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Abstract

The method of 1-bit (“sign-sign”) random projections has
been a popular tool for efficient search and machine learning
on large datasets. Given two D-dim data vectors u, v ∈ RD ,
one can generate x =

∑D
i=1 uiri, and y =

∑D
i=1 viri, where

ri ∼ N(0, 1) iid. Then one can estimate the cosine simi-
larity ρ from sgn(x) and sgn(y). In this paper, we study a
series of estimators for “sign-full” random projections. First

we prove E(sgn(x)y) =
√

2
π
ρ, which provides an estima-

tor for ρ. Interestingly this estimator can be substantially im-
proved by normalizing y. Then we study estimators based
on E (y−1x≥0 + y+1x<0) and its normalized version. We
analyze the theoretical limit (using the MLE) and conclude
that, among the proposed estimators, no single estimator can
achieve (close to) the theoretical optimal asymptotic variance,
for the entire range of ρ. On the other hand, the estimators can
be combined to achieve the variance close to that of the MLE.
In applications such as near neighbor search, duplicate detec-
tion, knn-classification, etc, the training data are first trans-
formed via random projections and then only the signs of the
projected data points are stored (i.e., the sgn(x)). The origi-
nal training data are discarded. When a new data point arrives,
we apply random projections but we do not necessarily need
to quantize the projected data (i.e., the y) to 1-bit. Therefore,
sign-full random projections can be practically useful. This
gain essentially comes at no additional cost.

Introduction
Consider two high-dimensional data vectors, u, v ∈ RD.
Suppose we generate a D-dim random vector whose entries
are iid standard normal, i.e., ri ∼ N(0, 1), and compute

x =

D∑
i=1

uiri, y =

D∑
i=1

viri

We have in expectation E(xy) = 〈u, v〉 =
∑D
i=1 uivi.

If we generate x and y independently for k times, then
1
k

∑k
j=1 xjyj ≈ E(xy) = 〈u, v〉, and the quality of ap-

proximation improves as k increases. This idea of ran-
dom projections has been widely used for large-scale search
and machine learning (Johnson and Lindenstrauss 1984;
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Vempala 2004; Papadimitriou et al. 1998; Dasgupta 1999;
Datar et al. 2004; Li, Hastie, and Church 2006).

A popular variant is the “1-bit” random projections (Goe-
mans and Williamson 1995; Charikar 2002), which we refer
to as “sign-sign” random projections, based on the following
result of “collision probability”

P (sgn(x) = sgn(y)) = 1− cos−1 ρ

π
(1)

where ρ =
∑D

i=1 uivi√∑D
i=1 u

2
i

√∑D
i=1 v

2
i

is the “cosine” similarity be-

tween the two original data vectors u and v. The method
of sign-sign random projections has become popular, for ex-
ample, in many search related applications (Henzinger 2006;
Manku, Jain, and Sarma 2007; Grimes 2008; Hajishirzi, Yih,
and Kolcz 2010; Türe, Elsayed, and Lin 2011; Manzoor, Mi-
lajerdi, and Akoglu 2016).

Note that by using only the signs of the projected data,
we lose the information about the norms of the original vec-
tors. Thus, in this context, with no loss of generality, we
assume that the original data vectors are normalized, i.e.,∑D
i=1 u

2
i =

∑D
i=1 v

2
i = 1. In other words, we can assume

the projected data to be x ∼ N(0, 1) and y ∼ N(0, 1).
Interestingly, one can take advantage of E(sgn(x)y) and

several variants to considerably improve 1-bit random pro-
jections. This gain essentially comes at no additional cost.
Basically, the training data after projections are stored using
signs (e.g., sgn(x)). When a new data vector arrives, how-
ever, we need to generate its random projections (y) but do
not necessarily have to quantize them.

Related Work
The idea of “1-bit” projections has been extended to
“sign cauchy projections” for estimating χ2 similarity (Li,
Samorodnitsky, and Hopcroft 2013), and to “1-bit minwise
hashing” (Broder 1997; Li and König 2010) for estimating
the resemblance between sets. More general quantization
schemes of random projections have been studied in, for ex-
ample, (Li and Slawski 2017).

