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Abstract

Factorization Machine (FM) is a widely used supervised
learning approach by effectively modeling of feature interac-
tions. Despite the successful application of FM and its many
deep learning variants, treating every feature interaction fairly
may degrade the performance. For example, the interactions
of a useless feature may introduce noises; the importance
of a feature may also differ when interacting with differ-
ent features. In this work, we propose a novel model named
Interaction-aware Factorization Machine (IFM) by introduc-
ing Interaction-Aware Mechanism (IAM), which comprises
the feature aspect and the field aspect, to learn flexible inter-
actions on two levels. The feature aspect learns feature inter-
action importance via an attention network while the field as-
pect learns the feature interaction effect as a parametric sim-
ilarity of the feature interaction vector and the correspond-
ing field interaction prototype. IFM introduces more struc-
tured control and learns feature interaction importance in a
stratified manner, which allows for more leverage in tweak-
ing the interactions on both feature-wise and field-wise lev-
els. Besides, we give a more generalized architecture and pro-
pose Interaction-aware Neural Network (INN) and DeepIFM
to capture higher-order interactions. To further improve both
the performance and efficiency of IFM, a sampling scheme
is developed to select interactions based on the field aspect
importance. The experimental results from two well-known
datasets show the superiority of the proposed models over the
state-of-the-art methods.

Introduction
Learning the effects of feature conjugations, especially
degree-2 interactions, is important for prediction accu-
racy(Chang et al. 2010). For instance, people often down-
load apps for food delivery at meal-time, which suggests
that the (order-2) interaction between the app category and
the time-stamp is an important signal for prediction(Guo et
al. 2017). Applying a linear model on the explicit form of
degree-2 mappings can capture the relationship between fea-
tures, where feature interactions can be easily understood
and domain knowledge can be absorbed. The widely used
generalized linear models (e.g., logistic regression) with
cross features are effective for learning on a massive scale.
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Although the feature vector might have billions of dimen-
sions, each instance will typically have only hundreds of
non-zero values, and FTRL(McMahan et al. 2013) can save
both time and memory when making predictions. However,
feature engineering is an important but labor-intensive and
time-consuming work, and the “cold-start” problem may
hurt performance, especially in a sparse dataset, where only
a few cross features are observed; the parameters for unob-
served cross features cannot be estimated.

To address the generalization issue, factorization ma-
chines (FMs)(Rendle 2010) were proposed, which factor-
izes coefficients into a product of two latent vectors to uti-
lize collaborative information and demonstrate superior per-
formance to a linear model based on the explicit form of
degree-2 mappings. In FM, unseen feature interactions can
be learned from other pairs, which is useful, as demonstrated
by the effectiveness of latent factor models(Chen et al. 2014;
Hong, Zheng, and Chen 2016). In fact, by specifying the in-
put feature vector, FM can achieve the same express capacity
of many factorization models, such as matrix factorization,
the pairwise interaction tensor factorization model(Rendle
and Schmidt-Thieme 2010), and SVD++(Koren 2008).

Despite the successful application of FM, two-folds sig-
nificant shortcomings still exist. (1) Feature aspect. On one
hand, the interactions of a useless feature may introduce
noises. On the other hand, treating every feature interaction
fairly may degrade the performance. (2) Field1 aspect. A la-
tent factor2 may also have different importance in feature
interactions from different fields. Assuming that there is a
latent factor indicating the quality of a phone, this factor
may be more important to the interaction between a phone
brand and a location than the interaction between gender
and a location. To solve the above problems, we propose
a novel model called Interaction-aware Factorization Ma-
chine (IFM) to learn flexible interaction importance on both
feature aspect and field aspect.

Meanwhile, as a powerful approach to learning feature
representation, deep neural networks are becoming increas-
ingly popular and have been employed in predictive models.

1A field can be viewed as a class of features. For instance, two
features male and female belong to the field gender.

2A variable in a latent vector corresponding to an abstract con-
cept.
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For example, Wide&Deep(Cheng et al. 2016) extends gen-
eralized linear models with a multi-layer perceptron (MLP)
on the concatenation of selected feature embedding vectors
to learn more sophisticated feature interactions. However, in
the wide part of the Wide&Deep model, feature engineer-
ing is also required and drastically affects the model perfor-
mance.

