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Abstract

In many domains, collecting sufficient labeled training data
for supervised machine learning requires easily accessible but
noisy sources, such as crowdsourcing services or tagged Web
data. Noisy labels occur frequently in data sets harvested via
these means, sometimes resulting in entire classes of data on
which learned classifiers generalize poorly. For real world
applications, we argue that it can be beneficial to avoid train-
ing on such classes entirely. In this work, we aim to explore
the classes in a given data set, and guide supervised training
to spend time on a class proportional to its learnability. By
focusing the training process, we aim to improve model gen-
eralization on classes with a strong signal. To that end, we
develop an online algorithm that works in conjunction with
classifier and training algorithm, iteratively selecting training
data for the classifier based on how well it appears to gen-
eralize on each class. Testing our approach on a variety of
data sets, we show our algorithm learns to focus on classes
for which the model has low generalization error relative to
strong baselines, yielding a classifier with good performance
on learnable classes.

Many state of the art machine learning models require
large amounts of data to avoid overfitting. In constructing
large scale data sets, one often turns to accessible sources
that can quickly provide vast amounts of data, including
crowdsourcing and Webly supervised learning (scraping data
and labels from the Web). Such processes frequently result in
data that is noisy. For example, consider a data set of images
and tags scraped from Flickr, intended to be used as training
data for an image tagger. Tags on Flickr are assigned by users
of the site without restriction, and the assignment of tags
can range from the very literal to the abstract (see Figure 1
for an example). When attempting to learn an image tagger,
training on noisy classes is potentially harmful to model
performance on classes with strong signal. Rather than try to
achieve moderate performance on all classes at the expense
of those with strong signal, the classifier designer may want
to avoid noisy classes entirely. With this in mind, in order to
develop an accurate classifier in the presence of noisy classes,
we hypothesize that not all classes ought to be treated equally
during training. Rather, it may be beneficial to focus training
on classes for which the model appears capable of achieving a
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Figure 1: Example of labeled Flickr images. The common
features of the “Cat” images suggest that a low generalization
error can be achieved for this class, and thus that classifier
training may benefit from spending more time on “Cat” im-
ages than “Fun” images.

low generalization error. We call this characteristic of classes
appearing in the data set learnability.

To this end, we seek to develop an algorithm that uses the
concept of learnability to focus the training of a classifier on
specific classes. Our expectation is that training the model
only on instances from learnable classes will yield a more
accurate classifier for classes with a strong relationship be-
tween instance and label. In this work we propose an online
algorithm that acts in concert with the stochastic learning
algorithm used to train a classifier. Our algorithm assesses
which of the classes are most effective in training the model,
and then selects instances from those classes to use in update
steps for the classifier. We pose this learning scheme as a
Multi-Armed Bandit (MAB, bandit) problem. By doing so,



we are able to leverage prior MAB work that has developed
algorithms with theoretical guarantees on performance. Our
MAB algorithm is able to assess the learnability of each class
by sampling only from a single class at each time-step. As a
result, we are able to efficiently select classes from which to
learn, incurring only slight overhead to the normal stochastic
training process.

In summary, the contributions of this work are as follows:

* We formalize the problem of selecting learnable classes
for a given model and training algorithm.

* We develop a novel online framework that uses existing
MARB algorithms to tackle the problem of selecting classes.

* We demonstrate the effectiveness of our algorithm on both
synthetic and real-world training data.

Related Work

This work is concerned with the topics of data collection
from noisy sources, learning what data to learn from, and
Multi-Armed Bandit approaches. We present relevant work
from each of these areas.

Data Collection

Collecting sufficient data for training classifiers is a classic
problem in machine learning. The Web is the canonical ex-
ample of a noisy source of vast amounts of data, and has
provided many data sets on which to train models, e.g (Deng
et al. 2009; Philbin et al. 2007; Fei-Fei, Fergus, and Perona
2007). When labeling examples in these data sets, techniques
like active learning (Settles 2012) can help limit the labeling
that needs to be done by humans, only asking for labels on
inputs a model cannot predict confidently. Our work is similar
to active learning in that we have an algorithm guiding the
selection of training data, but differs in the criteria for data
selection, and we assume all data has already been labeled
by some process.