In the context of random projections, the idea of estimat-
ing ρ from sgn(x) and y was explored in (Dong, Charikar,
and Li 2008). Similar ideas were also studied in the quanti-
zation literature (without using random projections) (Jégou,
Douze, and Schmid 2011).
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Review of Estimators Based on Full Information
after Random Projections
In this context, since we are only concerned with estimating
the cosine ρ, we can without loss of generality assume that
the original data are normalized, i.e., ‖u‖ = ‖v‖ = 1. The
projected data thus follow a bi-variant normal distribution:[
xj
yj

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
, iid j = 1, 2, ..., k.

where ρ =
∑D
i=1 uivi. The obvious estimator for ρ is based

on the inner product:

ρ̂f =
1

k

k∑
j=1

xjyj , E (ρ̂f ) = ρ,

V ar (ρ̂f ) =
Vf
k
, Vf = 1 + ρ2

one can find the derivation of variance (i.e., Vf ) in (Li,
Hastie, and Church 2006). Note that V ar(ρ̂f ) is the largest
when |ρ| = 1. This is disappointing, because when two data
vectors are identical, we ought to be able to estimate their
similarity with no error. One can improve the estimator by
simply normalizing the projected data. See (Anderson 2003)
for the derivation.

ρ̂f,n =

∑k
j=1 xjyj√∑k

j=1 x
2
j

√∑k
j=1 y

2
j

, E (ρ̂f,n) = ρ+O

(
1

k

)

V ar (ρ̂f,n) =
Vf,n
k

+O

(
1

k2

)
, Vf,n =

(
1− ρ2

)2
In particular, Vf,n = 0 when |ρ| = 1, as desired. One
can further improve ρ̂f,n but not too much. The theoretical
limit (i.e., the Cramér-Rao bound) of the asymptotic vari-
ance (Lehmann and Casella 1998) can be obtained by the
maximum likelihood estimator (MLE), which is the solution
of the following cubic equation:

ρ3 − ρ2
k∑
j=1

xjyj + ρ

−1 +

k∑
i=1

x2j +

k∑
j=1

y2j

− k∑
j=1

xjyj = 0

This cubic equation can have multiple real roots with a small
probability (Li, Hastie, and Church 2006), which decreases
exponentially fast with increasing k. The MLE is asymptot-
ically unbiased and its asymptotic variance becomes:

E (ρ̂f,m) = ρ+O

(
1

k

)
,

V ar (ρ̂f,m) =
Vf,m
k

+O

(
1

k2

)
, Vf,m =

(
1− ρ2

)2
1 + ρ2

Estimator Based on Sign-Sign Random Projections
From Pr (sgn(xj) = sgn(yj)) = 1 − 1

π cos−1 ρ, we have
an asymptotically unbiased estimator and its variance:

ρ̂1 = cosπ

1− 1

k

k∑
j=1

1sgn(xj)=sgn(yj)

 ,

E (ρ̂1) = ρ+O

(
1

k

)
, V ar (ρ̂1) =

V1
k

+O

(
1

k2

)
,

V1 = cos−1 ρ
(
π − cos−1 ρ

)
(1− ρ2)

As later will be shown in Lemma 2, we have when |ρ| → 1,

V1 = 2
√

2π (1− |ρ|)3/2 + o
(

(1− |ρ|)3/2
)
,

This rate is slower than O
(
(1− |ρ|)2

)
, which is the rate

at which Vf,n and Vf,m approach 0. Figure 1 compares
the estimators in terms of V1

Vf,m
, Vf

Vf,m
, and Vf,n

Vf,m
. Basically,

Vf,n < Vf always which means we should always use the
normalized estimator. Note that V1 < Vf if |ρ| > 0.5902.
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Figure 1: Ratios (lower the better) of variance factors: V1

Vf,m
,

Vf

Vf,m
, Vm

Vf,m
, Vf,n

Vf,m
. They are always larger than 1, as Vf,m is

the theoretically smallest variance factor. Note that Vm is the
variance factor for the MLE of sign-full random projections.

