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Abstract

A heterogeneous information network (HIN) is one whose
objects are of different types and links between objects could
model different object relations. We study how spectral clus-
tering can be effectively applied to HINs. In particular, we
focus on how meta-path relations are used to construct an ef-
fective similarity matrix based on which spectral clustering
is done. We formulate the similarity matrix construction as
an optimization problem and propose the SClump algorithm
for solving the problem. We conduct extensive experiments
comparing SClump with other state-of-the-art clustering al-
gorithms on HINs. Our results show that SClump outper-
forms the competitors over a range of datasets w.r.t. different
clustering quality measures.

1 Introduction
A heterogeneous information network (HIN) is a network
structure whose objects could assume different object types
and links between objects could represent different kinds
of relationships between objects. HINs are ubiquitous and
are used to model many different kinds of real-world data.
For example, the Facebook open graph1 models users, posts,
events, and pages as four different kinds of objects. A user
can publish a post, attend an event, or like a page, which il-
lustrates three different kinds of connections relating a user
object to a post/event/page object. Compared with homoge-
neous networks (in which objects are of single type and links
model single relation), HINs are a richer construct for cap-
turing complex objects and their relations.

Data analytics on HINs has been an active area of re-
search (Sun et al. 2011; Li et al. 2016). Being a fundamen-
tal task in machine learning and data mining, cluster analy-
sis has found interesting applications in HINs. For example,
clustering Facebook users based on their interests enables
effective target and viral marketing (Li et al. 2017). Even
though spectral clustering is very effective for data that is
modeled as (homogeneous) network/graph (Liu et al. 2013),
there are surprisingly few studies that apply spectral clus-
tering to HINs. The objective of this paper is to study how
spectral clustering can be effectively applied to HINs to im-
prove clustering quality.
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1https://developers.facebook.com/docs/sharing/opengraph

Spectral clustering transforms clustering into a graph par-
titioning problem that optimizes a certain criterion that mea-
sures the quality of the partitions, such as the normalized
cuts (Shi and Malik 2000). Generally, given a set of objects
X = {x1, x2, ..., xn}, standard spectral clustering methods
first construct an undirected graph G = (X,S), where X
denotes the vertex set and S is a matrix such that Sij mea-
sures the similarity between objects xi and xj .2 Then, the
Laplacian matrix LS is computed based on which eigen-
decomposition is performed to obtain k eigenvectors that
correspond to the k smallest eigenvalues, where k is the
number of desired clusters. These eigenvectors are used as
new feature space of objects. Finally, a post-processing step,
such as k-means (Ng, Jordan, and Weiss 2002) and spectral
rotation (Yu and Shi 2003) is applied to partition the objects
into k clusters.

Previous studies have shown that the performance of spec-
tral clustering highly depends on the “quality” of the sim-
ilarity matrix (Nie et al. 2016). Intuitively, a high-quality
matrix S is one such that Sij is large if objects xi and
xj ought to be in the same cluster and Sij is small oth-
erwise. The challenges of constructing a high-quality ma-
trix S in HINs are two-fold. First, although the similar-
ity between two objects in an HIN can be measured by
conventional network distances (such as shortest paths or
random-walk based similarity), previous works have shown
that meta-path/meta-structure based similarity is much more
effective in HINs (Sun et al. 2011; Huang et al. 2016;
Fang et al. 2016). (We use meta-paths in this paper and
our method can be easily adapted to using meta-structures.)
A meta-path is a sequence of object types that expresses a
path-based relation between two objects. For example, in
Facebook, the meta-path User-Event-User represents the re-
lation between users who have attended the same event;
the meta-path User-Page-User captures the relation between
two users who have liked the same product page. An in-
teresting issue is how various meta-paths can be integrated
to formulate a similarity matrix that exhibits a clear clus-
tering structure. Second, a theoretically infinite number of
meta-paths can be derived from an HIN (with meta-paths
composed of different object types and of various lengths).

2Given a matrix M , we use Mij or M [i, j] to refer to the (i,j)-
th entry of M .
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However, generally, only a small subset of them are use-
ful for a given clustering task. For example, the meta-path
User-Page-User is useful for clustering users based on their
interests. The same meta-path, however, is much less useful
if we want to cluster users based on their geographic loca-
tions. A mechanism for weighing the relative importance of
meta-paths is thus essential.

