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Abstract

Text clustering is a widely studied problem in the text mining
domain. The Dirichlet Multinomial Mixture (DMM) model
based clustering algorithms have shown good performance
to cope with high dimensional sparse text data, obtaining
reasonable results in both clustering accuracy and compu-
tational efficiency. However, the time complexity of DMM
model training is proportional to the average document length
and the number of clusters, making it inefficient for scaling
up to long text and large corpora, which is common in real-
world applications such as documents organization, retrieval
and recommendation. In this paper, we leverage a symmet-
ric prior setting for Dirichlet distribution, and build indices
to decrease the time complexity of the sampling-based train-
ing for DMM from O(K ∗ L) to O(K ∗ U), where K is the
number of clusters, L the average length of document, and U
the average number of unique words in each document. We
introduce a Metropolis-Hastings sampling algorithm, which
further reduces the sampling time complexity from O(K∗U)
to O(U) in the nearly-to-convergence training stages. More-
over, we also parallelize the DMM model training to obtain
a further acceleration by using an uncollapsed Gibbs sam-
pler. We combine all these optimizations into a highly ef-
ficient implementation, called X-DMM, which enables the
DMM model to scale up for long and large-scale text clus-
tering. We evaluate the performance of X-DMM on several
real world datasets, and the experimental results show that X-
DMM achieves substantial speed up compared with existing
state-of-the-art algorithms without clustering accuracy degra-
dation.

Introduction
Text clustering is a popular problem in the field of data min-
ing. The text data has the property of high dimensionality
and sparsity (there are hundreds of thousands of word to-
kens in the lexicon, but only hundreds of words in each doc-
ument). For such cases, the accuracy and computational ef-
ficiency of similarity-based clustering algorithms are always
far from satisfactory. The model-based clustering algorithms
have shown better performance to cope with high dimen-
sional text data. In (Yin and Wang 2014), researchers pro-
posed a Gibbs Sampling algorithm for the Dirichlet Multi-
nomial Mixture model (GSDMM) to deal with the text clus-
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tering task. GSDMM assumes that the words in each doc-
ument are generated by a single mixture component (i.e.
a cluster), and uses a collapsed Gibbs sampling algorithm
for model training. GSDMM achieves good balance in both
completeness and homogeneity of the clustering results. It
can process high dimensional sparse text data efficiently in
terms of both computation and memory resources, and con-
verge quickly. On real world datasets, GSDMM is proved to
deliver the best clustering performance to date.

Although GSDMM uses bag-of-words model to repre-
sent each document and the order of words is ignored, the
time complexity of GSDMM, as discussed in (Yin and Wang
2014), is still proportional to the length of the document. In
this paper, we leverage the symmetric prior for the Dirich-
let distribution to optimize the sequential multiplication by
constructing indices. This reduces the time complexity of
sampling each document from O(L) to O(U) (here L is
the length of the document, and U is the number of unique
words in the document). With this optimization, the time
used for sampling is significantly reduced, especially for
long text datasets.

In GSDMM, the complexity of sampling each document
is also proportional to the number of clusters K. For large-
scale document datasets, the number of clusters may be very
large (e.g., 103 − 104), which leads to expensive computa-
tional cost for each sampling. FGSDMM+(Yin and others
2016) adopts an online initialization scheme for clustering,
and reduces the time complexity of clustering to be propor-
tional to the number of non-empty clusters. In this work,
we observe that the word distribution in the clusters varies
slowly between each iteration, especially in the nearly-
to-convergence stages. Thus we introduce a Metropolis-
Hastings sampling method to reduce the time of sampling
each document from O(K ∗ U) to O(U) in each iteration,
which can significantly reduce the sampling time for large
text datasets.