Estimators for Sign-Full Random Projections
In many practical scenarios such as near-neighbor search
and near-neighbor classification, we can store signs of the
projected data (i.e., sgn(xj)) and discard the original high-
dimensional data. When a new data vector arrives, we gen-
erate its projected vector (i.e., y). At this point we actually
have the option to choose whether we would like to use the
full information or just the signs (i.e., sgn(yj)) to estimate
the similarity ρ. If we are able to find a better (more accu-
rate) estimator by using the full information of yj , there is
no reason why we have to only use the sign of yj .

We first study the maximum likelihood estimator (MLE),
in order to understand the theoretical limit.
Theorem 1 Given k iid samples (sign(xj), yj), j =
1, 2, ..., k, with xj , yj ∼ N(0, 1), E(xjyj) = ρ, the max-
imum likelihood estimator (MLE, denoted by ρ̂m) is the so-
lution to the following equation:

k∑
j=1

φ

(
ρ√
1−ρ2

sgn(xj)yj

)
Φ

(
ρ√
1−ρ2

sgn(xj)yj

)sgn(xj)yj = 0 (2)

φ(t) = 1√
2π
e−t

2/2 and Φ(t) =
∫ t
−∞ φ(t)dt are respectively

the pdf and cdf of standard normal.

4206



E (ρ̂m) = ρ+O

(
1

k

)
, V ar (ρ̂m) =

Vm
k

+O

(
1

k2

)
,

1

Vm
=E


ρ

(1− ρ2)7/2

φ

(
ρ√

1−ρ2
sgn(xj)yj

)
Φ

(
ρ√

1−ρ2
sgn(xj)yj

) sgn(xj)y
3
j


+E


1

(1− ρ2)3

φ2
(

ρ√
1−ρ2

sgn(xj)yj

)
Φ2

(
ρ√

1−ρ2
sgn(xj)yj

)y2j
 (3)

−E


3ρ

(1− ρ2)5/2

φ

(
ρ√

1−ρ2
sgn(xj)yj

)
Φ

(
ρ√

1−ρ2
sgn(xj)yj

) sgn(xj)yj


�.

As the MLE equation (2) is quite sophisticated, we study
this estimator mainly for theoretical interest, for example,
for evaluating other estimators. We can evaluate the expec-
tations in (3) by simulations. Figure 1 already plots Vm

Vf,m
, to

compare ρ̂m with three estimators: ρ̂1, ρ̂f , ρ̂f,n. The figure
shows that ρ̂m indeed substantially improves ρ̂1.

Next, we seek estimators which are much simpler than
ρ̂m. Ideally, we look for estimators which can be written as
“inner products”. In this paper, we study four such estima-
tors. We first present a Lemma which will be needed for de-
riving these estimators and proving their properties. The re-
sults can also be easily validated by numerical integrations.

Lemma 1∫ ∞
0

te−t
2/2Φ

(
ρt√

1− ρ2

)
dt =

1 + ρ

2
(4)

∫ ∞
0

t3e−t
2/2Φ

(
ρt√

1− ρ2

)
dt =

1

2

(
2 + 3ρ− ρ3

)
(5)

∫ ∞
0

t2e−t
2/2Φ

(
ρt√

1− ρ2

)
dt (6)

= 1ρ≥0

√
π

2
−
√

1

2π

(
tan−1

√
1− ρ2
ρ

− ρ
√

1− ρ2
)

where we denote that tan−1
(
1
0

)
= tan−1

(
1
0+

)
= π

2 . �

The first estimator we present is based on the (odd) mo-
ments of (sgn(xj)yj) as shown in Theorem 2.