To eliminate feature engineering and capture sophisti-
cated feature interactions, many works(Cao et al. 2016;
Wang et al. 2017) are proposed and some of them have fused
FM with MLP. FNN(Zhang, Du, and Wang 2016) initial-
izes parts of the feed-forward neural network with FM pre-
trained latent feature vectors, where FM is used as a fea-
ture transformation method. PNN(Qu et al. 2016) imposes
a product layer between the embedding layer and the first
hidden layer and uses three different types of product op-
erations to enhance the model capacity. Nevertheless, both
FNN and PNN capture only high-order feature interactions
and ignore low-order feature interactions. DeepFM(Guo et
al. 2017) shares the feature embedding between the FM and
deep component to make use of both low- and high-order
feature interactions; however, simply concatenating(Cheng
et al. 2016; Guo et al. 2017) or averaging embedding vec-
tors(Wang et al. 2015; Chen et al. 2017) does not account
for any interaction between features. In contrast to that,
NFM(He and Chua 2017) uses a bi-interaction operation
that models the second-order feature interactions to main-
tain more feature interaction information. Unfortunately, the
pooling operation in NFM may also cause information loss.
To address this problem, interaction importance on both fea-
ture aspect and field aspect is encoded to facilitate the MLP
to learn feature interactions more accurately.

The main contributions of the paper include the following:

• To the best of our knowledge, this work represents the first
step towards absorbing field information into interaction
importance learning.

• The proposed interaction-aware models can effectively
learn interaction importance and require no feature engi-
neering.

• The proposed IFM provides insight into which feature in-
teractions contribute more to the prediction at the field
level.

• A sampling scheme is developed to further improve both
the performance and efficiency of IFM.

• The experimental results on two well-known datasets
show the superiority of the proposed interaction-aware
models over the state-of-the-art methods.

Factorization Machines
We assume that each instance has attributions x =
{x1, x2, ..., xm} from n fields and a target y, where m is the
number of features and xi is the real valued feature in the i-
th category. Let V ∈RK×m be the latent matrix, with column
vector Vi representing the K-dimensional feature-specific
latent feature vector of feature i. Then pair-wise enumera-
tion of non-zero features can be defined as

X = {(i, j) | 0 < i ≤ m, 0 < j ≤ m, j > i, xi 6= 0, xj 6= 0}. (1)

Factorization Machine (FM)(Rendle 2010) is a widely
used model that captures all interactions between features
using the factorized parameters:

y = w0 +

m∑
i=1

wixi +
∑

(i,j)∈X

wijxixj︸ ︷︷ ︸
pair-wise feature interactions

, (2)

where w0 is the global bias, and wi models the strength of
the i-th variable. In addition, FM captures pairwise (order-2)
feature interactions effectively aswij = 〈Vi, Vj〉, where 〈·,·〉
is the inner product of two vectors; therefore, the parameters
for unobserved cross features can also be estimated.

Proposed Approach
In this section, we first present the interaction-aware mech-
anism. Subsequently, we detail the proposed Interaction-
aware Factorization Machine (IFM). Finally, we propose a
generalized interaction-aware model and its neural network
specialized versions.

Interaction-Aware Mechanism (IAM)
The pair-wise feature interaction part of FM can be reformu-
lated as

m∑
i=1

m∑
j=i+1

1 · 〈1, Vi � Vj〉xixj , (3)

where 1 is a K-dimensional vector with all entries one
and � denotes the Hadamard product. Then we introduce
the Interaction-Aware Mechanism (IAM) to discriminate the
importance of feature interactions, which simultaneously
considers field information as auxiliary information,

m∑
i=1

m∑
j=i+1

Tij〈Ffi,fj︸ ︷︷ ︸
field aspect

, Vi � Vj〉xixj , (4)

where fi is the field of feature i, Ffi,fj is theK-dimensional
field-aware factor importance vector of the interaction be-
tween feature i and feature j modeling the field aspect; thus,
both factors from the same feature interaction and the same
factor of interactions from different fields can have signifi-
cantly different influences on the final prediction. Tij is the
corresponding attention score modeling the feature aspect;
thus, the importance of feature interactions can be signifi-
cantly different, which is defined as

