−α

for some constant α > 1, i.e., λ(J)1 > λ
(J)
2 > · · ·λ(J)J >

λ
(J−1)
1 > λ

(J−1)
2 > · · · > λ

(1)
1 . Also, if ϕ ∈ L2(I)

and ‖ϕ‖L2 = 1, then E〈X⊥, ϕ〉2 < min{λ(j)k : j =

1, . . . , J, k = 1, . . . , j} = λ
(1)
1 . In other words, φ(j)k are

the first J(J + 1)/2 principal components of X . If one ap-
plies single-scale FPCA to obtain an estimate φ̂(j)k,S for each

principal component φ(j)k , then the estimation error for φ(1)1

is E‖P
φ̂
(1)
1,S

− P
φ
(1)
1,S

‖2∞ ≥ cJ2(J + 1)2/(4n). For multi-

scale FPCA, given the partition I1, I2, . . . , IJ , the multi-
scale estimator for C(j) is given by its empirical version
Ĉ(j)(s, t) = 1

n

∑n
i=1X

(j)
i (s)X

(j)
i (t) and the principal com-

ponent φ(j)k is estimated by the kth leading principal com-
ponents φ̂(j)k,M of Ĉ(j). In particular, φ̂(1)1,M is the first leading

principal component of Ĉ(1). The estimation error of φ(1)1,M

is E‖P
φ̂
(1)
1,M

− P
φ
(1)
1,M

‖2∞ ≤ c log2 n/n (Mas and Ruymgaart

2015), which contrasts with the error cJ2(J + 1)2/(4n) for
the single-scale estimate φ̂(1)1,S when J � log n.

To conduct the dimension reduction in (3), X is approx-
imated by its projection onto the principal components φ(j)k
for k = 1, 2, . . . ,Kj and j = 1, 2, . . . , J simultaneously.
This projection, denoted by P , is equivalent to the projection
onto the linear space span{φ(j)k : k = 1, 2, . . . ,Kj , j =
1, 2, . . . , J}. In practice, it is estimated by the projection
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P̂M onto the space span{φ̂(j)k,M : k = 1, 2, . . . ,Kj , j =

1, 2, . . . , J}. The estimation error of P̂M is bounded in the
following theorem.

Theorem 2. Let λ(j)1 > λ
(j)
2 > · · · be eigenvalues of C(j),

which satisfy c1j−1−α ≤ λ
(j)
k ≤ c2j

−1−α for some con-
stants c1, c2 > 0 and for all j and k. Then, we have

E‖P̂M − P‖2∞ ≤
2c log2 n

n

J∑
j=1

K2
j , (4)

where P̂M is the multiscale estimate of P based on n i.i.d.
samples, and c > 0 is a universal constant.

Proof. Let P (j) be the projection onto the linear space
span{φ(j)k : k = 1, 2, . . . ,Kj}. Note that E‖P̂ (j)

M −
P (j)‖2∞ ≤ cK2

j log2 n/n (Mas and Ruymgaart 2015),

where P̂ (j)
M is the multiscale estimate of P (j). Then (4) fol-

lows from the fact E‖P̂M − P‖2∞ ≤ 2
∑J
j=1 E‖P̂ (j)

M −
P (j)‖2∞.

Apply the theorem to the above example, we
see that the estimation error of P̂M is bounded by
2cn−1 log2 n

∑J
j=1K

2
j ≤ 2cJ3n−1 log2 n. In particular,

if we use P (j) and P (j)
k to denote the projection operators

for the linear spaces span{φ(j)k : k = 1, 2, . . . ,Kj}
and span{φ(j)k }, respectively, and denote their multi-
scale estimates by P̂

(j)
M and P̂

(j)
k,M , respectively, then

supQ∈P E‖Q̂M − Q‖2∞ ≤ 2cJ3 log2 n/n, where

P = {P} ∪ {P (j) : j = 1, . . . , J} ∪ {P (j)
k : k =

1, 2, . . . ,Kj , j = 1, 2, . . . , J}, and Q̂M is the multiscale
estimator for Q. However, for single-scale FPCA, one has
supQ∈P E‖Q̂S −Q‖2∞ ≥ E‖P̂ (1)

1,S − P
(1)
1 ‖2∞ > cJ4/(4n)

which is larger than the multiscale one when J � log2 n,
where Q̂S is the single-scale estimator for Q. Note that the
bounds in the above derivation are quite loose. The practical
advantage of the multiscale approach could emerge for
small J , as numerically illustrated by the simulation studies
presented in the next section.