We propose the SClump algorithm, which stands for
Spectral Clustering Using Meta-Paths, to address the above
problems. SClump uses meta-paths to construct the similar-
ity matrix S. The matrix S is refined through an iterative
process, whose goal is to optimize an objective function that
captures the quality of S. During the process, weights of
meta-paths are also learned. Here, we summarize our con-
tributions.
•We show how spectral clustering can be effectively applied
to HINs. In particular, we show how meta-paths are used to
construct an effective similarity matrix.
• We propose the SClump algorithm, which employs an it-
erative learning process via which the similarity matrix and
weights of meta-paths are mutually refined.
• We conduct extensive experiments on real datasets to
show the effectiveness of SClump. We compare SClump
with the state-of-the-art clustering methods for HINs. Our
results show that spectral clustering is an effective approach
for HINs and that SClump significantly outperforms existing
methods.

The rest of the paper is organized as follows. Section 2
summarizes related works on general spectral clustering and
existing clustering methods for HINs. Section 3 gives formal
definitions of related concepts and the problem we study.
Section 4 describes our algorithm SClump. Section 5 gives
the experimental results and Section 6 concludes the paper.

2 Related Work
The problem of clustering objects (vertices) in HINs has
been an interesting area of research. Both unsupervised
methods (e.g., (Zhang et al. 2016)) and semi-supervised
methods (e.g., (Li et al. 2017)) have been proposed. Most
of these methods measure objects’ similarity based on the
links connecting them (e.g., (Zhou and Liu 2013)). There are
also methods that consider both links and objects’ attribute
values (e.g., (Sun, Aggarwal, and Han 2012)).

As a graph-based clustering method, general spectral
clustering is a well studied subject (Shi and Malik 2000;
Zelnik-Manor and Perona 2005; Huang et al. 2009; Li et
al. 2018). Some of these studies focus on the computa-
tional efficiency (Song et al. 2008; Chen and Cai 2011),
while others focus on the probabilistic interpretation of the
method (Meila and Shi 2001; Nadler et al. 2005). Spectral
clustering has been shown to be very effective for unstruc-
tured data (in which objects are associated with fixed-length
feature vectors) (Ng, Jordan, and Weiss 2002) and homo-
geneous network data (Liu et al. 2013). However, very few
works on spectral clustering have been carried out in the
context of HINs. In the following, we briefly describe two
representative works, namely, SRC (Long et al. 2006) and
Het-RSC (Sengupta and Chen 2015).

SRC is a spectral clustering method for clustering multi-
type objects. Given an HIN, SRC first derives a relation table
(or a matrix) for each type of link in the network. These re-
lation matrices are then collectively factorized through an
iterative process to obtain low-dimensional embeddings of
the objects. These embeddings serve as objects’ feature vec-
tors on which k-means is applied to cluster the objects.

Het-RSC is a regularized spectral clustering method for
HINs. Given an HIN with n objects of m types, Het-RSC
first constructs an adjacency matrixA ∈ Rn×n such thatAij
gives the number of links between objects xi and xj . Then,
eigen-decomposition is performed on the regularized graph
Laplacian of A. Let E = [e1; e2; ...; emk] denote the mk
eigenvectors that correspond to the mk eigenvalues of the
largest absolute values. For each object type T , the algorithm
extracts the rows in E that correspond to the objects of type
T . These rows form those objects’ feature vectors. k-means
is then applied to cluster the objects based on the vectors.

While SRC and Het-RSC do not make use of meta-paths,
there are (non-spectral-clustering) meta-path-based meth-
ods. Two representative ones are PathSelClus (Sun et al.
2012) and HMFClus-S (Zhang et al. 2016). PathSelClus
uses a probabilistic generative model for clustering. Specif-
ically, each meta-path P derives a relation matrix MP such
that MP [i, j] records the number of instances of P that re-
late objects xi and xj . Given a set of meta-paths, their cor-
responding relation matrices are taken as evidence based on
which a probabilistic model of hidden clusters is derived.

HMFClus-S (Zhang et al. 2016) is a state-of-the-art clus-
tering algorithm for HINs. The method applies nonnegative
matrix factorization to the relation matrices that are derived
from meta-paths. These matrices produce latent factors (low
dimensional embedding vectors) for objects from which a
consensus is learned. A meta-path based similarity regu-
larization step is further employed. A post-processing step
(e.g., k-means) using the low dimensional latent factors is
applied to cluster objects.