For large-scale text datasets, we need resort to paral-
lelization for acceleration. However, unlike its competi-
tor similarity-based approaches such as Spherical K-means
(Dhillon and Modha 2001) and K-medoids (Park and Jun
2009) that are embarrassingly parallelizable, the sampling
process of GSDMM is strictly sequential and can not be par-
allelized. In this work, we introduce an uncollapsed Gibbs
sampler to parallelize the model training, and show its scal-
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ability on real world datasets.
The main contributions of this paper are summarized as

follows:
1. We leverage a symmetric setting for Dirichlet prior and

construct indices to optimize the sequential multiplication
in the sampling. Thus the time complexity of sampling
each document is reduced from O(K ∗ L) (proportional
to the length of the document) toO(K ∗U) (proportional
to the number of unique words in the document).

2. We introduce a Metropolis-Hastings sampling algorithm
to further reduce the time complexity of sampling each
document from O(K ∗ U) to O(U) in the nearly-to-
convergence training stages.

3. We present an uncollapsed Gibbs sampler to parallelize
the training of DMM model. For large datasets, there are
enough parallelisms for model training. This leads to an
improvement in scalability which is nearly linear to the
number of processors.

4. We combine all of the above designs into an end-to-
end efficient implementation, X-DMM, and present ex-
tensive evaluations of X-DMM on real-world datasets.
The experimental results show that X-DMM substantially
outperforms the existing state-of-the-art methods in ef-
ficiency without clustering accuracy degradation, espe-
cially for long and large text datasets.
The remainder of this paper begins with a review of

relevant literature, and then briefly reviews GSDMM. In
Section X-DMM we introduce the optimizations adopted by
X-DMM in detail, including experimental results regarding
each individual optimization. Finally we demonstrate the
end-to-end experimental results in Section Experiments.

Related Works
General surveys and experimental comparisons about text
clustering algorithms can be found in (Aggarwal and Zhai
2012; Anastasiu, Tagarelli, and Karypis 2013) and (Zhao
and Karypis 2004). Roughly speaking, text clustering meth-
ods can be categorized into two categories: similarity-based
methods and model-based methods.

Similarity-based methods use vector space model to rep-
resent each document as a vector point, and then use some
similarity metrics to cluster the points, including partition-
based algorithms (Dhillon and Modha 2001; Park and
Jun 2009), density-based algorithms (Jain 2010), and hi-
erarchical algorithms (Zhao, Karypis, and Fayyad 2005).
Similarity-based methods are usually easy to implement.
However, the clustering accuracy of similarity-based meth-
ods are generally low, because the similarity/distance met-
rics is more or less meaningless for high-dimensional data
like text.

Model-based methods assume the data points (i.e. docu-
ments) are generated from a mixture model, and then use
some inference methods such as EM and Gibbs sampling
to estimate the model parameters. The Gaussian Mixture
Model (GMM) assumes the data points are generated from
a mixture of Gaussian distributions, and is the most widely

used mixture model (Christopher 2016). However, the train-
ing complexity of GMM is too large for high dimensional
text data. In EDCM (Elkan 2006), DPMFS (Yu, Huang, and
Wang 2010) and DMAFP (Huang et al. 2013), Dirichlet dis-
tributions are adopted to model the text clustering, and have
shown better performance in clustering accuracy. However,
these models are more or less complex and slow to conver-
gence.

In (Nigam et al. 2000), a Dirichlet Multinomial Mixture
(DMM) model was introduced for both text classification
and clustering, and an EM-based algorithm was used to
estimate the model parameters. In (Yin and Wang 2014),
researchers proposed a Gibbs sampling algorithm for the
DMM model (GSDMM), obtaining the best clustering per-
formance to date on real-world datasets. FGSDMM+ (Yin
and others 2016) improved the training algorithm of GS-
DMM by adopting an online initialization scheme, reducing
the training time from proportional to the number of clusters
to proportional to the number of non-empty clusters. How-
ever, the training time of GSDMM and FGSDMM+ are still
proportional to the average length of the documents and the
number of clusters. Moreover, the algorithm is strictly se-
quential and can not be processed in parallel, thus can not
scale up for long text and large-scale datasets. In this paper,
we work on these problems and substantially improve the
efficiency without losing the clustering accuracy.