Techniques that handle noisy data with existing labels
range from hand curating the data set (Welinder et al. 2010),
to adding model machinery intended to deal with noise
(Sukhbaatar et al. 2014), to including examples based on
a dynamically calculated majority vote from a crowd (Deng
et al. 2009). Most standard noise-handling techniques work
at the instance level. Those that work at the label level
(Welinder et al. 2010; Garrigues et al. 2017) usually re-
move data from a training set without explicitly being in-
formed by the training process, but rather characteristics
of the data (e.g. not having sufficient quality examples).
Another approach is to create new categories that account
for some noise (Torresani, Szummer, and Fitzgibbon 2010;
Li, Wu, and Tu 2013). Works like (Deng et al. 2009;
Krishna et al. 2016) keep track of how difficult a label appears
based on crowd agreement (Snow et al. 2008) to include or
exclude various examples. In contrast, our work attempts to
automatically determine good labels based on model perfor-
mance, not data set size or crowd factors.

Learning What to Learn

Previous methods that oversee the data selection process for
training classifiers have had a variety of goals. Many models
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are interested in minimizing time to convergence. (Graves
et al. 2017) present a curriculum learner that generates an
ordering of training tasks based on task difficulty, the intuition
being that easy examples help models earlier in training,
while harder examples are more appropriate later. Our work
follows this same core idea, yet the problem we aim to solve is
fundamentally different. While they train a model to complete
a pre-determined set of tasks, we learn to focus on tasks, i.e
classes, that are easiest to learn for a model. Like us, (Ruder
and Plank 2017) are interested in manipulating the selection
of training examples, though their goal is to choose examples
based on suitability for transfer learning. In contrast our
approach is more exploratory, as the only criteria for selecting
classes is the resultant performance of a given model. Finally,
(Fan et al. 2017) propose to supervise model training with a
deep reinforcement learning algorithm. However, rather than
actively select batches of training data, they train a filter to
ignore certain examples within a given mini-batch at each
training step.

Multi-Armed Bandits

In our approach, data is selected at each training step using
a Multi-Armed Bandit algorithm, a problem first introduced
in (Robbins 1952). The original formulation of the problem
assumes that the reward for a given decision made by the
algorithm is drawn from a fixed distribution every time that
decision is made (i.e. a stochastic payoff function). In our
setting, rewards are based on the state of a classifier at a given
training step, which changes over time. Bandit algorithms
developed for such scenarios are called adversarial MAB
algorithms (Auer et al. 1995), and make no assumptions on
the payoff structure of decisions. We additionally assume
that the class set we are choosing from is large, rendering
naive selection strategies ineffective. For these settings, it is
common to assume a structure on the decision-space, specif-
ically that there exists a means of measuring similarity be-
tween decisions (Kleinberg, Slivkins, and Upfal 2013). One
such approach is to assume that the reward function changes
smoothly over the decision space, i.e that similar decisions
will have similar payoffs (Srinivas et al. 2010). We use a time-
varying version of this algorithm presented in (Bogunovic,
Scarlett, and Cevher 2016).

Exploiting Learnable Classes

Given an untrained model and a labeled data set, our work
aims to develop an online algorithm that identifies the learn-
ability of classes in the data set. In determining class learn-
ability, we aim both to 1) avoid training on difficult/noisy
classes thereby yielding a strong performance over a subset
of data, and 2) to make an explicit ranking of the classes
based on learnability. This ranking can be used to inform
downstream processes of the model’s capabilities. In this
section, we make precise the notion of a class learnability,
present our online bandit algorithm, and develop a means
of ranking classes in a data set. First, we begin with some
preliminaries of Multi-Armed Bandit algorithms.