a′ij = hTRelu(W (Vi � Vj)xixj + b),

Tij =
exp(a′ij/τ)∑

(i,j)∈X exp(a′ij/τ)
,

(5)

where Ka is the hidden layer size of the attention network,
b∈RKa , h∈RKa , W∈RKa×K , and τ is a hyperparameter
that was originally used to control the randomness of pre-
dictions by scaling the logits before applying softmax(Hin-
ton, Vinyals, and Dean 2015). Here we use τ to control
the effectiveness strength of the feature aspect. For a high
temperature(τ → ∞), all interactions have nearly the same
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Figure 1: The neural network architecture of the proposed Interaction-aware Factorization Machine (IFM).

importance, and the feature aspect has a limited impact on
the final prediction. For low temperatures (τ → 0), the prob-
ability of the interaction vector with the highest expected re-
ward tends to 1 and the other interactions are ignored.

The raw presentation of F has n(n−1)/2×K parameters,
where n is the number of fields, so the space complexity of
IAM is quadratic in the field number. We further factorize
tensor F using canonical decomposition(Kolda and Bader
2009):

Ffi,fj = DT (Ufi � Ufj ), (6)
where U∈RKF×n and D∈RKF×K , and KF is the number
of latent factors of both U and D. Therefore, the space com-
plexity is reduced to O(nKF + KFK), which is linear in
the field number.

From another perspective, field aspect learns feature in-
teraction effect as a parametric similarity of the feature
interaction vector (Vi � Vj)xixj and the corresponding
field interaction prototype Ufi � Ufj , which has a bi-linear
form(Chechik et al. 2010),

simD(c, e) = cTDe, (7)
with c = Ufi � Ufj , e = (Vi � Vj)xixj .

Interaction-aware Factorization Machines (IFMs)
Interaction-aware Factorization Machine (IFM) models fea-
ture interaction importance more precisely by introducing
IAM. For simplicity, we omit linear terms and the bias term
in the remaining parts. Figure 1 shows the neural network
architecture of IFM, which comprises 6 layers. In the fol-
lowing, several layers are detailed:
• Embedding layer. The embedding layer is a fully con-

nected layer that projects each feature to a dense vector
representation. IFM employs two embedding matrices V
and U for feature embedding and field embedding query-
ing, respectively.

• Pair-wise interaction layer. The pair-wise interaction
layer enumerates interacted latent vectors, each of which
is a element-wise product of two embedding vectors from
the embedding layer. Let the feature aspect pair-wise in-
teraction set PF and the field aspect pair-wise interaction
set PI be

PF = {(Vi � Vj)xixj | (i, j)∈X},
PI = {Ufi � Ufj | (i, j)∈X},

(8)

then each has no information overlap; the former only de-
pends on the feature embedding matrix V , while the latter
only comes from the field embedding matrix U .

• Inference layer. The inference layer calculates the feature
aspect importance and the field aspect importance accord-
ing to Equation 5 and Equation 6, respectively.

To summarize, we give the overall formulation of IFM as:

y =

m∑
i=1

m∑
j=i+1

Tij(Ufi � Ufj )
TD(Vi � Vj)xixj

+

m∑
i=1

wixi + w0.

(9)

We also apply L2 regularization on U and D with λF con-
troling the regularization strength and employ dropout(Sri-
vastava et al. 2014) on the pair-wise interaction layer to
prevent overfitting. Note that U∈RKF×n and V ∈RK×m

can have different dimensions; each latent vector of U only
needs to learn the effect with a specific field, so usually,

KF � K. (10)

Complexity Analysis. Feature embedding matrix V re-
quire m ×K parameters and field-aware factor importance
matrix F requires n×KF +KF ×K parameters after ap-
plying Equation 6. Besides, the parameters of attention net-
work is Ka×K +2Ka. Thus, the overall space complexity
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is O(nKF +(KF +m+Ka)K+2Ka), where KF ,Ka,K
and n are small compared to m, so the space complexity is
similar to that of FM, which is O(mK).