Theorem 2

E(sgn(xj)yj) =

√
2

π
ρ, (7)

E
(
(sgn(xj)yj)

3
)

=
1√
2π

(
6ρ− 2ρ3

)
(8)

Proof Sketch: Note that: E
(
(sgn(xj)

2yj)
2
)

= 1, and
E
(
(sgn(xj)yj)

4
)

= 3. Because (xj , xj) is bi-variate nor-
mal, we have xj |yj ∼ N

(
ρyj , (1− ρ2)

)
, and

E (sgn(xj)yj)) = E (yjE (sgn(xj)|yj))
=E (yjPr (xj |yj ≥ 0)− yjPr (xj |yj < 0))

=E

(
yj

(
1− 2Φ

(
−ρyj√
1− ρ2

)))

=E

(
yj

(
2Φ

(
ρyj√
1− ρ2

)
− 1

))

=2

∫ ∞
−∞

tφ(t)Φ

(
ρt√

1− ρ2

)
dt

=4

∫ ∞
0

tφ(t)Φ

(
ρt√

1− ρ2

)
dt− 2

∫ ∞
0

tφ(t)dt

=4
1 + ρ

2

1√
2π
− 2

1√
2π

=

√
2

π
ρ, result in Lemma 1

Similarly, using result from Lemma 1

E
(
sgn(xj)y

3
j )
)

= 4

∫ ∞
0

t3φ(t)Φ

(
ρt√

1− ρ2

)
dt

− 2

∫ ∞
0

t3φ(t)dt =
1√
2π

(
6ρ− 2ρ3

)
.�

Theorem 2 leads to a simple estimator ρ̂g and its variance:

ρ̂g =
1

k

k∑
j=1

√
π

2
sgn(xj)yj , E (ρ̂g) = ρ (9)

V ar (ρ̂g) =
Vg
k
, Vg =

π

2
− ρ2 (10)

The variance does not vanish when |ρ| → 1. Interestingly,
the variance can be substantially reduced by applying a nor-
malization step on yj , as shown in Theorem 3.

Theorem 3 As k →∞, the following asymptotic normality
holds:

√
k

√π

2

∑k
j=1 sgn(xj)yj
√
k
√∑k

j=1 y
2
j

− ρ

 D
=⇒ N (0, Vg,n) (11)

Vg,n = Vg − ρ2
(
3/2− ρ2

)
(12)

where Vg = π
2 − ρ

2 as in (10).

Proof Sketch: Let Zk =
∑k

j=1 sgn(xj)yj
√
k
√∑k

j=1 y
2
j

. As k →∞, then

1

k

k∑
j=1

y2j → E
(
y2j
)

= 1, a.s.

Zk =
1
k

∑k
j=1 sgn(xj)yj√

1
kk
√

1
k

∑k
j=1 y

2
j

→
√

2

π
ρ = g, a.s.
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We express the deviation Zk − g as

Zk − g =
1
k

∑k
j=1 sgn(xj)yj − g + g√

1
k

∑k
j=1 y

2
j

− g

=
1
k

∑k
j=1 sgn(xj)yj − g√

1
k

∑k
j=1 y

2
j

+ g
1−

√
1
k

∑k
j=1 y

2
j√

1
k

∑k
j=1 y

2
j

=
1

k

k∑
j=1

sgn(xj)yj − g + g
1− 1

k

∑k
j=1 y

2
j

2
+OP (1/k)

Thus, to analyze the asymptotic variance, it suffices to study:

E

(
sgn(x)y − g + g

1− y2

2

)2

=E
(
sgn(x)y − g(1 + y2)/2

)2
=E(y2) + g2E(1 + y4 + 2y2)/4− gE(sgn(x)(y + y3))

=1 + g2(1 + 3 + 2)/4− gE(sgn(x)(y + y3))

=1 + 3/2g2 − g2 − gg3 = 1− 1

π

(
5ρ2 − 2ρ4

)
where we recall g3 = E

(
sgn(x)y3)

)
= 1√

2π

(
6ρ− 2ρ3

)
�.