Recently, network embedding has emerged as a useful
tool to mine networked data. The idea is to learn low di-
mensional embedding vectors to represent objects in a net-
work (Tang et al. 2015; Grover and Leskovec 2016; Perozzi,
Al-Rfou, and Skiena 2014; Kipf and Welling 2016; Hamil-
ton, Ying, and Leskovec 2017). The embedding vectors can
then be used in various data analysis tasks, such as cluster-
ing, classification, and similarity search. Recent works on
embedding objects in HINs include (Fu, Lee, and Lei 2017;
Dong, Chawla, and Swami 2017; Tang, Qu, and Mei 2015;
Shi et al. 2018; Chang et al. 2015).

HIN2Vec (Fu, Lee, and Lei 2017) uses meta-paths for
embedding HINs. They construct a binary classifier model
that predicts, given a pair of objects in an HIN, whether a
meta-path-based relationship should exist between the ob-
jects. Taking embedding vectors of objects as parameters,
the model is trained by maximizing the likelihood of the
given training data. By performing random walk from one
object node to another, a positive training sample that con-
nects the two nodes with the meta-path derived from the ran-
dom walk path is obtained; Negative samples are drawn by
negative sampling.
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Figure 1: An HIN (a) and its schematic graph (b)

metapath2vec (Dong, Chawla, and Swami 2017) is a
meta-path-based embedding method for HINs, which per-
forms meta-path-based random walks to construct a hetero-
geneous neighborhood of a node. metapath2vec++ is an ex-
tension to metapath2vec, which uses node type information
in distinguishing context nodes. Cluster analysis can be done
on the embedding vectors (obtained from HIN2Vec or meta-
path2vec++) by standard methods such as k-means.

3 Definitions
In this section we give a formal problem definition.

Definition 1 Heterogeneous Information Network (HIN).
Let T = {T1, ..., Tm} be a set of m object types. For each
type Ti, let Xi be the set of objects of type Ti. An HIN is a
graph G = (V, E), where V =

⋃m
i=1 Xi is a set of nodes and

E is a set of links, each represents a binary relation between
two objects in V . �

Definition 2 Network schema. A network schema is a meta
template of an HIN G = (V, E). Let (1) φ : V → T be an
object-type mapping that maps an object in V into its type,
and (2) ψ : E → R be a link-relation mapping that maps a
link in E into a relation in a set of relations R. The network
schema of an HIN G, denoted by TG = (T ,R), shows how
objects of different types are related by the relations in R.
A schematic graph is used to represent TG with T and R
being the node set and the edge set, respectively. Specifically,
there is an edge (Ti, Tj) in the schematic graph iff there is a
relation inR that relates objects of type Ti to objects of type
Tj . �

Example: Figure 1(a) shows a Yelp network that includes
four object types: T = {review(♦), business(�), user(#),
keyword(4)}. The set R consists of three relations, which
are illustrated by the three edges in the schematic graph (Fig-
ure 1(b)). For example, the edge B–R in Figure 1(b) could
represent the relation that a (B)usiness is given a (R)eview;
the edge R–K could indicate that a (K)eyword is mentioned
in a (R)eview.

Definition 3 Meta-path. A meta-path P is a path defined
on the schematic graph of a network schema. A meta-path
P: T1

R1−→ · · · Rl−→ Tl+1 defines a composite relation R =
R1 ◦ · · · ◦Rl that relates objects of type T1 to objects of type
Tl+1. If two objects xu and xv are related by the composite
relation R, then there is a path, denoted by pxu xv

, that
connects xu to xv in G. Moreover, the sequence of links in

pxu xv matches the sequence of relations R1, ..., Rl based
on the link-relation mappingψ. We say that pxu xv is a path
instance of P , denoted by pxu xv

` P . �

For example, the path pB1 B2 = B1 → R1 → U1 →
R2 → B2 in Figure 1(a) is an instance of the meta-path
Business-Review-User-Review-Business (abbrev. BRURB)
that captures the relation between two businesses that have
been reviewed by the same customer; the path pB2 B3 =
B2 → R3 → K2 → R4 → B3 is an instance of the meta-
path Business-Review-Keyword-Review-Business (abbrev.
BRKRB) that captures the relation between two businesses
that have reviews containing the same keyword.