Topic models such as LDA (Blei, Ng, and Jordan 2003),
LSI (Papadimitriou et al. 2000) and pLSA (Hofmann
1999) assume that the words in a document are gener-
ated by first choosing a latent topic for each word, and
then using the topic to generate the word itself. Hier-
archical topic models (Blei, Griffiths, and Jordan 2010;
Paisley et al. 2015) extended the topic model to more
complex hierarchical structures. There are also works
(Newman et al. 2009; Li et al. 2014) aiming to optimize and
parallelize the topic model training. In (Yin and Wang 2014;
Lu, Mei, and Zhai 2011) researchers investigated the
performance of topic models on text clustering. Because the
topic model assumes a latent variable for every word in each
document, which does not fit the demand for clustering,
the clustering accuracy of this method is poorer than that
of DMM. Also, compared with DMM, the large number of
latent variables (one latent variable per word) requires much
more training time for those complex topic models.

Preliminaries
The DMM Model
The Dirichlet Multinomial Mixture (DMM) model (Nigam
et al. 2000) is a probabilistic generative model for docu-
ments. It assumes that there are K mixture components (K
clusters) in the document set, and each mixture component,
which corresponds to a cluster, is a multinomial distribution
over vocabulary. To generate a document, the DMM model
assumes that a mixture component should be selected from
K mixture components, and then the words in the documents
are drawn from the multinomial distribution of that mixture
component. Formally, the generative process of the model
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Table 1: Notations for DMM model
Notation Description

D Number of documents in corpus
T Number of distinct words in vocabulary
K Number of clusters
α, β Prior parameters for Dirichlet distribution
−→
di The ith document
zi Cluster assignment of ith doc
nkt Count of word t in kth cluster
nk Count of words in kth cluster
Nit Count of word t in ith document
Ni Count of words in ith document
mk Count of documents in kth cluster
~ϕk Word distribution of mixture k
ϕkt Proportion of word t in the mixture k
θ Distribution over mixture components

works as follows:
1. For each of the K mixture components (clusters) in the

document set, draw −→ϕk from a Dirichlet prior, −→ϕk ∼
Dirichlet(α)

2. Draw topic proportion
−→
θ in the document set,

−→
θ ∼

Dirichlet(β)

3. For each of the M documents
−→
di :

(a) Choose a mixture component (cluster) zi ∼
multinomial(

−→
θ ).

(b) For each word w in snippet
−→
di :

Choose w ∼ p(w|zi,−→ϕk), a multinomial probability
conditioned on the mixture component zi.

For ease of reading, Table 1 lists the notation used in
DMM model.

Training algorithm of DMM
As a probabilistic generative model, the training algorithm
of the DMM model can be either an EM algorithm or a
Markov Chain Monte Carlo (MCMC) algorithm. GSDMM
introduced a collapsed Gibbs sampling (a MCMC method)
algorithm for the DMM training. GSDMM can infer the
number of clusters automatically, and is fast to converge. Al-
gorithm 1 demonstrates the details of GSDMM:

Algorithm 1 The GSDMM algorithm

1: Initialize: for each document
−→
di in the corpus, randomly

assign a cluster number zi
2: Update the count statistics of the documents and the

words in each cluster, nkt, nk, and mk

3: Re-scan the documents and use collapsed Gibbs sam-
pling to re-sample each document’s cluster assignment
zi ∼ p(zi = k|−→z ¬i,

−→
d , α, β)

4: Repeat Step 3 until convergence
5: Output the cluster assignments of all the documents

The derivation of conditional probability distribution
p(zi = k|−→z ¬i,

−→
d , α, β) was given in (Yin and Wang 2014),

and the final form of p(zi) is as follows:

p(zi = k|−→z ¬i) ∝(mk,¬i + αk)

·
∏
w∈
−→
di

(
∏Niw

j=1 (nkw,¬i + βw + j − 1))∏Ni

j=1(nk,¬i +
∑T
t=1 βt + j − 1)

(1)

In FGSDMM+ (Yin and others 2016), an online clustering
scheme is adopted in the initialization phase of model train-
ing, which can reduce the training time when the assumed
maximum number of topics is much larger than the number
of non-empty clusters. After initialization, the training algo-
rithm of FGSDMM+ is the same as GSDMM, therefore the
optimizations introduced by X-DMM is orthogonal to the
differences between GSDMM and FGSDMM+. In the fol-
lowing sections, we describe the optimizations introduced
by X-DMM by comparing with GSDMM.