The cost of computing PF (Equation 8) and feature as-
pect importance are O(|X |K) and O(|X |KKa), respec-
tively. For prediction, because the field-aware factor impor-
tance matrix F can be pre-calculated by Equation 6 and the
fusion layer only involves the inner product of two vectors,
for which the complexity isO(|X |K), the overall time com-
plexity is O(|X |KKa).

Sampling. We dynamically sample c feature interactions
according to the norms of field-aware factor importance vec-
tors (Ffi,fj ) and attention scores are only computed for the
sampled interactions. The cost of sampling is O(n2KFK)
for a mini-batch data and the computation cost of atten-
tion scores is O(cKKa) for every instance. By sampling,
the selection frequency for useless interactions is reduced
and the overall time complexity is reduced to O(cKKa +

n2

batchSizeKFK).

Generalized Interaction-aware Model (GIM)
We present a more generalized architecture named General-
ized Interaction-aware Model (GIM) in this section and de-
rive its neural network versions to effectively learn higher
order interactions. Let feature aspect embedding set FX and
field aspect embedding set IX be

FX = {TijVi � Vjxixj | (i, j)∈X},
IX = {DT (Ufi � Ufj ) | (i, j)∈X},

(11)

Then, the final prediction can be calculated by introducing
function G as

y = G(FX , IX ). (12)
Let FX i,j and IX i,j be the element with index (i, j) in FX
and IX , respectively. Then IFM can be seen as a special case
of GIM using the following,

GIFM (FX , IX ) =
∑
{IX T

i,jFX i,j | (i, j)∈X}. (13)

Besides, G can be a more complex function to capture
the non-linear and complex inherent structure of real-world
data. Let

h0 = concate{IX i,j �FX i,j | (i, j)∈X},
hl =fl(Qlhl−1 + zl),

(14)

where nl is the number of nodes in the l-th hidden layer;
then, Ql∈Rnl×nl−1 , zl∈Rnl are parameters for the l-th hid-
den layer, fl is the activation function for the l-th hidden
layer, and hl∈Rnl is the output of the l-th hidden layer. Spe-
cially, Interaction-aware Neural Network (INN) is defined
as

GINN (FX , IX ) = hL, (15)
where L denotes the number of hidden layers and fL is
the identity function. For hidden layers, we use Relu as the
activation function, which empirically shows good perfor-
mance.

To learn both high- and low-order feature interactions, the
wide component of DeepFM(Guo et al. 2017) is replaced by
GIFM (FX , IX ) and named as DeepIFM.

Table 1: Dataset Description.

DATA SET MOVIELENS FRAPPE
ORIGIN RECORDS 668,953 96,203
FEATURES 90,445 5,382
EXPERIMENTAL RECORDS 2,006,859 288,609
FIELDS 3 10
SPARSITY LEVEL 0.01% 0.19%

Experimental results
In this section, we evaluate the performance of the proposed
IFM, INN and DeepIFM on two real-world datasets and ex-
amine the effect of different parts of IFM. We conduct exper-
iments with the aim of answering the following questions:

• RQ1 How do IFM and INN perform compared to the
state-of-the-art methods?

• RQ2 How do the feature aspect and the field aspect (with
sampling) impact the prediction accuracy?

• RQ3 How dose factorization of field-aware factor impor-
tance matrix F impact the performance of IFM?

• RQ4 How do the hyper-parameters of IFM impact its per-
formance?

Experiment Settings
Datasets and Evaluation. We evaluate our models on two
real-world datasets, MovieLens3(Harper and Konstan 2015)
and Frappe(Baltrunas et al. 2015), for personalized tag rec-
ommendation and context-aware recommendation. We fol-
low the experimental settings in the previous works(Xiao et
al. 2017; He and Chua 2017) and use the optimal parame-
ter settings reported by the authors to have fair comparisons.
The datasets are divided into a training set (70%), a probe
set (20%), and a test set (10%). All models are trained on
the training set, and the optimal parameters are obtained on
the held-out probe set. The performance is evaluated by the
root mean square error (RMSE), where a lower score indi-
cates better performance, on the test set with the optimal pa-
rameters. Both datasets contain only positive records, so we
generate negative samples by randomly pairing two negative
samples with each log and converting each log into a feature
vector via one-hot encoding. Table 1 shows a description of
the datasets after processing, where the sparsity level is the
ratio of observed to total features(Lee, Sun, and Lebanon
2012).