Definition 4 Clustering in HINs. Given an HIN G =
(V, E), a target object type Th, the number of clusters k,
and a set of meta-paths PS , the problem of HIN cluster-
ing is to partition the objects in Xh into k disjoint clusters
C = {C1, ..., Ck}. �

4 Algorithm
In this section we describe our algorithm SClump.

Similarity Matrix
The key step in spectral clustering is to construct a high-
quality similarity matrix S. For HINs, meta-paths have been
effectively used to measure object similarity. For example,
given a meta-path P , PathSim (Sun et al. 2011) measures
the similarity between two objects xu and xv w.r.t. P by
counting the number of path instances of P that connect the
two objects. Specifically, we have,

SP (xu, xv) =
2× |{pxu xv : pxu xv ` P}|

|{pxu xu : pxu xu ` P}| + |{pxv xv : pxv xv ` P}|
.

(1)
Given a set of meta-paths PS , each meta-path Pi ∈ PS

derives a similarity matrix SPi
based on Equation 1. We con-

struct a matrix W as the weighted sum of the matrices:

W =

|PS|∑
i=1

λiSPi . (2)

Our objective is to utilize the information provided by W to
derive a similarity matrix S that exhibits a clear clustering
structure. Intuitively, S has a clustering structure if it mimics
a block-diagonal matrix (under certain matrix permutation).
Figure 2(b) illustrates such a structure. Each block in the ma-
trix indicates the memberships of a target cluster. Given the
set of objects Xh of a target type Th, we construct a graph
G based on S. Specifically, ∀xu, xv ∈ Xh, xu and xv are
connected by an edge with weight Suv iff Suv > 0. The
purpose is to use the meta-path based similarities (i.e., W
and hence S) as a better measure of object similarity over
the straightforward direct linkage between objects given by
the original HIN. If S is nonnegative, the graph Laplacian
LS = D − (S + ST )/2, where D is a diagonal matrix with
Dii =

∑
j(Sij + Sji)/2, has the following property (Mars-

den 2013; Chung 1997):
Theorem 1 A graph G has k connected components iff the
multiplicity of eigenvalue 0 in the graph Laplacian LS is k.
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Theorem 1 implies that if S ∈ Rn×n and rank(LS) =
n − k, where n is the number of objects, the corresponding
graph G will have exactly k connected components. Based
on spectral graph theory, each component can be considered
a cluster. Let λ be a vector that represents the meta-paths’
weights (λi’s). We determine the matrix S and meta-path
weights λ by solving an optimization problem with the ob-
jective function Γ(S,λ) given below:

minimize Γ(S,λ) = ||S −W ||2F + α||S||2F + β||λ||22,

s.t.

n∑
j=1

Sij = 1; Sij ≥ 0;

|PS|∑
i=1

λi = 1; λi ≥ 0; rank(LS) = n− k.

The objective function consists of three terms. The first
term ||S − W ||2F learns S that best approximates W . To
prevent overfitting, we introduce two regularization terms
||S||2F and ||λ||22. The first four constraints normalize the en-
tries of S and the meta-path weights, and to prevent rows of
S having all 0 values. The constraint rank(LS) = n - k is
used to force k connected components in S. Our aim is to
learn a similarity matrix S with exactly k connected compo-
nents from a set of meta-path based similarity matrices that
are summarized in W .

Optimization
The optimization problem is non-convex due to the con-
straint rank(LS) = n − k. It is thus difficult to optimize
the problem directly. We transform the original problem to:

min ||S −
|PS|∑
i=1

λiSPi
||2F + α||S||2F + β||λ||22 + 2γ

k∑
i=1

σi(LS),

s.t.

n∑
j=1

Sij = 1, Sij ≥ 0,

|PS|∑
i=1

λi = 1, λi ≥ 0,

(3)

where σi(LS) denotes the i-th smallest eigenvalue of LS .
Since LS is semi-definite, σi(LS) ≥ 0. By setting a large γ
value, we force the term

∑k
i=1 σi(LS) to zero to guarantee

rank(LS) = n−k. According to the Ky-Fan Theorem (Fan
1949), we have,

k∑
i=1

σi(LS) = min
F∈Rn×k,FTF=I

tr(FTLSF ), (4)

where tr(·) is the trace operator. The optimization problem
is thus equivalent to:

min ||S −
|PS|∑
i=1

λiSPi
||2F + α||S||2F + β||λ||22 + 2γ tr(F

T
LSF ),

s.t.

n∑
j=1

Sij = 1, Sij ≥ 0,

|PS|∑
i=1

λi = 1, λi ≥ 0, F ∈ Rn×k
, F

T
F = I,

(5)
where S, λ and F are variables. SClump solves Problem (5)
using an iterative update approach. In each iteration, two of
the above three variables are fixed, while the remaining one
is updated. We now describe the update procedure.