Theorem 3 leads to the following estimator ρ̂g,n:

ρ̂g,n =

√
π

2

∑k
j=1 sgn(xj)yj
√
k
√∑k

j=1 y
2
j

 , E (ρ̂g,n) = ρ+O

(
1

k

)
,

V ar (ρ̂g,n) =
Vg,n

k
+O

(
1

k2

)

This normalization always helps, because Vg,n ≤ Vg .
We can develop more estimators based on Theorem 4.

Theorem 4

E (y−1x<0 + y+1x≥0) =
1 + ρ√

2π
(13)

E (y−1x<0 + y+1x≥0)
2 (14)

= 1ρ≥0 −
1

π

(
tan−1

(√
1− ρ2
ρ

)
− ρ
√

1− ρ2
)

E (y−1x≥0 + y+1x<0) =
1− ρ√

2π
(15)

E (y−1x≥0 + y+1x<0)
2 (16)

= 1ρ<0 +
1

π

(
tan−1

(√
1− ρ2
ρ

)
− ρ
√

1− ρ2
)
�

This leads to another estimator, denoted by ρ̂s:

ρ̂s = 1−
√

2π

k

k∑
j=1

[
yj−1xj≥0 + yj+1xj<0

]
(17)

E (ρ̂s) = ρ, V ar (ρ̂s) =
Vs
k

Vs = 2π × 1ρ<0 + 2 tan−1

(√
1− ρ2
ρ

)
(18)

− 2ρ
√

1− ρ2 − (1− ρ)2

After a careful check, the estimator proposed in (Dong,
Charikar, and Li 2008) is equivalent to ρ̂s, despite the
different expressions. (Dong, Charikar, and Li 2008) used
hyper-spherical projection which is equivalent to random
projection for high-dimensional original data. The variance
expression in (Dong, Charikar, and Li 2008) appeared
different but it is indeed the same as the variance of ρ̂s if we
let original data dimension be large.

We can again try to normalize the projected data for the
hope of obtaining an improved estimator:
Theorem 5

√
k

∑k
j=1 yj−1xj≥0 + yj+1xj<0

√
k
√∑k

j=1 y
2
j

− 1− ρ√
2π

 (19)

D
=⇒N (0, Vs,n)

Vs,n = Vs −
(1− ρ)2

4π

(
1− 2ρ− 2ρ2

)
(20)

where Vs is in (18). �.

This leads to the following estimator:

ρ̂s,n = 1−
∑k
j=1

√
2π
[
yj−1xj≥0 + yj+1xj<0

]
√
k
√∑k

j=1 y
2
j

(21)

E (ρ̂s,n) = ρ+O

(
1

k

)
, V ar (ρ̂s,n) =

Vs,n
k

+O

(
1

k2

)
where Vs,n is in (20). The resultant estimator ρ̂s,n has the
property that the variance approaches 0 as ρ → 1. The
normalization step however does not always help. From
(20), we have Vs ≥ Vs,n if ρ ≤

√
3−1
2 ≈ 0.3660. On the

other hand, as shown in Figure 2, the normalization step
only increases the variance slightly if ρ > 0.3660.

Figure 2 plots the rations: Vm

V1
, Vg

V1
, Vg,n

V1
, Vs

V1
, Vs,n

V1
, to com-

pare those five estimators in terms of their improvements
relative to the 1-bit estimator ρ̂1. As expected, the MLE ρ̂m
achieves the smallest asymptotic variance and Vm

V1
= 2

π at
ρ = 0 and Vm

V1
≈ 0.36 at |ρ| → 1. This means in the high

similarity region, using ρ̂m can roughly reduce the required
number of samples (k) by a factor of 3. Overall, ρ̂s,n is com-
putationally simple and its variance is very close to the vari-
ance of the MLE, at least for ρ ≥ −0.4.

We summarize some numerical values in Lemma 2.
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Figure 2: Variance ratios: Vm

V1
, Vg

V1
, Vg,n

V1
, Vs

V1
, Vs,n

V1
, to compare

the five estimators, in terms of the relative improvement with
respect to the 1-bit estimator ρ̂1. The MLE (ρ̂m, solid blue)
achieves the lowest asymptotic variance.