MAB Preliminaries

Given a collection of potential decisions A (called arms in
MAB nomenclature) and a number of rounds 7" to choose
(“pull”) an arm, an MAB algorithm selects a sequence of
arms ay . ..ar,a; € A. After each round, the algorithm ob-
serves a reward r¢(a;) associated with the arm choice a;. The

goal of a bandit algorithm is to maximize Z;szl ¢, OF equiva-
lently to minimize cumulative regret. At each round ¢, regret
is defined as the difference between the reward for the best
arm r; := sup,e 4 r+(a) and the reward for the arm that was
picked r(a;). The cumulative regret R(T') is defined as the
sum of regret at each round: R(T') := Zthl ri — ri(ag).
Bandit algorithms are designed to minimize R(7'). The
challenge lies in not knowing the distributions generating
r¢(a;) Va € A. In order to balance exploring promising
arms with exploiting historically high reward arms, (Auer
2002) propose picking arms with high upper confidence
bounds (UCB). The UCB formula is given by

UCB(a) := p(a) + B2o(a)

with p(a) being the mean reward of arm «a, o(a) being the
standard deviation of rewards of a, and 8 being a hyperpa-
rameter that weights the exploration term. Intuitively, when
an arm is largely unexplored, the uncertainty term 32 o (a)
will dominate the UCB, leading to an exploratory arm pull.
In contrast, a high average reward leads to exploitation. The
balance of exploration vs exploitation can be viewed as bal-
ancing learning a reward function with using said function
to make decisions. Algorithms focused only on exploitation
will never learn the reward function, while algorithms focus
only on exploration may not make rewarding decisions.
Finding how learnable a class is for a given model in an
online fashion fits naturally into the MAB problem setting.
Our proposed method proceeds in conjunction with with the
stochastic training of a classifier. We treat the selection of ex-
amples during training as an arm pull, picking examples that
are all labeled with a particular class, and calculate a reward
for those examples intended to measure their learnability. In
the next section, we formalize our MAB problem setting,
define our notion of class learnability, and introduce a reward
function for our MAB algorithm based on this definition.

Problem Formulation

In this work, we consider the multi-label classification setting
where single instances may be members of multiple classes.
Let Mg be a multi-label classifier parameterized by ©. Let
A (not to be confused with A) be a training algorithm that
iteratively updates the parameters © with respect to some
loss function L. We assume that we have access to a training
set D = {(z1,v1) .. (zn,yn)} and a validation set DV
{(z1,91) ... (@pm,ym)}- Let C = (C4,...,Co) be the set
of classes reflected in the training and validation labels. We
denote training and validation subsets whose instances are
all labelled as a class C; by D¢, and D¢, .

We now formalize the notion of class learnability given
Meg, A, L, D, and D". We base our concept of learnabil-
ity on model generalization. In the case of a learnable class
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C;, we expect that Mg can be trained by A on D¢, to pro-
duce a parameterization O, such that Me:, generalizes to

out-of-sample instances. In our work, we measure loss on
the validation set L(D¢, |©F, ) to approximate how well the
model generalizes for C;. One central assumption of this
work is that certain classes in C' are more learnable than
others, that is L(D¢, |©F, ) will vary over different C;. This
implies an ordering over classes in C' defined as follows:

Ci < C; = L(DL,|0%,) < L(DE, |0%,)

For given classes C; =< C, the goal of our algorithm is
to guide A into spending more training iterations on C; than
C';. We expect that doing so will not only help improve po-
tential generalization on highly ranked classes, but also avoid
negative effects that noisy classes may have on a classifier.