[Update F with S and λ fixed]. With fixed S and λ,
Problem (5) can be simplified as:

min
F∈Rn×k, FTF=I

tr(FTLSF ). (6)

According to the Ky-Fan Theorem, Problem (6) has a
closed-form solution that corresponds to the subspace
spanned by the k eigenvectors with the k smallest eigenval-
ues of LS .

[Update S with F and λ fixed]. We extract terms and
constraints that are relevant to S from Problem (5) and de-
rive:

min∑n
j=1 Sij=1, Sij≥0

||S −W ||2F + α||S||2F + 2γ tr(FTLSF ). (7)

Since F is fixed, Problem (7) can be rewritten as

min∑n
j=1 Sij=1, Sij≥0

||S−W ||2F +α||S||2F +γ
∑
i,j

||~fi− ~fj ||22Sij , (8)

where ~fi and ~fj are the i-th and the j-th row vectors in F ,
respectively. We can decompose Equation (8) into a number
of subproblems, each corresponds to an object xi:

min
~si1=1,~si≥0

||~si − ~wi||22 + α||~si||22 + γ
∑
j

||~fi − ~fj ||22Sij , (9)

where ~si and ~wi are the i-th row of S and W , respectively.
Now, rewrite Problem (9) as

min
~si1=1,~si≥0

||~si − ~pi||22, (10)

where ~pi is the i-th row of P = (2W − γQ)/(2 + 2α)

and Q ∈ Rn×n with Qij = ||~fi − ~fj ||22. Problem (10) is
convex and it can be solved by an efficient iterative algo-
rithm (Huang, Nie, and Huang 2015).

[Update λ with F and S fixed]. We rewrite Problem (5)
as

min∑|PS|
i=1 λi=1, λi≥0

||S −
|PS|∑
i=1

λiSPi
||2F + β||λ||22, (11)

which is a quadratic programming problem that can be
solved by (Boyd and Vandenberghe 2004).

Finally, SClump constructs the graph G from S as ex-
plained earlier and determines the k connected components
in G. These components form the desired clusters. Algo-
rithm 1 shows the pseudo code of SClump. The major com-
putation performed by SClump is the iterative updates of
F and S. Their complexities are O(kn2) and O(n2), re-
spectively, where n is the number of objects and k is the
number of clusters. Since typical matrices we deal with are
sparse, the time complexity of updating F can be reduced
to O(knt), where t is the average number of non-zero en-
tries per row in the matrix. The convergence of SClump
can also be proved — Our update process follows a gen-
eral coordinate descent approach. In particular, each update
in Equations. (6), (7) and (11) decreases the value of the ob-
jective function in Problem (5). Since the objective function
is lower bounded by 0, the convergence of SClump is guar-
anteed.

5 Experiment
In this section we evaluate the performance of SClump. We
use three popular measures, namely, normalized mutual in-
formation (NMI), purity, and rand index (RI), to evaluate
clustering quality (Lin and Cohen 2010). Note that values
of all three measures range from 0 to 1, with a larger value
indicating a better clustering quality.
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Algorithm 1 SClump

Input: G, Th, k, PS .
Output: S, λ, C

1: Calculate SP for each P ∈ PS
2: Normalize SP by setting

∑n
j=1 SP [i, j] = 1

3: Initialize λ, W (0) and t = 1
4: while not convergence do
5: Update F by calculating the k eigenvecters of LS

corresponding to the k smallest eigenvalues
6: for i← 1 to n do
7: Update ~si by solving Problem (10)
8: end for
9: Update λ by solving Problem (11)