Lemma 2 At ρ = 0,
Vm

V1
=
Vg

V1
=
Vg,n

V1
=

2

π
≈ 0.6366,

Vs

V1
=

4

π
−

4

π2
≈ 0.8680,

Vs,n

V1
=

4

π
−

6

π2
≈ 0.6653

As |ρ| → 1,

V1 = 2
√

2π (1− |ρ|)3/2 + o
(

(1− |ρ|)3/2
)

(22)

As ρ→ 1,

Vs
V1

=
Vs,n
V1

=
4

3π
≈ 0.4244,

Vg
V1

=∞, Vg,n
V1

=∞�

Recommendation for Estimators
We have studied four estimators (with closed forms) :

ρ̂g =
1

k

k∑
j=1

√
π

2
sgn(xj)yj ,

ρ̂g,n =

√
π

2

∑k
j=1 sgn(xj)yj
√
k
√∑k

j=1 y
2
j

 ,

ρ̂s = 1−
√

2π

k

k∑
j=1

[
yj−1xj≥0 + yj+1xj<0

]
,

ρ̂s,n = 1−
∑k
j=1

√
2π
[
yj−1xj≥0 + yj+1xj<0

]
√
k
√∑k

j=1 y
2
j

The choice depends on application scenarios. Presumably,
for a given query, we would like to retrieve data points which
have similarity ρ close to 1. However, for practical datasets,
typically most data points are not similar at all. From Fig-
ure 2, if we hope to use one single estimator, then ρ̂s,n is the

overall best. We can also combine two estimators: ρ̂s and
ρ̂g,n. Figure 2 shows ρ̂s is better if ρ > 0.4437. For ρ < 0,
we can always switch to the mirror version of the estimators.

A Simulation Study
We provide a simulation study to verify the theoretical prop-
erties of the four estimators for sign-full random projections:
ρ̂g , ρ̂g,n, ρ̂s, ρ̂s,n, as well as ρ̂1 for sign-sign projections.

For a given ρ, we simulate k standard bi-variate normal
variables (xj , yj) with E(xjyj) = ρ, j = 1, ..., k. Then
we choose an estimator ρ̂ to estimate ρ. With 106 simu-
lations, we plot the empirical mean square errors (MSEs):
MSE(ρ̂) = Bias2(ρ̂) + V ar(ρ̂), together with the theo-
retical variance of ρ̂. If the empirical MSE curve and the
theoretical variance overlap, we know that the estimator is
unbiased and the theoretical variance formula is verified.
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Figure 3: Empirical MSEs (solid curves) for four proposed
estimators, together with theoretical (asymptotic) variances
(dashed curves), for 6 ρ values. For ρ̂g and ρ̂s, the solid and
dashed curves overlap, confirming that they are unbiased and
the variance formulas are correct. For ρ̂g,n and ρ̂s,n, the solid
and dashed curves overlap when k is not too small.

Figure 3 presents the results for 6 selected ρ values:
0.99, 0.95, 0.75, 0,−0.95,−0.99. Those simulations verify
that both ρ̂g and ρ̂s are unbiased, while their normalized ver-
sions ρ̂g,n and ρ̂s,n are asymptotically (i.e., when k is not
too small) unbiased. The (asymptotic) variance formulas for
these four estimators are verified since the solid and dashed
curves overlap (when k is not small).