In order to effectively find the above ordering on classes,
it becomes important to avoid parameterizations © wherein
L(D”Cj|@) < L(Dg,|®) even though C; = Cj, since this
would lead to the class selection algorithm choosing C;
more than C;. Therefore we aim to train our selection al-
gorithm online in lockstep with A, receiving feedback at
every iteration in order to find a good ranking as quickly
as possible. In order to train our selection algorithm, we
measure how the model Mg is progressing one step at a
time, using only the information that can be gleaned from
the validation subset D¢,.. One way to measure learning
progress is via self prediction gain (Graves et al. 2017;
Oudeyer, Kaplan, and Hafner 2007):

SPG(Ci) := L(Dg,|0) — L(D, |©) (D

where O are the model’s parameters before A updates them to
©’ using D¢, . Note that in practice, many training algorithms
will use stochastically selected batches from a subset D¢,
and/or D”Ci, but for ease of notation we may refer to the
whole set in place of a batch. Self prediction gain can be
thought of as measuring how much the loss improves on the
validation data after a training update. Intuitively, for a very
noisy class, e.g a class with randomly assigned training and
validation inputs, in expectation SPG should be zero since
Mo is unlikely to learn anything generalizable from training
examples Dc;. For classes with more signal, it is likely that
SPG will yield a positive value if the model Mg can be
trained by A to generalize. Therefore at each training step
t, we select a class C such that D¢, and D¢, yield a high
expected value of SPG. We now outline the specific bandit
algorithm used to select classes per round.

Bandit Supervision

At a high level, the job of the bandit algorithm at a given
training step is to sample a class C; that maximizes the SPG
of (1). At step t, a history of arm pulls and their resultant
SPGs are available for the bandit to approximate the true,
unknown SPG function. To use this history, we require that
our bandit model the uncertainty of the SPG per class; mea-
sures of uncertainty are required to balance exploration and
exploitation. Further, we allow for large sets of classes C' (i.e
arms), and assume that SPG rewards will change with time,
since they depend on the changing model Mg. A changing



SPG function limits our ability to exploit historically suc-
cessful arms. In order to handle large class sets, our bandit
assumes a structure on the classes, specifically that there
exists a measure of similarity between them. To handle the
changing SPG function, we apply a discounting factor that
limits the impact of observations made early on in training.
Specifically, we utilize the bandit of (Bogunovic, Scarlett,
and Cevher 2016), an approach that models f via a time
varying Gaussian Process.

A Gaussian Process (GP) defines a Gaussian distribution
of the target function’s value at each point in the function’s
domain. The distribution at a point = is parameterized by
a mean p(x) and standard deviation o(x), with u(z) rep-
resenting the expected value of the function at that point.
GPs satisfy the need to represent the uncertainty of points
in a domain via o(z). Further, a GP captures the relation-
ship of a target function at different points via a covariance
3, with the covariance between two points x; and z; given
by X(x;,x;) = k(z;, ;) for some positive definite kernel
function k. Intuitively, the kernel measures similarity be-
tween two points in the domain, e.g two classes, influencing
the GP to predict similar function values for similar points.
By modeling the relationship between classes, we alleviate
the burden of exhaustively sampling rewards for each class.
In our work, we use the word2vec embedding (Mikolov et
al. 2016) of a given class (denoted w), combined with the
Matern kernel (Matérn 2013) to measure similarity between
classes. The Matern kernel is a generalization of the Gaus-
sian (squared exponential) covariance function, often used
because its smoothness can be controlled via a hyperparame-
ter. Tunable smoothness is potentially valuable to our work,
since natural language similarity can vary significantly de-
pending on the domain.

At a training step ¢, our GP defines a joint Gaussian distri-
bution over the rewards of classes known as a prior distribu-
tion. This prior is used to forecast the reward for selecting
a training class C}. After selection, the SPG for this class is
calculated via (1), and this value is added to the history of
rewards. Our bandit updates its joint distribution by incorpo-
rating the newly observed SPG, thus producing a posterior
distribution. Calculation of the posterior is influenced by two
different aspects of each entry in the SPG history: one is
the inter-class similarity as defined by the kernel, the other
is the time between a historical entry and the most recent
observation. We now describe the selection and update steps
in detail.