Baselines. We compare our models with the following
methods:

• FM(Rendle 2010). As described in Equation 2. In addi-
tion, dropout is employed on the feature interactions to
further improve its performance.

• FFM(Juan et al. 2016). Each feature has separate latent
vectors to interact with features from different fields.

3grouplens.org/datasets/movielens/latest
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• AFM(Xiao et al. 2017). AFM learns one coefficient for
every feature interaction to enable feature interactions that
contribute differently to the prediction.

• Neural Factorization Machines (NFMs)(He and Chua
2017). NFM performs a non-linear transformation on
the latent space of the second-order feature interactions.
Batch normalization(Ioffe and Szegedy 2015) is also em-
ployed to address the covariance shift issue.

• DeepFM(Guo et al. 2017). DeepFM shares the feature
embedding between the FM and the deep component.

Regularization. We use L2 regularization, dropout, and
early stopping.

Hyperparameters. The model-independent hyperparam-
eters are set to the optimal values reported by the previous
works(Xiao et al. 2017; He and Chua 2017). The embedding
size of features is set to 256, and the batch size is set to 4096
and 128 for MovieLens and Frappe, respectively. We also
pre-train the feature embeddings with FM to get better re-
sults. For IFM and INN, we set τ = 10 and tune the other
hyperparameters on the probe set.

Model Performance (RQ1)
The performance of different models on the MovieLens
dataset and the Frappe dataset is shown in Table 2, from
which the following observations may be made:
• Learning the importance of different feature interactions

improves performance. This observation is derived from
the fact that both AFM and the IAM-based models (IFM
and INN) perform better than FM does. As the best model,
INN outperforms FM by more than 10% and 7% on the
MovieLens and Frappe datasets, respectively.

• IFM makes use of field information and can model fea-
ture interactions more precisely. To verify the effective-
ness of field information, we conduct experiments with
FFM and FFM-style AFM, where each feature has sepa-
rate latent vectors to interact with features from different
fields, on the MovieLens dataset. As expected, the utiliza-
tion of field information brings improvements of approx-
imately 2% and 3% with respect to FM and AFM.

• INN outperforms IFM by using a more complex function
G, as described in Equation 15, which captures more com-
plex and non-linear relations from IAM encoded vectors.

• Overall, our proposed IFM model outperforms the com-
petitors by more than 4.8% and 1.2% on the Movie-
Lens and Frappe datasets, respectively. The proposed INN
model performs even better, which achieves an improve-
ment of approximately 6% and 1.5% on the MovieLens
and Frappe datasets, respectively.

Impact of different aspects and sampling (RQ2)
IFM discriminates feature interaction importance on feature
aspect and field aspect. To study how each aspect influences
IFM prediction, we keep only one aspect and monitor how
IFM performs. As shown in Figure 2, feature-aspect-only
IFM (FA-IFM) performs better than field-aspect-only IFM
(IA-IFM) does. We explain this phenomenon by examining

Table 2: Test RMSE from different models.

FRAPPE MOVIELENS
METHOD #PARAM RMSE #PARAM RMSE
FM 1.38M 0.3321 23.24M 0.4671
DEEPFM 1.64M 0.3308 23.32M 0.4662
FFM 13.8M 0.3304 69.55M 0.4568
NFM 1.45M 0.3171 23.31M 0.4549
AFM 1.45M 0.3118 23.25M 0.4430
IFM-SAMPLING 1.46M 0.3085 - -
IFM 1.46M 0.3080 23.25M 0.4213
INN 1.46M 0.3071 23.25M 0.4188

the models. The FA-IFM modeling of feature interaction im-
portance is more detailed for each individual interacted vec-
tors; thus, it can make use of the feature interaction infor-
mation precisely, whereas IA-IFM utilizes only field-level
interaction information and lacks the capacity to distinguish
feature interactions from the same fields. Although FA-IFM
models feature interactions in a more precise way, IFM still
achieves a significant improvement by incorporating field in-
formation, which can be seen as auxiliary information, to
give more structured control and allow for more leverage
when tweaking the interaction between features.