10: Update W (t) by Eq. (2)
11: t = t+ 1
12: end while
13: Identify each connected component Cr in S as a cluster

and obtain clusters C = {Cr}kr=1
14: return C = {C1, ..., Ck}

Clustering Tasks
We use three datasets Freebase, DBLP and Yelp in the ex-
periments. Freebase is a knowledge base that models entities
and their relationships as a graph. DBLP is a bibliographic
network of scientific publications. Yelp is a business refer-
ral service, whose data includes various information of busi-
nesses such as customer reviews. From these datasets, we
formulated four clustering tasks:
• TV-Series. We extracted an HIN related to TV series from
Freebase. This HIN includes objects of three types: 191 TV
series (S), 19 directors (D) and 26 creators (C). There are
two types of links: D-S (director of a TV series) and C-S
(creator of a TV series). We take Series (S) as the target type
and the clustering task is to cluster Series objects based on
their genres. (The three hidden genres are comedy drama,
soap opera, and police procedural.) We use two meta-paths,
namely, SCS (two series that are created by the same creator)
and SDS (two series that are directed by the same director).
• DBLP. We extracted an HIN consisting of 2,591 au-
thors (A), 4,269 papers (P), 20 publication venues (V) and
3,219 paper keywords (T). These authors focus on different
(hidden) research areas: data mining (DM), database (DB),
information retrieval (IR) and artificial intelligence (AI).
Three relations exist between these objects: P-A (author-
ship), P-V (paper published in a venue), P-T (paper contains
a keyword). We consider four meta-paths: {APA, APAPA,
APVPA, APTPA}. The clustering task is to cluster authors
(target type) based on their research areas.
• Yelp-B. We extracted information from Yelp to construct
an HIN with 1,448 businesses (B), 40 cities (C), 6,577
users (U) and 354 business category objects (A). These busi-
nesses are located in four (hidden) regions: North Carolina
(NC), Wisconsin (WI), Pennsylvania (PA) and Edinburgh,
UK (EDH). Objects are linked by three relations: B-C (busi-
ness in a city), U-B (customer of a business), B-A (busi-
ness of a category). We use three meta-paths: {BCB, BUB,

BAB}. The clustering task is to cluster businesses (target
type) based on the regions they reside.
• Yelp-R. We extracted an HIN that includes 2,224 restau-
rants (B), 16,020 reviews (R), 614 users (U) and 92 food
relevant keywords (K). These restaurants provide different
food: Italian, Chinese and Japanese. Links include R-B (re-
view for a restaurant), U-R (customer of a restaurant) and
K-R (keyword in a review). We use meta-paths {BRURB,
BRKRB} to cluster restaurants (target type) based on food
categories.

Clustering Quality
We compare SClump with 7 other algorithms, which can
be categorized into four groups: (1) SRC and Het-RSC,
which are spectral clustering methods for HINs that do not
use meta-paths. (2) PathSelClus and HMFClus-S, which
are non-spectral-clustering methods that use meta-paths. (3)
HIN2Vec and metapath2vec++, which are state-of-the-art
network embedding methods for HINs that use meta-paths.
We apply k-means to cluster objects based on their low-
dimensional embedding vectors. (4) A variant of SClump.
Note that SClump uses meta-paths to derive similarity be-
tween objects. To understand the effectiveness of the meta-
path-based similarity measure in solving the HIN clus-
tering problem, we consider random walk with restart
(RWR) (Tong, Faloutsos, and Pan 2006) as an alternative
measure. We call this variant SClump-RWR.

In the experiments, parameters of the methods are set to
the values reported in their original papers. We use k-means
as the final post-processing step to return clusters. For this
step, we run k-means 10 times with random centroids and
the most frequent cluster assignment is reported. The only
exception is PathSelClus, which uses a probabilistic gener-
ative model for clustering. For metapath2vec++, each meta-
path independently induces a low dimensional embedding
vector for an object. We assign meta-paths equal weights
and calculate the final embedding vector for each object by
taking the weighted average. For SClump, we set α = 0.1,
β = 10 for Yelp-R and α = 0.5, β = 10 for other clustering
tasks. Moreover, γ is set according to (Nie et al. 2016).