To apply multiscale FPCA, one needs to find a good
partition of I . A simple and yet effective approach is to
segment I according to the variance function V (t) =

Var[X(t)] and in practice its empirical version V̂ (t) =
(n−1)−1

∑n
i=1{Xi(t)}2. Practical functional data are often

only recorded at some discrete points of I subject to poten-
tial measurement noise, rather than fully observed. There are
two types of functional data, including dense data and sparse
data. Dense functional data refer to the scenario that eachXi

is recorded on a common, regular and dense grid t1, . . . , tm
of I , where m denotes the number of observations for each
subjectXi; while sparse functional data refer to the case that
Xi are measured on an irregular and subject-specific sparse
grid ti1, . . . , timi

, where mi is the number of measurements

for Xi. For dense data, the variance function at tj can be es-
timated by V̂ (tj) = 1

n−1
∑n
i=1{Xi(tj)}2. For sparse data,

such a simple estimate does not work, and we adopt local
linear smoothing (Zhang and Wang 2016) on the observa-
tions to obtain the estimate V̂ (t) = b̂t0 with

(̂bt0, b̂t1) = arg min
(bt0,bt1)∈R2

n∑
i=1

1

mi

mi∑
j=1

K
(
tij − t
h

)
× [{Xi(tij)}2 − bt0 − bt1(tij − t)}]2,

whereK is a kernel function supported on [−1, 1], and h > 0
is the bandwidth to be chosen by cross-validation. Therefore,
for both dense and sparse functional data, we can obtain the
estimate of V (t) on a dense and regular grid t1, . . . , tm of
I . To derive a partition on I for MFPCA, we apply a multi-
ple change point detection method (Niu and Zhang 2012;
Frick, Munk, and Sieling 2014) on V̂ (t1), . . . , V̂ (tm) to
discover the change points of V̂ (t) and partition the in-
terval I according to those points, or we may apply the
propagation-separation method to partition I into disjoint re-
gions (Polzehl and Spokoiny 2006; Spokoiny and Vial 2009;
Zhu, Fan, and Kong 2014). These change point detection
methods also provide data-driven approaches to select the
number of change points, which determines the number J
of subintervals of the partition. Alternatively, one can visu-
alize the empirical variance function and then determine the
number of change points manually, which is often sufficient
and effective in practice. The number Kj of principal com-
ponents can be selected by a threshold (e.g. 95%) on the
fraction of variance explained (FVE) for the jth subinterval,
j = 1, 2, . . . , J . The complete algorithm is given below.

Algorithm 1 (MFPCA). Suppose thatX1, . . . , Xn are func-
tional data on a common interval I , either given in the dense
form or sparse form.

1. Obtain the estimate V̂ (t) on a dense and regular grid
t1 < · · · < tm of I .

2. Apply a multiple change point detection method on
V̂ (t1), . . . , V̂ (tm). Suppose there are J−1 change points
that are denoted by T1 < · · · < TJ−1. Partition I into J
subintervals according to T1 < · · · < TJ−1. Denote the
subintervals by I1, . . . , IJ .

3. Apply single-scale FPCA on each Ij , with data
X

(j)
1 , . . . , X

(j)
n , recalling that X(j)

i denotes the restric-
tion of Xi to Ij . Suppose λ̂(j)k for j = 1, 2, . . . ,Kj and
j = 1, 2, . . . , J are the first K =

∑J
j=1Kj empirical

eigenvalues from all subintervals Ij and φ̂
(j)
k are their

corresponding eigenfunctions. Each function Xi is ap-
proximated by Xi(t) ≈

∑J
j=1

∑Kj

k=1 ξ̂
(j)
ik φ̂

(j)
k (t), where

the scores ξ̂(j)ik are computed by
∫
Ij
φ̂
(j)
k (t)X

(j)
i (t)dt.

The number of overall principal components, K, can be
determined by a fractional variance explained threshold, i.e.,
the smallest number of leading components required to ac-
count for at least 95% of the variance of the data. In practice,
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the multiscale features might be buried by the first single-
scale principal component φ1, i.e., the variance function
of X does not exhibit multiscale features, but the variance
function of X − Pφ1

X might. In this case, we can estimate
the first single-scale principal component, denoted by φ̂1,S ,
and then apply the above multiscale algorithm to the residu-
als Xi − Pφ̂1,S

Xi. Indeed, this procedure can be applied re-
cursively to each partition to form hierarchical FPCA which
is a multiscale system. In such a hierarchical structure, dif-
ferent layers represent FPCA that is performed at different
scales, with the bottom layer corresponding to the finest.