We now focus on analyzing the different role of field as-
pect in different datasets. We calculated the ratio of the im-
provements of FA-IFM over IA-IFM, which were 9:1 and
1.7:1 on the Frappe and MovieLens datasets, respectively. It
is determined that field information plays a more significant
role in the MovieLens dataset. We explain this phenomenon
by examining the datasets. As shown in Table 1, the Movie-
Lens dataset is sparser than the Frappe dataset, where the
field information brings more benefit(Juan et al. 2016).

Field importance Analysis. Field aspect not only im-
proves the model performance but also gives the ability to
interpret the importance of feature interactions at the field-
factor level. Besides, the norm of field aspect importance
vector provides insight into interaction importance at the
field level. To demonstrate this, we investigate field aspect
importance vectors on the MovieLens dataset. As shown
in Table 3, the movie-tag interaction is the most impor-
tant while the user-movie interaction has a negligible im-
pact on the prediction because tags link users and items as
a bridge(Chen et al. 2016) and directly modeling semantic
correlation between them is less effective.

Sampling. To examine how sampling affects the perfor-
mance of IFM, an experiment was conducted on Frappe
dataset and because there are only three interactions in
MovieLens dataset, sampling is meaningless. As shown in
Table 2, IFM with sampling achieves a similar level of
performance. To verify how sampling performs when the
dataset is large, we compare the performance4 on click-
through prediction for advertising in Tencent video, which
has around 10 billion instances. As shown in Table 4, sam-
pling reduce the training time with no significant loss to the
performance.

4Feature interactions from the same field are discarded and the
activation of attention network is set to tanh.
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Table 3: The norm of field aspect importance vector of each
feature interaction on the MovieLens dataset.

USER-MOVIE USER-TAG MOVIE-TAG
NORM 0.648 5.938 9.985
PROPORTION 3.9 % 35.8 % 60.3 %

Table 4: The performance on click-through prediction for
advertising in Tencent video.

METHOD AUC TIME
DEEPIFM 0.8436 16HRS, 18MINS
DEEPIFM-SAMPLING(10%) 0.8420 3HRS, 49MINS
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Figure 2: Comparison of test RMSE by using only one as-
pect.

Impact of factorization (RQ3)
As described in Equation 6, IAM factorizes field-aware fac-
tor importance matrix F∈Rn(n−1)/2×K to get a more com-
pact representation. We conduct experiments with both the
factorized version and the non-factorized version (indicated
as IFM−) to determine how factorization affects the perfor-
mance. As shown in Figure 3, factorization can speed up
the convergence of both datasets. However, it also has a sig-
nificantly different impact on the performance of the two
datasets. For the MovieLens dataset, both versions achieve
similar levels of performance but IFM outperforms IFM− by
a large margin on the Frappe dataset, where the performance
of IFM− is degraded from epoch 50 because of an overfit-
ting issue5. We explain this phenomenon by comparing the
number of entries of field-aware factor importance matrix
F . For the Frappe dataset, IFM− and IFM have 11,520 and
6,370 entries with the optimal settings with K = 256 and
KF = 26, respectively. That is, after factorization, we can
reduce more than 44% of the parameters, thereby signifi-
cantly reducing the model complexity. In contrast to that, the
MovieLens dataset contains only three interactions, where
the effect of factorization is negligible and IFM− performs
slightly better than IFM does although the gap is negligible,
i.e., around 0.1%.

5Early stopping is disabled in this experiment.

0 20 40 60 80 100
Epoch

0.43

0.44

0.45

0.46

0.47

0.48

R
M

S
E

IFM
IFM

(a) MovieLens

0 25 50 75 100
Epoch

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

R
M

S
E

IFM
IFM

(b) Frappe

Figure 3: Performance comparison on the test set w.r.t. IFM
and the non-factorization version IFM-.
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Figure 4: Comparison of test RMSE by varying keep proba-
bilities.
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Figure 5: Comparison of test RMSE by varying λF .