X-DMM
Index-based optimization for sequential
multiplication
DMM adopts the bag-of-words assumption in which it ig-
nores the ordering information between words. Instead of
assigning each word occurrence with an individual latent
variable in topic models (e.g. LDA), all words in a docu-
ment share the same latent variable (the mixture component
assignment) in DMM model. However, as discussed in (Yin
and Wang 2014; Yin and others 2016), the time complexity
of GSDMM algorithm and its following improvement FGS-
DMM+ is still proportional to the length of documents. This
leads to suboptimal training efficiency, especially for long
text datasets.

We observe that, during the training of GSDMM model,
the sequential multiplication of Equation 1 takes the vast
majority of computation time. Since multiplication will be
computed for each word occurrence, the time complexity
of sampling for each document will be proportional to the
length of document. For sequential multiplication with form
like

∏n
i=1(x + N + i) (x is a decimal, N is an integer), if

the value of x remains unchanged for all sequential multipli-
cations during the training, then we can build the following
index to accelerate the computation.

଴ࢇ = ࢞ ଵࢇ = ࢞(࢞ + ૚)
௜ାଵࢇ = ࢞)௜ࢇ + (࢏

૙ࢇ ૚ࢇ … ࢏ࢇ ା૚࢏ࢇ …

Figure 1: Index for sequential multiplication optimization,
ai =

∏i
j=0(x+ j)

The value of ith element in the index is ai =
∏i
j=0(x+j).

Once the index is built, the computation of
∏n
i=1(x+N+ i)

can be done by a single division
∏n
i=1(x+N + i) = aN+n

aN
,

which reduces the time complexity from O(n) to O(1).
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Table 2: Comparison of indexing time and GSDMM training
time (milliseconds)

dataset 20ng ohsumed QA Reuters
K 20 23 39 116
timeIndexing 196 375.3 391 64.3
timeTraining 43305 70760 29147 12210

If we add a restriction that only the symmetric Dirichlet
prior can be used, that is, let −→α and

−→
β to be vectors with

same value in each dimension. Then the form of Equation 1
changes to Equation 2, which satisfies the requirement that
the decimal remains unchanged for all sequential multipli-
cations operations, thus we can build indices to achieve ac-
celerations.

p(zi = k|−→z ¬i) ∝(mk,¬i + α)

·
∏
w∈
−→
di

(
∏Niw

j=1 (nkw,¬i + β + j − 1))∏Ni

j=1(nk,¬i + Tβ + j − 1)

(2)

Specifically, we need to build two indices for Equation 2,
one for denominator with ai =

∏i
j=0(Tβ + j) and one for

numerator with ai =
∏i
j=0(β + j). With this optimization,

the computation time of Equation 2 can be reduced to O(1)
for denominator and O(U) for numerator.

Certainly, we need extra computation time to build the in-
dices. However, compared to the total model training time,
the indexing time is trivial. We need O(max(nk)) time to
build the indices, which roughly equals to D∗L̄

K in magni-
tude. In contrast, the time complexity of original GSDMM
algorithm is D ∗ L̄ ∗ K ∗ I (I is the number of training
iterations). Thus, it only takes roughly 1

K2∗I of model train-
ing time to build the indices. Table 2 shows the comparison
of indexing time and model training time (50 iterations) on
several real-world datasets.

Metropolis-Hastings sampling
The computational time of sampling each document in GS-
DMM is proportional to the number of clusters. For large
datasets, the number of clusters tends to be large, which
requires more computational time to sample a single doc-
ument. We observe that during the training of DMM model,
the model will quickly converge to a state which is near con-
vergence. However, it will take much more iterations for the
model to finally converge. In this process, although the clus-
tering accuracy of the model is stably increasing, the change
of the model parameters (i.e. the word distribution in each
cluster, ϕkt) in each iteration is very small. The training of
GSDMM algorithm is agnostic of this manner, and the run-
ning time of each iteration remains the same.