4 Numerical Illustration
We illustrate the estimation of eigenfunctions φ and
projection PΦ via n = 50 and n = 200 simu-
lated samples from a Gaussian process on the interval
[0, 1] with mean function µ(t) = e−(t−0.1)

2/0.003 −
2e−(t+0.1)2/0.008 + e−(t−0.95)

2/0.01 − 0.5e−(t−0.7)
2/0.012,

variance function σ2
0(t) = e−(t−0.05)

2/0.01(t + 0.05) +

1.5e−(0.95−t)
2/0.015(1.05− t) and Matérn correlation func-

tion ρ(s, t) = 21−ν(
√

2ν|s − t|)νBν(
√

2ν|s − t|)/Γ(ν),
whereBν is the modified Bessel function of the second kind
of order ν, Γ is the gamma function, and we set ν = 0.1.
The mean function and variance function are specifically de-
signed to mimic the shape of the mean function and variance
function in the data application that follows. For the purpose
of comparison, we also include the case of variance function
σ2
1(t) ≡ 1, which might favor single-scale FPCA. We repeat

each simulation setting N = 100 times independently. The
estimation quality of an estimator φ̂ for an eigenfunction φ
is quantified by the Monte Carlo root mean squared error
(RMSE), defined by RMSE(φ̂) = 1

N

∑N
r=1 ‖φ̂(r) − φ‖L2 ,

while for an estimator P̂ of the projection P , the Monte
Carlo RMSE is given by RMSE(P̂ ) = 1

N

∑N
r=1 ‖P̂(r) −

P‖∞, where φ̂(r) and P̂(r) are the estimates produced in the
rth simulation replication. The results, shown in Figure 1
and 2, suggest that the multiscale approach produces better
estimation quality for eigenfunctions and projections, with
more prominent advantage when data exhibit a multiscale
feature, such as in the case of σ2(t) = σ2

0(t).
We apply multiscale FPCA to analyze the brain mi-

crostructure in the corpus callosum of healthy subjects
and patients with multiple sclerosis (MS). MS is a
common demyelinating disease that is often caused by
immune-mediated inflammation. More precisely, demyeli-
nation refers to damage to myelin, an insulating material
that covers nerve cells, protects axons and helps nerve sig-
nal to travel faster. Patient with MS suffer from demyelina-
tion that occurs in the white matter of the brain and can lose
mobility or even cognitive function (Jongen, Ter Horst, and
Brands 2012). Myelin damage in the brain can be examined
by diffusion tensor imaging (DTI), which produces high-
resolution images of white matter tissues by tracing water
diffusion within the tissues. Fractional anisotropy of water
diffusion can be determined from DTI and evaluated in rela-
tion to MS (Ibrahim et al. 2011).
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Figure 1: log10(RMSE) of the multiscale (red) and single-
scale (blue) estimators for the first 10 eigenfunctions (top
panels) and projection (bottom panels) onto the first k lead-
ing components for k = 1, 2, . . . , 10 for n = 50.
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Figure 2: log10(RMSE) of the multiscale (red) and single-
scale (blue) estimators for the first 10 eigenfunctions (top
panels) and projection (bottom panels) onto the first k lead-
ing components for k = 1, 2, . . . , 10 for n = 200.
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Figure 3: Left panel: fractional anisotropy profile of 382 subjects. Right panel: empirical variance function of fractional
anisotropy profile.

The DTI dataset we used in the following analysis was
collected at Johns Hopkins University and the Kennedy-
Krieger Institute. It consists of data from n1 = 340 MS
patients and n2 = 42 healthy subjects. All fractional
anisotropy profiles are recorded on a common grid of 93
points, as shown in the left panel of Figure 3. It seems that
these profiles have larger variance at both ends relative to
that in the middle. This is confirmed by the cross-sectional
variance that is plotted in the right panel in Figure 3. We see
that the variance function can be divided into three regions,
including [0, 20], [20, 70] and [70, 93], with relatively small
variance density at [20, 70]. This motivates us to apply the
proposed multiscale FPCA on these regions separately. The
first three estimated eigenfunctions of each region are shown
in Figure 4, as well as the first three single-scale eigenfunc-
tions. For comparison, the restriction of these single-scale
eigenfunctions to each region is normalized to unit L2 norm.
We observe that both the multiscale FPCA and single-scale
FPCA yield similar results for the first principal component
on each region, but differ substantially for the second and
third components. For example, the first principal compo-
nent on the region [20, 70] is almost a straight line, which can
be interpreted as a size component, i.e., subjects with a pos-
itive score have larger fractional anisotropy than an average
subject on locations between 20 and 70. However, for the
second component, the multiscale analysis is able to capture
additional features of the data on the region [20, 70], while
the single-scale analysis still yields almost a straight line
that is similar to the depiction of its first component within
that region. This agrees with our analysis in Section 2: as
fractional anisotropy has low variance density on [20, 70],
single-scale FPCA prioritizes other regions.