Figure 4 presents the ratios of empirical MSEs (solid
curves): MSE(ρ̂1)

MSE(ρ̂s,n)
and MSE(ρ̂1)

MSE(ρ̂g,n)
, together with the theo-
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retical asymptotic variance ratios (dashed curves): V1

Vs,n
and

V1

Vg,n
. These curves again confirm the asymptotic variance

formulas. In addition, they indicate that in the high similarity
region, when the sample size k is not too large, the improved
gained from using ρ̂s,n can be substantially more than what
are predicted by theory. For example, when ρ is close to 1
(e.g., ρ = 0.99), theoretically V1

Vs,n
= 3

4π ≈ 2.3562, the ac-
tual improvement can be as much as a factor of 8 (at k = 10).
This is the additional advantage of ρ̂s,n.
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Figure 4: Empirical rations: MSE(ρ̂1)
MSE(ρ̂s,n)

and MSE(ρ̂1)
MSE(ρ̂g,n)

,
together with the theoretical asymptotic variance ratios
(dashed curves): V1

Vs,n
and V1

Vg,n
. When k is not small, the

solid and dashed curves overlap. At high similarity and small
k, the improvement would be even more substantial.

An Experimental Study
To further verify the theoretical results, we conduct an exper-
imental study on the ranking task for near-neighbor search
on 4 public datasets (see Table 1 and Figure 5).

Table 1: Information about the datasets
Dataset # Train # Query # Dim
MNIST 10,000 10,000 780
RCV1 10,000 10,000 47,236

YoutubeAudio 10,000 11,930 2,000
YoutubeDescription 10,000 11,743 12,183,626

These four datasets are downloaded from either the UCI
repository or the LIBSVM website. When a dataset contains
significantly more than 10,000 training samples, we only use
a random sample of it. The datasets represent a wide range
of application scenarios and data types. See Figure 5 for the
frequencies of all pairwise ρ values.

For each data point in the query set, we estimate its sim-
ilarity with every data point in the training set, using ran-
dom projections. The goal is to return training data points
with which the estimated similarities are larger than a pre-
specified threshold ρ0. For each query point, we rank all the
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Figure 5: Histograms of all pairwise ρ values.

(estimated) similarities and return top-L points. We can then
compute the precision and recall

Precision =
# retrieved points with true similarities ≥ ρ0

L
,

Recall =
# retrieved points with true similarities ≥ ρ0

#total points with true similarities ≥ ρ0

We report the averaged precision-recall values over all query
data points. By varying L from 1 to the number of training
data points, we obtain a precision-recall curve.

Figure 6 presents the results for the RCV1 datasets, for
ρ0 ∈ {0.9, 0.8, 0.6}, and for k ∈ {50, 100}. In the first
row (i.e., ρ0 = 0.9), we can see that ρ̂s,n is substantially
more accurate than both ρ̂1 and ρ̂g,n. Since this case repre-
sents the high-similarity region, as expected, ρ̂g,n performs
poorly. For smaller ρ0 values, ρ̂g,n performs substantially
better, also as expected. Figure 7, Figure 8, and Figure 9
present the results for the other three datasets. The trends
are pretty much similar to what we observe in Figure 6.

Conclusion
The method of sign-sign (1-bit) random projections has been
a standard tool in practice. In many scenarios such as near-
neighbor search and near-neighbor classification, we can
store signs of the projected data and discard the original
high-dimensional data. As a new data point arrives, one can
generate its projected vector and use it (without taking signs)
to estimate the similarity. We study various estimators for
sign-full random projections and compare their variances
with the theoretical limit. Nevertheless, a combination of
two estimators (ρ̂g,n and ρ̂s) can almost achieve the theo-
retical bound. For applications which only allows a single
estimator, the proposed ρ̂s,n is the overall best estimator.
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Figure 6: RCV1: precision-recall curves for selected ρ0 and
k values, and for three estimators:ρ̂s,n, ρ̂g,n, ρ̂1.
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Figure 7: MNIST: precision-recall curves for selected ρ0
and k values, and for three estimators:ρ̂s,n, ρ̂g,n, ρ̂1.
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Figure 8: YoutubeAudio: precision-recall curves for se-
lected ρ0 and k values, and three estimators:ρ̂s,n, ρ̂g,n, ρ̂1.
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Figure 9: YoutubeDescription: precision-recall curves for
selected ρ0 and k values, and three estimators:ρ̂s,n, ρ̂g,n, ρ̂1.
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