We leverage the fact that in most of the training iterations
the word distribution in each cluster varies very slowly, and
thus we introduce a Metropolis-Hastings (MH) algorithm to
accelerate the sampling process. MH algorithm (Chib and

Greenberg 1995) is a fast sampling method introduced in
statistics. Here we briefly describe the MH algorithm.

Algorithm 2 The Metropolis-Hastings algorithm
1: Draw initial sample x0 ∼ q(x)
2: for i = 1 to M do
3: Draw xcand ∼ q(xcand|xi−1)

4: if RandUnif(1) < min(1, p(x
cand)∗q(xi−1|xcand)

p(xi−1)∗q(xcand|xi−1)
)

then
5: xi = xcand

6: else
7: xi = xi−1

8: end if
9: end for

10: return xi

Let p(x) be the true target distribution we want to sam-
ple from. MH algorithm uses a proposal distribution q(x),
which is easier to be sampled than p(x), to build a Markov
Chain. By repeated generating samples from proposal dis-
tribution q(xi|xi−1) at step i, and updating the state with
an acceptance rate min(1, p(xi)∗q(xi−1|xi)

p(xi−1)∗q(xi|xi−1) ), the samples
will converge to p(x) in certain steps (Levin, Peres, and
Wilmer 2009). Algorithm 2 demonstrates the details of MH
algorithm. M is a hyperparameter named MHSteps. The
closer the proposal distribution is to the target distribution,
the smaller the MHSteps needed for them to mix.

During the training of DMM model, the target distribu-
tion is the conditional distribution p(zi = k|−→z ¬i,

−→
d ) given

by Equation 2, which is expensive to draw (O(K ∗ U) time
complexity). However, as p(zi = k|−→z ¬i,

−→
d ) varies very

slowly in each iteration, we can save p(zi = k|−→z ¬i,
−→
d )

which occurs n iterations ago and use it as the proposal dis-
tribution. Note that directly using the latest p(zi = k) in
last iteration as the proposal distribution is infeasible. This
is because O(K ∗ U) complexity is needed for calculating
the latest p(zi = k) for each k, which is actually the same as
calculating p(zi = k) for current iteration. In the X-DMM’s
case, the proposal distribution is refreshed every n (n ≈ K)
iterations, which reduces the amortized cost for calculating
proposal distribution to O(U) complexity.

Drawing samples from the proposal distribution is much
cheaper (O(K) time complexity) as we don’t need to com-
pute the value of p(zi = k) for each k again. Moreover, since
the proposal distribution and target distribution are close
enough when the model is nearly-to-convergence, in practise
we can effectively set M = 1 to make MH work. In the pro-
cess of calculating the acceptance rate, the time complexity
of calculating p(xcand)∗q(xi−1|xcand)

p(xi−1)∗q(xcand|xi−1)
isO(U). Thus the com-

plexity of MH algorithm for each iteration is O(K + U).
In MH sampling algorithm, the proposal distribution can

be used in n iterations. When n is quite big (e.g. n = K), we
can use Walker sampling (Marsaglia et al. 2004) to furthur
optimize the sampling process. Walker sampling is an effi-
cient sampling method for drawing n samples from a multi-
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Table 3: Speed-up of MH sampling on ohsumed dataset un-
der different number of clusters

K 20 80 160 240
time (s) per iter (Gibbs) 2.04 7.60 16.32 23.5
#iterations (Gibbs) 30 38 45 48
time (s) per iter (MH) 0.456 0.493 0.534 0.54
#iterations (MH) 80 324 523 738

nomial distribution withK possible values inO(n+K) time
(averagely O(1) for each draw when n is large). Therefore
the time complexity of MH sampling for each iteration can
be reduced from O(K + U) to O(U).
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Figure 2: Comparison of convergence curves

Table 3 lists the average running time of an iteration
and the number of running iterations for reaching conver-
gence for both MH sampling and original Gibbs sampling
algorithm. By using the MH algorithm, the time for each
iteration decreases drastically, and the speed-up ratio is
proportional to the number of clusters. However, since
there are still differences between the proposal distribution
and the target distribution (especially when n is assumed
to be large), it will take much more iterations for the
model to converge. Therefore the speed-up of convergence
is much smaller than the speed-up of running time of a
single iteration. Fig 2 shows the convergence curve of the
experiments on ohsumed dataset (K=200), and we can see
that the convergence rate has been accelerated substantially
by MH algorithm.