The selection mechanism then follows directly from the
concept of upper confidence bounds and estimated priors for
u(x) and o(x). At time ¢, we select a class C; according to
the following UCB equation

1
Cy = argmax py—1(w;) + B204_1(w;)
ie{1,...,N}

(@)

where w; is the word vector associated with class C;. Ob-
serving the reward for the chosen class C; is as simple as
calculating the loss on a validation set D¢, as in (1). After
observing a new reward, p and ¢ can be updated as in (Bo-
gunovic, Scarlett, and Cevher 2016):
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Algorithm 1 Bandit Supervised Learning. We use the default
values of (Bogunovic, Scarlett, and Cevher 2016)

Require: Exploration weighting /3, time varying parameter
¢, kernel k&
Require: Initial classifier parameters O, loss function L,
training algorithm A
while Mg has not converged do
Sample class C; (and thus w;) according to (2)
Sample training data D¢, and validation data D¢,
Ly=L (DC ) 6)
O «+ A(0,L(D¢,|0))
Ly = L(X],,0)
Add L1 — L2 tor, wy to A%%
Perform Bayesian update as in (3)
end while

pe(w) = kt71(W)T (thl + J?Itfl)_l i1
ot (w) = k(w,w) — k,_1(w)T 3)
(thl + U?Itfl)_l ki _1(w)

In order to perform this update, we have access to the
history of class selections C;_; up to time ¢t — 1, the corre-
sponding vector history W, _, and the associated rewards
for these arm pulls r;_;. We then create a matrix K;_;to
be [k(w, W)y wiew, , © [(1= )92 1 (@ being
the Hadamard product). Intuitively, this matrlx compares
the vectors w and w’ of previously selected classes via the
kernel k&, while discounting the similarity based upon how
far apart in time the two arms were pulled. The time dis-
counting is captured via a hyperparameter ¢ € [0,1], ap-
plied to k, that quantifies how much rewards are expected
to change at each step; ¢ = 1 indicates that rewards are
independent between timesteps, and e = 0 means there is
no variation. K;_; is joined with a term o that models
noise produced when sampling from the underlying reward
function, and is then used in conjunction with a function

ke 1 (w) 1= [h(ws, w)]iZ) © [(1— )¢9/ )
pares historical arms w; to a given arm w, again
old arm pulls by e.

To select a class in the next round, the updated mean and
variance are fed into (2). When our algorithm selects a class
to learn based on (2), exploration will dominate if a class has
not been recently selected and no similar classes have been
recently selected, since k(w, w) will surpass the other terms,
yielding a high variance. Otherwise, the algorithm will select
classes that the model Mg has done well on in the past, as

that com-
élscountlng

(Kt—l + U;It_l) will become significant. We outline how

this process is coupled with the training of our model Mg in
Alg. 1.

Ranking Classes

We use class rankings to determine when bandit supervised
models have converged as follows. We calculate a ranking
of classes every [ iterations, with our experiments herein



using I = 20. We define convergence to be a sufficiently
small change in ranking as measured via the normalized
Kendall tau distance (Kendall 1955) given in (5). This dis-
tance measures the number of pairwise differences between
two rankings 7;_; and 7¢, computed at rounds ¢ — I and ¢
respectively, the set of which is given by:

Z .= {(Ci,Cj) 11 < 7,
(thI(Ci) < Tt,[(cvj) /\Tt(Ci) > Tt(Cj)>
V (1e-1(C5) > 1e-1(C5) A7(Ci) < 7(C5))}

“

where 74 (C;), 7:—1(C;) are the ranks of class C; at rounds
t and t — I. The associated distance counts the number of
differences (numerator) and normalizes by the total number
of pairs (denominator).

2]

Z(Tp—g,mt) = m

&)
A value of zero indicates identical rankings, while a value of
one indicates rankings in the opposite order. We consider our
models to have converged when Z (14_;, ) < 0.05.