It is of interest to see whether the additional patterns un-
covered by MFPCA are useful for subsequent analysis, such

as predicting MS status based on fractional anisotropy. To
answer this question, we study classification of MS patients
and healthy subjects using a random forest classifier based
on the scores derived from the firstK principal components.
To account for the imbalance of the data, we adopt a sim-
ple undersampling strategy to train the classifier as follows.
We randomly sample 42 subjects among all 342 MS patients
without replacement, and combine those data with the data
from the 42 healthy subjects to form a new dataset, which we
then randomly divide into two equal halves. The classifier is
trained on one half, while the correct classification rate is
computed on the other half. We repeat the above procedure
100 times independently for each K = 1, 2, . . . , 12, where
12 is the number of components required to explain over
95% of the variance of the data. In reality, K could be de-
termined by cross-validation or BIC criterion. We also com-
pare the proposed method to wavelet transformation which
is capable of localizing signals in time domain. Specifically,
each fractional anisotropy profile is represented by a set of
coefficients with respect to Daubechies’ least asymmetric
wavelets (Daubechies 1992), and wavelet coefficients are
fed into a random forest classifier. Different vanishing mo-
ments are considered, namely, from db1 to db6. Roughly
speaking, wavelets of more vanishing moments can repre-
sent more complex function with a sparser set of wavelet
coefficients.

The results, shown in Table 1, clearly suggest that MF-
PCA outperforms single-scale FPCA for all values of K ex-
cept K = 3. We note that the first three multiscale com-
ponents, φ(2)1 , φ(3)1 and φ(1)1 , are the first component from
each region. As previously stated, the first multiscale prin-
cipal component and the single-scale counterpart for each
region are almost identical, which might explain why the
performance of classification for both methods is quite close
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Figure 4: The first 3 principal components of each partition by multiscale FPCA (solid) and single-scale (dashed) FPCA.

when K ≤ 3. A possible explanation for the observation
that the multiscale method performs worse when K = 3
is that the third multiscale principal component might not
be strongly related to MS status. In such case, including the
component in the model does not reduce prediction bias, but
increases prediction variability and thus reduces the correct
classification rate.

As high-order components come into play, in particular
when the fifth component φ(3)2 , the sixth component φ(2)2 and
the seventh component φ(1)3 are included, the advantage of
MFPCA becomes more prominent. In contrast, for single-
scale FPCA, the classification performance barely improves
when more principal components are added. This demon-
strates that MFPCA is able to discover useful features that
might not be captured by single-scale FPCA in regions of
low variance density. The MFPCA method also outperforms
the wavelet method, likely due to the fact that principal
components derived from MFPCA are innately data-driven,
while wavelet bases are not. Such data-driven feature al-
lows a parsimonious representation of functional data and
is attractive in practice. For instance, in the above simulated
functional data, on average 12 principal components are suf-
ficient to account for 95% of variation of data, while over 50
wavelets are required to achieve a similar level of represen-
tation.

Table 1: Correct classification rates of the random forest
classifier trained on wavelet basis coefficients, multiscale
principal component scores and single-scale principal com-
ponent scores, respectively.

K 1 2 3 4 5 6
Multiscale 66.2 71.0 69.9 70.5 72.9 73.4

Single-scale 64.7 69.8 70.5 69.8 70.7 70.9

K 7 8 9 10 11 12
Multiscale 74.5 73.5 73.9 72.5 72.8 72.6

Single-scale 71.1 70.9 71.1 69.5 69.7 69.9

db1 db2 db3 db4 db5 db6
wavelet 69.5 70.8 68.6 70.1 69.5 69.1
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5 Concluding Remark
We have presented a multiscale FPCA method for functional
data and demonstrated that it is numerically superior to its
single-scale counterpart and the well known wavelet trans-
formation, thanks to its data-driven nature and the ability to
localize signals in time domain. It is worth of noting that
while principal component scores from the same segment
are uncorrelated, those from different segments could be cor-
related. Such correlation indeed accounts for the correlation
structure among different segments. This is distinct from
block-diagonal structures where functional data from differ-
ent segments are uncorrelated or even independent for Gaus-
sian processes. It is also of interest to apply the proposed
MFPCA method to machine learning tasks other than clas-
sification, such as regression and clustering, which is one of
our future research topics.
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