Parallel training

For large datasets the training time will be very long, and
we need to resort to parallel training for acceleration. How-
ever, the training of GSDMM uses a collapsed Gibbs sam-
pler, which is a strictly sequential algorithm. The sampling
result of one document will affect the sampling distribution
of the next document, and thus can not be parallelized.

Algorithm 3 Parallel training of DMM

1: Initialize: for each document
−→
di in the corpus, randomly

assign a cluster number zi.
2: for k = 1 to K do
3: Draw ϕ ∼ p(ϕ|−→z ,

−→
d ,−→α ,

−→
β )

4: end for
5: for i = 1 to D do
6: Draw zi ∼ p(zi = k|Φ,

−→
d i,
−→α ,
−→
β )

7: end for
8: Repeat Step 2 – Step 7 until convergence.
9: Output the cluster assignments zi of all documents.

We try to use an uncollapsed Gibbs sampler to eliminate
the dependencies between the sampling results of documents
in a training iteration, and therefore obtain an embarrass-
ingly parallel training algorithm. The core idea is to sample
not only the cluster assignment of each document, but also
the word distribution of each component (i.e. each cluster).
Algorithm 3 gives the details.

In the equation, p(ϕ|−→z ,
−→
d ,−→α ,

−→
β ) = Dirichlet(ϕ|−→n +

−→
β ), p(zi = k|Φ,

−→
d i,
−→α ,
−→
β ) ∝ p(zi = k|−→z ,−→α ) ·

p(
−→
d i|zi = k, Φk)) ∝ (mk + αk) ·

∏
w∈
−→
di

(ϕkw)Niw . In
practice we observe that using the posterior mean of ϕ in-
stead of direct sampling it can accelerate the convergence
of model training, and the posterior mean of ϕ is E(ϕkt) =

nkt+βt

nk+
∑T

t=1 βt
.

The core computation of Algorithm 3 (Step 2 – Step 7)
is embarrassingly parallel. As the datasets get larger, the
amount of parallelism available in the algorithm increases.
For large datasets, the efficiency speed up is nearly linear to
the number of processors. We implement a CUDA program
for parallel X-DMM with Nvidia GTX 1080. Fig 3 shows
the scalability curve on 20ng and ohsumed datasets, and the
speedup ratio is nearly proportional to the processor num-
bers.

300 400 500 600 700 800 900 1000
Processors

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

0.00018

1 
/ T

im
e 

Pe
r I

te
ra

tio
n 

(1
/m

s)

20ng
ohsumed

Figure 3: Scalability of parallel X-DMM

Experiments
Experimental Setup
The experiments are conducted on a PC with Intel CPU i5-
7400 and Nvidia GPU GTX-1080. We use four real world
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Table 4: Datasets description
dataset K D avgDocLength T
20ng 20 18846 138.852 181755
ohsumed 23 56984 114.884 92135
QA 39 2337 2968.61 264235
Reuters 116 11476 102.734 39600

datasets, 20ng1, QA2, and ohsumed3, and Reuters4.The
statistics of each dataset are listed in Table 4.

Clustering Accuracy
To evaluate the clustering results, a widely used metric is the
Normalized Mutual Information (NMI) (Strehl and Ghosh
2003). NMI is a normalization of the Mutual Information
(MI) score to scale the results between zero and one (higher
score indicates better clustering quality), the NMI is for-
mally defined as follows:

NMI =

∑
h,l nh,llog(

n·nh,l

nh·nl
)√

(
∑
h nhlog

nh

n )(
∑
l nllog

nl

n )

Here nh is the number of documents with cluster label h, nl
is the number of documents with cluster assignment l, and
nh,l is the number of documents with cluster label h and
cluster assignment l.