Effect of Hyper-parameters (RQ4)
Dropout. Dropout can be seen as a model averaging ap-
proach to reduce overfitting by preventing complex co-
adaptations on training data. We apply dropout to FM on
feature interaction vectors and obtain better performance as
a benchmark. As shown in Figure 4, we set the keep prob-
ability from 0.1 to 1.0 with increments of 0.1 and it signifi-
cantly affects the performance of both FM and IFM. When
the keep probability tends to zero, the performance of both
models is poor due to the underfitting issue. When the keep
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Figure 6: Comparison of test RMSE by varying KF .

probability tends to 1, i.e., no dropout is employed, both
models also cannot achieve the best performance. Both IFM
and FM achieve the best performance when the keep proba-
bility is properly set due to the extreme bagging effect. For
nearly all keep probabilities, IFM outperforms FM, which
shows the effectiveness of IAM.
L2 regularization. Figure 5 shows how IFM performs

when the L2 regularization hyperparameter λF varies while
keeping the dropout ratio constant (optimal value from the
validation dataset). IFM performs better when L2 regular-
ization is applied and it achieves an improvement of approx-
imately 1.4% in the MovieLens dataset. We explain this phe-
nomenon as the following. Using dropout on the pair-wise
interaction layer only prevent overfitting for the feature as-
pect and λF controls the regularization strength of factoriza-
tion parameters for the field aspect importance learning.

The number of hidden factors KF . Figure 6 shows how
IFM performs when the number of hidden factorsKF varies.
IFM cannot effectively capture the field-aware factor im-
portance when KF is small and it also can not achieve the
best performance when KF is large due to the overfitting is-
sue. An interesting phenomenon is that the best KF for the
MovieLens dataset is much smaller than that for the Frappe
dataset. We explain this phenomenon by looking into the
datasets. Because the number of fields n is 10 for the Frappe
dataset, the field-aware factor importance matrix captures
the importance of factors from 45 interacted vectors. While
the MovieLens dataset contains only 3 interactions and the
field-aware factor importance matrix keeps much less infor-
mation.

Related work
In the introduction section, factorization machine and its
many neural network variants are already mentioned, thus
we do not discuss them here. In what follows, we briefly re-
capitulate the two most related models, i.e., AFM(Xiao et al.
2017) and FFM(Juan et al. 2016).

AFM learns one coefficient for every feature interaction to
enable feature interactions that contribute differently to the
final prediction and the importance of a feature interaction is
automatically learned from data without any human domain
knowledge. However, the pooling layer of AFM lacks the ca-
pacity of discriminating factor importance in feature interac-

tions from different fields. In contrast, IFM models feature
interaction importance at interaction-factor level; thus, the
same factor in different interactions can have significantly
different influences on the final prediction.

In FMs, every feature has only one latent vector to learn
the latent effect with any other features. FFM utilizes field
information as auxiliary information to improve model per-
formance and introduces more structured control. In FFM,
each feature has separate latent vectors to interact with fea-
tures from different fields, thus the effect of a feature can
differ when interacting with features from different fields.
However, modeling feature interactions without discriminat-
ing importance is unreasonable. IFM learns flexible inter-
action importance and outperforms FFM by more than 6%
and 7% on the Frappe and MovieLens datasets, respectively.
Moreover, FFM requires O(mnK) parameters, while the
space complexity of IFM is O(mK).

Conclusion and Future Directions
In this paper, we proposed a generalized interaction-aware
model and its specialized versions to improve the represen-
tation ability of FM. They gain performance improvement
based on the following advantages. (1) All models can ef-
fectively learn both the feature aspect and the field aspect
interaction importance. (2) All models can utilize field in-
formation that is usually ignored but useful. (3) All models
apply factorization in a stratified manner. (4) INN and Deep-
IFM can learn jointly with deep representations to capture
the non-linear and complex inherent structure of real-world
data.

The experimental results on two well-known datasets
show the superiority of the proposed models over the state-
of-the-art methods. To the best of our knowledge, this work
represents the first step towards absorbing field information
into feature interaction importance learning.

In the future, we would like to generalize the field-aware
importance matrix to a more flexible structure by applying
neural architecture search(Liu et al. 2017).
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