Tables 1, 2 and 3 show the clustering quality of the algo-
rithms using NMI, purity and RI as quality measures, respec-
tively. We use PSC, HMF and mp2vec++ as shorthands for
PathSelClus, HMFClus-S and metapath2vec++. We com-
pare the eight algorithms for the four clustering tasks under
three quality measures. There are in total 12 (4 tasks × 3
measures) contests. Each row in the tables corresponds to
a (task-measure) contest with the winner’s score shown in
boldface. We summarize our observations as follows.
• SRC and Het-RSC are spectral clustering methods that
do not use meta-paths. Comparing them against SClump
(which uses both spectral clustering and meta-paths), we see
that SClump consistently provides high clustering quality
while SRC and Het-RSC perform well in some cases but
poorly in others. For example, for the (DBLP-NMI) contest,
SClump (0.6917) significantly outperforms SRC (0.4826);
while for the (Yelp-B-NMI) contest, SClump (1.0) is perfect
but Het-RSC (0.4908) is contest-worst. These results show
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Datasets SRC Het-RSC PSC HMF HIN2Vec mp2vec++ SClump-RWR SClump
Series 0.5688 0.5367 0.5239 0.5198 0.5822 0.5330 0.5607 0.5787
DBLP 0.4826 0.6789 0.6770 0.5698 0.2555 0.4122 0.0076 0.6917
Yelp-B 0.9671 0.4908 0.8891 0.7044 0.5303 0.9964 0.8997 1.000
Yelp-R 0.7378 0.6006 0.7472 0.7177 0.6170 0.3903 0.0019 0.7836

Table 1: Clustering results (NMI) on the four clustering tasks

Datasets SRC Het-RSC PSC HMF HIN2Vec mp2vec++ SClump-RWR SClump
Series 0.7958 0.8205 0.7962 0.8057 0.7853 0.7749 0.8429 0.8482
DBLP 0.7058 0.8854 0.8725 0.7885 0.5461 0.7445 0.3084 0.8838
Yelp-B 0.9917 0.6691 0.9316 0.7691 0.6802 0.9993 0.9675 1.000
Yelp-R 0.9141 0.7879 0.9172 0.8543 0.8147 0.6560 0.4353 0.9308

Table 2: Clustering results (Purity) on the four clustering tasks

Datasets SRC Het-RSC PSC HMF HIN2Vec mp2vec++ SClump-RWR SClump
Series 0.8229 0.7979 0.7983 0.7866 0.7892 0.7876 0.7999 0.8008
DBLP 0.7701 0.8975 0.8891 0.8440 0.6749 0.7949 0.2604 0.8959
Yelp-B 0.9907 0.7464 0.9453 0.8333 0.7559 0.9992 0.9638 1.000
Yelp-R 0.9088 0.7876 0.9110 0.8783 0.8476 0.7182 0.3547 0.9252

Table 3: Clustering results (RI) on the four clustering tasks

that meta-paths are very useful in improving clustering in
HINs.
• PSC and HMF use meta-paths but they are not spectral
clustering methods. From the tables, we see that SClump
outperforms them over all 12 contests. In particular, for
(Yelp-B-Purity), PSC (0.9316) and HMF (0.7691) are sig-
nificantly outperformed by SClump, which scores a perfect
1. The performance gaps show that spectral clustering is ef-
fective in clustering HIN objects.
• HIN2Vec and mp2vec++ are embedding methods for
HINs. While HIN2Vec achieves the best performance in the
(Series-NMI) contest (in which SClump is a close second),
SClump outperforms them over all other contests. Compared
with SClump, HIN2Vec and mp2vec++ are non-spectral
clustering methods. Moreover, they do not adaptively assign
weights to meta-paths. These contribute to their poorer per-
formance.
• SClump-RWR uses random walks rather than meta-paths
to measure object similarity in HINs. From the tables, we see
that SClump consistently outperforms SClump-RWR over
all the contests. This shows that meta-paths are more effec-
tive in capturing similarity between objects. This observa-
tion is also consistent with some previous works on mining
heterogenous information networks (Sun et al. 2011).
• SClump gives the best overall performance among the
eight methods. It wins 8 out of the 12 contests. For the
contests that SClump does not win, its performance is very
close to that of the winner. For example, for (DBLP-Purity),
SClump (0.8838) is very close to the winner Het-RSC
(0.8854). Such is also the case for the (DBLP-RI) con-
test. The results show that SClump’s approach of integrat-
ing spectral clustering and meta-paths is highly effective for
cluster analysis on HINs.