Since X-DMM adds a restriction that only symmetric
Dirichlet prior can be used, we first test whether such re-
striction will influence the clustering accuracy. We run X-
DMM ten times on four datasets with symmetric prior and
asymmetric prior (index-based optimization is not employed
when running asymmetric prior), and Fig 4 demonstrates the
average NMI results of ten runs. To the best of our knowl-
edge, there is no authoritative guide on how to choose a
Dirichlet prior. In our experiments, we use the natural word
frequency distribution as the asymmetric prior. The exper-
iment results show that the symmetric prior restriction has
little influence on the clustering accuracy.

We compare X-DMM with the following text clustering
methods, K-Means (Aggarwal and Zhai 2012), LDA (Lu,
Mei, and Zhai 2011), GSDMM (Yin and Wang 2014), and
FGSDMM+ (Yin and others 2016),

1. K-Means K-means (Hartigan and Wong 1979) is a very
popular and probably the most widely used method for
clustering. Following (Aggarwal and Zhai 2012), we use
cosine similarity as the similarity metric.

2. LDA Following (Lu, Mei, and Zhai 2011), We treat each
of the topics found by LDA (Blei, Ng, and Jordan 2003)
as a cluster and assign each document to the cluster with
the highest value in its topic proportion vector. Similar
to (Griffiths and Steyvers 2004), we set α = 50/K and
β = 0.1.

1http://qwone.com/˜jason/20Newsgroups/
2https://www.cs.cmu.edu/˜ark/QA-data/
3http://davis.wpi.edu/xmdv/datasets/ohsumed
4https://www.kaggle.com/nltkdata/reuters
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Figure 4: NMI score under symmetric Dirichlet prior and
asymmetric Dirichlet prior

3. GSDMM This is the state-of-the-art text clustering
method which adopts a collapsed Gibbs sampling train-
ing algorithm for the Dirichlet Multinomial Mixture
model. Similar to (Yin and Wang 2014), we set α = 0.1
and β = 0.1 for GSDMM.

4. FGSDMM+ FGSDMM+ improves the training algo-
rithm of GSDMM by introducing a online initialization
scheme. Following (Yin and others 2016), we also set
α = 0.1 and β = 0.1 for FGSDMM+.
We compare each method’s clustering accuracy on four

datasets, and the results are shown in Table 5. We run each
method 20 times on each dataset, and report the mean
and the standard deviation of the NMI scores. We can see
that the X-DMM obtains the similar NMI results with the
existing state-of-the-art methods (GSDMM, FGSDMM+),
and is much better than the baseline methods.

Efficiency
As X-DMM uses a different sampler, the running time of
each iteration for X-DMM is much smaller than GSDMM.
However, it takes more iterations for X-DMM to converge.
Therefore, the running time for a fixed number of iterations
would no longer fairly reflect the efficiency improvement of
X-DMM. In this section, we compare the running time for
each method to reach final convergence, which is a more
fair-minded metric for training efficiency. The cluster num-
bers are set as K listed in Table 4. Fig 5 shows the experi-
mental results, and we can see that X-DMM is much faster
than GSDMM and FGSDMM+, and the parallel implemen-
tation can bring a further speedup.

We observe that, for larger datasets the X-DMM can
achieve more acceleration. From this, we speculate that if
larger labeled datasets are available (unfortunately, to the
best of our knowledge there are no very large public labeled
datasets for text clustering), the X-DMM can obtain more
efficiency speedup. Though in real world applications, text
clustering will be used to process very large data without
labels, for calculating the NMI score we still need labels.