There are many situations in which identifying the ordering
on classes can be useful, for example in order to inform
downstream processes of a classifier’s capabilities. While
recovering the underlying ground truth ordering C; < Cj is
difficult since it requires identifying an ideal set of parameters
for each class, we can use the bandit history to give a good
approximation, the idea being that the number of times a
class was selected for training is a good indicator of the
model’s propensity to generalize on said class. For evaluation
purposes, we are interested limiting the variability that results
from the stochasticity in Alg. 1, and therefore produce an
average ranking with information from multiple runs. This
ranking is calculated by sorting the classes given the average
amount each class was pulled, i.e

S S
1 1
C; =20 = 5 E Ps(C;) = S E :P’(CJ) ©)
s=1 s=1

for S runs of Alg. 1 and Ps(C;) pulls of arm C; in run s.

From a data exploration perspective, the average rankings
could help in finding potentially noisy labels, or give insights
into the limitations of Mg. From an evaluation perspective,
rankings can indicate how well the algorithm is working. Ide-
ally, there would not be significant variations in the ranking
list between runs, as this could indicate that Mg is too sus-
ceptible to small changes in initial conditions, or simply that
our algorithm fails to find a proper ordering of classes. With
this definition of an average ranking, we can now evaluate
the quality of our bandit algorithm.

Empirical Evaluation

Loosely stated, our bandit supervision has two objectives.
The first is to influence the training of a model such that the
attention payed to a class reflects the learnability of said class.
The second, a result of the first, is to produce a classifier that
performs well on learnable classes. The goal of this section
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is to evaluate the performance of our bandit on these two
objectives. We quantitatively evaluate performance on the
first objective by using a clean data set that we pollute with
label noise. For the second, we train classifiers on naturally
noisier, unaltered data sets and evaluate the classification
performance of our model relative to the produced class
ordering.

Evaluating Bandit Ordering

Given an existing data set, it is unlikely that the ordering
on classes C; = C; will be known a priori. This poses a
challenge from an evaluation perspective, since a ranking
like that presented in (6) cannot be compared directly to
some ground truth. We therefore create a synthetic scenario
for testing our bandit algorithm. We start with the Cifar100
data set (Krizhevsky and Hinton 2009), a collection of 50k
training images (10k of which we set aside for validation)
and 10k test images, each of which are labeled as belonging
to one of a hundred classes. We then sample from training
images uniformly at random, constructing 100 new subsets of
and assign to each of these subsets a new, out of vocabulary
label. The out of vocabulary classes are chosen from a list of
the 100 most common English words that are disjoint from
the original classes. In total, our newly constructed data set
contains 400 training examples per original class, and 400
examples per new, noisy class.

In running our bandit algorithm on this data set, we hope to
show that the produced ranking of classes favors the original
classes over the new noisy classes. That is, for any original
class C; and any noisy class C;, we want our bandit to re-
cover C; = ()}, yielding a ranking with the original classes
in the top 100, and noise classes in the bottom 100. In Tab. 1,
we show the frequency with which an original class appears
in the top 100 classes, ranked as in (6), averaged across ten
runs. Additionally, the goal of bandit supervision is to miti-
gate negative effects that noisy classes may have on model
performance, specifically accuracy on learnable classes. As
such, we compare the accuracy of a model trained without
bandit supervision (ELU-N) to the same model trained with
bandit supervision (MAB-S). Test set accuracy is evaluated
on the original classes only, and is presented in Tab. 1. For
our classifier, we use the convolutional neural network ar-
chitecture presented in (Clevert, Unterthiner, and Hochreiter
2016), which has been shown to achieve state-of-the-art per-
formance on Cifar100. We compare to their results that were
generated by training only on the original Cifar data (ELU).

In training the network with bandit supervision, we notice
an interesting trade-off with respect to running time. The
online selection mechanism prohibits time saving techniques
that are common to training CNNs, such as batch pre-fetching.
Therefore, each iteration of our bandit supervised training is
slower than an iteration of standard mini-batch stochastic gra-
dient descent. However, we also notice our bandit supervised
network tends to converge in fewer iterations than the base-
lines. The aggregate result is a minimal wall-clock overhead
associated with bandit supervision.