(a) Het-RSC (b) SClump

Figure 2: Visualizing the similarity matrices for task Yelp-R

To better understand the advantage of SClump over other
spectral clustering methods, let us take a close look at the
similarity matrices SClump constructs. As we have dis-
cussed in Section 4, a good similarity matrix is crucial for
the success of spectral clustering. Intuitively, the similarity
matrix S should exhibit a clustering structure visualized as a
block-diagonal matrix. To illustrate, Figure 2 compares the
similarity matrices constructed by Het-RSC and SClump for
the clustering task Yelp-R. Each sub-figure shows a matrix
by varying a pixel’s darkness according to the correspond-
ing matrix entry value. Objects are re-arranged in the ma-
trix through matrix permutation so that objects assigned to
the same cluster are grouped together. Since Het-RSC con-
structs the matrix based only on the links given in an HIN,
the constructed matrix (Figure 2(a)) is very sparse and the
pixels are hardly visible. In contrast, SClump uses meta-
paths to provide a much richer similarity measure between
objects. This results in a more definite clustering structure
as evidenced by the more “embossed” blocks shown (Fig-
ure 2(b)). This explains the good performance of SClump.
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Figure 3: Meta-path weight learning
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Figure 4: Parameter analysis

Meta-path Weight Learning
SClump uses an iterative update approach to learn meta-path
weights λ (see Section 4). Figure 3 shows how the weights
of the various meta-paths change over the iterations under
the four clustering tasks. We see that the weights converge
very quickly taking only 1 to 5 iterations. This shows that
SClump is practically efficient. We further make the follow-
ing interesting observations from the figures:
• The task TV-Series is to cluster series by their genres. Fig-
ure 3(a) shows that the meta-paths SCS (series with the same
creator) and SDS (series with the same director) carry very
similar weights. This suggests that both creators and direc-
tors are important in determining the genre of their works.
• The task DBLP is to cluster authors by their research ar-
eas. In Figure 3(b), we see that the meta-paths APVPA (au-
thors that publish papers in the same venue) and APTPA (au-
thors that publish papers with the same keyword) are given
higher weights than APA (co-authorship) and APAPA (2-
hop co-authorship). This sounds counter-intuitive because
APA (co-authorship), for example, should be highly relevant
in determining an author’s research area. The reason why
APA is given a very low weight by SClump is that APA is a
very sparse relation. A typical author only co-authors with a
handful of others in the research community. Moreover, au-
thors related by APA are necessarily related by APVPA too.
SClump correctly selects APVPA and APTPA over APA and
APAPA as the more useful meta-paths in the clustering task.
• The task Yelp-B is to cluster businesses by their locations
(regions). Figure 3(c) shows that SClump correctly assigns
BAB (businesses in the same category), which is irrelevant
to the locations of the businesses, a weight of 0. SClump also
correctly gives all the weight (1) to BCB (businesses located
in the same city), which is the determining feature of loca-
tion. Note that SClump gives BUB (businesses visited by the
same user) a 0 weight. Even though BUB is a relevant rela-

tion (due to users locality), the clustering task does not need
this relation as the determining relation BCB is picked. This
result shows that SClump’s weight learning strategy is very
effective in feature (meta-paths) selection for clustering.
• The task Yelp-R is to cluster restaurants by the kind of
food served. From Figure 3(d), we see that SClump correctly
gives BRKRB (restaurants whose reviews contain the same
food keyword), which is most relevant to the task, a weight
of 1. In contrast, BRURB (restaurants reviewed by the same
user) is given a weight of 0 because users could visit restau-
rants that serve different kinds of food. This again shows
the effectiveness of SClump in learning meta-path weights.
Another interesting observation is that for Yelp-R, SClump
takes only one iteration to identify the correct weighting.

SClump uses two parameters, α and β, to control the reg-
ularization terms of S and λ, respectively. For the tasks TV-
Series and DBLP, the (α, β) values chosen were (0.5,10).
Figure 4 shows a sensitivity analysis on α and β. From the
figure, we see that SClump gives very stable performances
over a wide range of parameter values.

6 Conclusions
We studied the problem of clustering objects in an HIN. We
proposed the SClump algorithm which takes a spectral clus-
tering approach. Different from existing spectral clustering
algorithms for HINs, SClump uses meta-paths in the con-
struction of an effective similarity matrix. Through an iter-
ative learning process, SClump refines the similarity matrix
and the meta-paths’ weights. Our experimental results show
that SClump outperforms existing techniques in terms of a
number of clustering quality measures. The superior perfor-
mance of SClump comes from its ability to construct a sim-
ilarity matrix that exhibits a clear clustering structure. The
iterative process is also efficient, generally taking only a few
iterations until convergence.
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