To test the efficiency promotion of X-DMM on large un-
labeled datasets, we need another metric to evaluate the
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Table 5: NMI results comparison of each methods (average results of 20 trials)
Datasets K K-Means LDA GSDMM FGSDMM+ X-DMM X-DMM parallel
20ng 40 0.407±0.011 0.513±0.009 0.689±0.010 0.691±0.016 0.691±0.012 0.682±0.022
20ng 80 0.392±0.009 0.448±0.007 0.687±0.013 0.689±0.011 0.681±0.015 0.689±0.015
ohsumed 46 0.138±0.006 0.141±0.004 0.156±0.004 0.156±0.002 0.158±0.003 0.152±0.003
ohsumed 92 0.157±0.003 0.150±0.003 0.156±0.002 0.155±0.003 0.154±0.003 0.153±0.002
QA 78 0.427±0.010 0.453±0.006 0.514±0.012 0.512±0.012 0.516±0.009 0.513±0.006
QA 156 0.289±0.114 0.447±0.007 0.520±0.010 0.521±0.008 0.525±0.005 0.510±0.007
Reuters 232 0.471±0.003 0.478±0.003 0.506±0.011 0.508±0.008 0.510±0.010 0.498±0.010
Reuters 464 0.485±0.004 0.482±0.004 0.519±0.007 0.517±0.013 0.514±0.011 0.509±0.008
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Figure 5: Running time for each method to convergence

convergence of model training without labels. Since the
probabilistic generative process adopted by GSDMM, FGS-
DMM+ and XDMM are actually the same, here we can di-
rectly use perplexity as the metric of modeling quality.

Perplexity is used by convention in language modeling.
It is actually the generative probability of test documents.
Formally, for a set C of D documents, the perplexity is

perplexity(C) = exp{−
∑D
d=1 log p(−→w d)∑D

d=1Nd
} (3)
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Figure 6: NMI and perplexity score during DMM model
training

Fig 6 illustrates the NMI score and perplexity during GS-
DMM model training on ohsumed dataset. In this figure the
curves of two metrics converge at a nearly same rate (lower
perplexity indicates better modeling quality), which shows
that the perplexity metric is capable to monitor the conver-
gence of DMM model training on large unlabeled datasets.

Table 6: Comparison of running time (seconds) to reach the
same perplexity on nytimes dataset (K=200)

Perplexity 3981 3941 3901 3881
GSDMM 440.6 726.2 1641.9 4162.5
FGSDMM+ 401.1 703.3 1811.6 3423.3
X-DMM 268.6 369.2 565.8 849.9
X-DMM Parallel 78.9 121.4 170.4 262.3

For efficiency comparison on large unlabeled corpus, we
run each method ten times on NYTimes article dataset5
(300K documents, 102K distinct words, 331 average
document length). Table 6 compares the efficiency of each
method by presenting their average running time to a given
value of perplexity. We can see that X-DMM converges
much faster than GSDMM and FGSDMM+, especially
in the nearly-to-convergence stages (4.0-4.8x speedup for
reaching to 3881 perplexity), and the GPU parallel imple-
mentation of X-DMM can further accelerate the training by
10x times than GSDMM and FGSDMM+.

Conclusion
In this work, we present X-DMM, a highly efficient system
for text clustering. X-DMM reduces the sampling complex-
ity of GSDMM from O(K ∗ L) to O(K ∗ U) by leveraging
a symmetric Dirichlet setting, and further reduces the sam-
pling complexity from O(K ∗ U) to O(U) in the nearly-to-
convergence training stages by using a Metropolis-Hastings
algorithm. X-DMM also introduces an uncollapsed Gibbs
sampler to parallelize the model training. With these opti-
mizations, X-DMM is highly efficient for long and large
scale text clustering and can scale up almost linearly with
increased number of processors.

Empirically, we show that X-DMM obtains substan-
tial speed-up compared to existing state-of-the-art meth-
ods without clustering accuracy degradation. X-DMM also
shows its good scalability. For large datasets, the parallel
GPU implementation of X-DMM can achieve several folds
in speed up than non-parallel implementation with only
slight clustering accuracy degradation.

5https://archive.ics.uci.edu/ml/machine-learning-
databases/bag-of-words/docword.nytimes.txt.gz
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