Tab. 1 shows results in keeping with our intuition. The
accuracy of our approach is superior to that of standard mini-
batch selection when trained on noisy data. However, we



Model Acc | R@100 Top 10
ELU 75.72 - -
ELU-N | 55.12 — -
MAB-S | 67.14 92 Bed, Plain, Bridge,

Train, Cattle, Crab,
Forest, Baby, Telephone,
Lion

Table 1: “Acc” for each model represents test-set accuracy
across the original classes. “R@ 100 shows the number of
original classes appearing in the bandit’s top 100. “Top 10”
shows the most learnable classes as decided by the bandit.

do not fully recover the accuracy of the architecture trained
on the original, noise free data. Our bandit is also able to
correctly rank 92 of the original classes in the top 100. The
eight noise classes ranked in the top 100, “write”, “hot”,
“word”, “water”, “call”, “sound”, “your”, and “thing”, may
have been chosen for a few reasons. Most likely, some are
close to original classes in the word vector space, e.g “water”
is very similar to the many fish and nature related classes in
Cifar100. Depending on the kernel and vector representations,
sufficiently high rewards on original classes may artificially
prop up a related noisy class in the eyes of the bandit. For a
more naturally constructed data set, we suspect classes that
are considered similar by the kernel are more likely to share
similar rewards.

Exploring Large Tag Sets

In this section we intend to gauge the performance of bandit
supervision in the face of more realistic noise. The first “real-
world” data set that we investigate is a subset of the YFCC
100M data set (Thomee et al. 2016), a collection of 100
million tagged images and videos gathered from Flickr. In
order to create a manageable but informative subset, we first
gather tags of interest from the work of (Garrigues et al.
2017), who identify tags commonly searched for by Flickr
users. We then construct our data subset by gathering the
first million images of YFCC 100M that are labeled with at
least one of the tags in our set. In total, our data has 1 million
images labeled with 4566 tags.

The classes present in Flickr data vary in learnability be-
cause they can be subjectively assigned to examples. We are
also interested in learnability variation that is caused by the
domain of images itself, i.e images that may be objectively
and correctly labeled, yet still yield certain classes that are
harder to learn than others. Recipelm (Salvador et al. 2017)
is a data set that fits this description, as it contains over 800k
images paired with recipes and ingredients. We use this data
to form the task of identifying ingredients given an image of
a completed recipe. Many ingredients may be very difficult
to identify directly, thereby producing a range of learnability
across ingredients. As an example, salt is present in a signifi-
cant portion of recipes across many cuisines, and yet is rarely
identifiable in an image.

For these data sets, we focus on the performance of models
trained by bandit supervision vs. those trained by baseline
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approaches. The simplest baseline to which we compare
is standard mini-batch gradient descent, where batches are
drawn without regard for the labels they contain. A more
sophisticated baseline is to choose the target classes given
the number of training examples per class, limiting train-
ing to the top N most frequently occurring classes. Conven-
tional machine learning wisdom dictates that generalizability
improves as training data set size increases (Abu-Mostafa,
Magdon-Ismail, and Lin 2012). We hope to see the bandit
select classes that do not exactly match those selected by
this training-example-count-based heuristic. Instead, the ban-
dit’s selections should yield a trained model Mg with better
quantitative performance on its chosen labels. In order to
measure the performance of Mg, we use the per class F1-
Score. Specifically, we calculate true and false positives and
negatives for every class across test examples. Given the true
and false positives (I'P¢,, F'P¢,) and false negatives (F'"N¢;,)
for a class C}, the recall R¢,, precision Pg,, and F1-Score
F¢, are given by:

TP,
Roo = —— "%
¢ TPCi + FNCq;
TP,
Ppo=— 10 7
“ T TP + FP, @
2 x Re, x P,
Fo, =% "G
Re, + Pe,

We turn to F1-Score for evaluation because it does not rely
on true negatives present in the data, and because it captures
both recall and precision. In the data sets we use, true nega-
tives far outweigh any other statistic, rendering measures like
accuracy uninformative. For fairly comparing our method to
baselines, we analyze the per-class performance on the top N
classes for each of the training methods, for various values of
N. In training on the YFCC 100M subset, N € {100, 2048},
while for the Recipelm data set, N € {100, 385}. In both
sets of experiments, Mg is the deep convolutional architec-
ture of (Garrigues et al. 2017), an architecture specifically
developed for tagging images with low latency during infer-
ence. Figure 2 presents a quantitative analysis of the F1-Score
across the top classes for each value of IV and the bandit,
while Fig. 3 qualitatively compares results between methods.

Quantitatively, our bandit algorithm performs very well rel-
ative to the baselines for a small subset of frequently selected
classes, as intended, achieving a much higher F-1 Score for
top ranked classes. There is a severe dropoff after a fairly
small amount of classes, though the performance of the other
models suggests that both image tagging tasks are difficult.
It should be noted that after the bandit-trained-model’s F-1
score drops off, it generally performs worse than the other
models. This simply confirms that use cases wherein perfor-
mance must be above some minimum threshold for all classes
are not well suited for our approach. After observing the sig-
nificant divide between high and low performing classes, one
question that arises is whether or not the bandit algorithm
can be tuned to do well on more classes. We leave this ques-
tion for future work. Qualitatively, Fig. 3 shows interesting
distinctions between the classes chosen by the bandit algo-
rithm and those associated with the most training data. For
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Figure 2: F1-Score for the top 50 classes across methods. For bandit supervision, class “1” is the class most frequently chosen by
the bandit. For frequency based methods, class “1” is the class with the highest number of occurrences.
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Figure 3: Randomly sampled images from five classes for YFCC and Recipelm. “Top by Frequency” classes are the five classes
with the most training data, “Top by Bandit” are the five chosen for training most frequently by the bandit.

the Flickr tags, we were surprised to see a concept like “folly”
ranked so highly by the bandit. Yet randomly sampled images
do show similarities in this tag (3/5 displayed are images of
water sports). This suggests that strong priors, i.e indications
before training of what classes ought to be learnable, may be
difficult to come by.

Conclusion and Future Work

In this paper, we motivated and formalized the concept of
class learnability, defining it to be an ordering over classes
based on potential class generalization error for a given data
set. We then developed an online algorithm using existing
Multi-Armed Bandit techniques that directs the training of
a given classifier, with the intention of focusing on classes
as their learnability dictates. We showed that this bandit al-
gorithm is capable of identifying learnable classes in a noisy
data set, and that focusing on learnable classes yields models
with low generalization error relative to simple baselines and
data-science inspired heuristics alike. These results were con-
sistent across a variety of data sets, each with a unique kind
of noise in the data’s labeling.

In the future, we are interested in applying our algorithm
to data sets created with a variety of labeling processes. As

an example, one could imagine re-labeling a data set given
synonyms of existing classes, thus creating new data parti-
tions that may facilitate better classifier performance. We
believe that our bandit algorithm would be well suited to
explore such a class space, identifying which concepts in a
synset produce the best data partitions. Similarly, we suspect
that our bandit may be appropriate for exploring fine grained
recognition data sets, where there is a hierarchy on classes. In
such a scenario, our bandit could act in a curriculum learning
capacity, starting training by identifying coarse concepts and
progressing towards more fine-grained classes if the model
is ready. We also intend to investigate various other ban-
dit formulations. As an example, there exist Combinatorial
Multi-Armed Bandit algorithms that are capable of selecting
a combination of arms at a given iteration, a technique that
may allow for more sophisticated batch selection and more
successful optimization of a classifier.
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