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Abstract

Dimensionality reduction is often employed to deal with the
data with a huge number of features, which can be gener-
ally divided into two categories: feature transformation and
feature selection. Due to the interpretability, the efficiency
during inference and the abundance of unlabeled data, un-
supervised feature selection has attracted much attention. In
this paper, we consider its natural formulation, column sub-
set selection (CSS), which is to minimize the reconstruction
error of a data matrix by selecting a subset of features. We
propose an anytime randomized iterative approach POCSS,
which minimizes the reconstruction error and the number of
selected features simultaneously. Its approximation guarantee
is well bounded. Empirical results exhibit the superior perfor-
mance of POCSS over the state-of-the-art algorithms.

Introduction
In machine learning and data mining applications, we of-
ten encounter the input data with very high dimensionality,
bringing certain challenges. Many feature transformation
techniques have been proposed for dimensionality reduc-
tion, e.g., principal component analysis (Jolliffe 2011), sin-
gular value decomposition (SVD) (Golub and Reinsch 1971)
and autoencoders (Hinton and Salakhutdinov 2006), to name
a few. By combining existing features, these methods trans-
form the data into a low dimensional subspace, which can
capture the cardinal information of the original data. How-
ever, the new feature representation is difficult to interpret,
and projecting the input features into the reduced space often
requires matrix multiplication, which reduces the inference
efficiency. When keeping the semantic meaning of the fea-
tures is important, feature selection, which selects a subset
of features instead of transforming them, is more appealing.
Since unlabeled data is often very abundant, much attention
has been drawn to the unsupervised case.

Unsupervised feature selection can be explored from dif-
ferent perspectives. In this paper, we focus on a natural for-
mulation, column subset selection (CSS), which is to min-
imize the reconstruction error of a data matrix based on
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the subset of selected features. Formally, given a matrix
A ∈ Rm×n (where m is the number of instances and n is
the number of features) and a positive integer k, the goal is to
select at most k columns of A (forming a matrix S) minimiz-
ing f(S) = ‖A−SS+A‖2F , where S+ is the Moore-Penrose
inverse matrix of S. That is, it is to find at most k columns of
A that captures as much of A as possible w.r.t. the Frobenius
norm. Note that SS+ denotes the projection matrix onto the
span of the set S of columns. This problem is known to be
UG-Hard (Çivril 2014), and its NP-completeness has been
proved only recently (Shitov 2017). Many algorithms with
bounded approximation guarantees have been proposed, as
briefly reviewed in the following.

Related Work
The CSS problem was first studied within the numeri-
cal linear algebra community. Many algorithms based on
rank-revealing QR (RRQR) factorization (Chan and Hansen
1992) were proposed, e.g., (Gu and Eisenstat 1996; Pan and
Tang 1999; Hoog and Mattheij 2007). It has been proved
that any algorithm for computing RRQR factorization of a
matrix A can provide solutions of the CSS problem with
approximation guarantees. Let Ak denote the best rank-k
approximation to A obtained via SVD, and let Sopt denote
an optimal solution of the CSS problem. Note that the ap-
proximation guarantee obtained by this kind of algorithms
is w.r.t. ‖A −Ak‖F , which is obviously a lower bound on
the truly optimal function value, i.e., ‖A− SoptS

+
optA‖F .

Several randomized sampling algorithms were also pro-
posed for solving the CSS problem, including subspace sam-
pling (Drineas, Mahoney, and Muthukrishnan 2008), vol-
ume sampling (Guruswami and Sinop 2012) and leverage
sampling (Cohen et al. 2015). Their idea is to randomly se-
lect columns with probability proportional to some statistic.
The theoretical results on these algorithms mainly showed
a trade-off between the number of columns chosen, the ap-
proximation bound w.r.t. ‖A−Ak‖F and the success prob-
ability of the algorithm.

In (Boutsidis, Mahoney, and Drineas 2009), the authors
proposed a two-stage algorithm by combining the above two
techniques. In the randomized stage, the algorithm selects
O(k log k) columns according to some probability distribu-
tion that depends on the top k right singular vectors of A. In
the deterministic stage, it returns exactly k columns from the
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selected O(k log k) columns by applying the deterministic
column selection algorithm based on RRQR factorization.
This two-stage algorithm can achieve an approximation ra-
tio ofO(k

√
log k) w.r.t. ‖A−Ak‖F with a high probability.

In (Civril and Magdon-Ismail 2012), a deterministic algo-
rithm based on the sparse approximation of the SVD of A
was proposed. It first computes the top k left singular vec-
tors of A, and then selects columns from A to approximate
the space spanned by these vectors, scaled by the singular
values. It has been shown that this algorithm can achieve an
approximation ratio of (1 + ε) w.r.t. ‖A − Ak‖F after se-
lecting O(k log k/ε2) columns.

The standard greedy algorithm was later used to solve
the CSS problem (Farahat, Ghodsi, and Kamel 2011). It it-
eratively selects one column, whose inclusion can reduce
the objective f(S) the most. To investigate its theoretical
performance, Bhaskara et al. (2016) studied the equivalent
problem that maximizes ‖SS+A‖2F , and proved an approx-
imation ratio of (1 − ε) w.r.t. the optimal function value
‖SoptS+

optA‖2F after selecting O(k/ε) columns.
Recently, Ordozgoiti et al. (2016) proposed a simple lo-

cal search algorithm, which starts from k randomly selected
columns, and iteratively replaces one selected column with
the best among n−k unselected columns, until no improve-
ment can be yielded. This algorithm has been shown em-
pirically to outperform other state-of-the-art methods, and
an approximation bound w.r.t. ‖SoptS+

optA‖2F has also been
provided (Ordozgoiti, Canaval, and Mozo 2018).

All the above algorithms are approximation algorithms.
In (Arai, Maung, and Schweitzer 2015), an approach us-
ing the A∗ heuristic search algorithm is guaranteed to find
the optimum. However, due to the NP-hardness of the prob-
lem, it can effectively select only a small number of columns
from small data sets. A similar approach using the weighted
A∗ algorithm thus has been proposed (Arai et al. 2016),
which can run faster, but without the optimal guarantee.

Our Contribution
In this paper, we propose a new method based on Pareto
optimization (Qian, Yu, and Zhou 2015) for the CSS prob-
lem, briefly called POCSS. The idea of POCSS is to first
reformulate the original CSS problem as a bi-objective min-
imization problem that minimizes the given objective f(S)
and the number of columns of S simultaneously, then em-
ploy a randomized iterative procedure to solve it, and finally
select the best solution with at most k columns from the pro-
duced set of solutions. In each iteration of POCSS, it needs
to evaluate the objective value of a newly generated solu-
tion, which is time-consuming. We derive the recursive re-
lation between the objective values by adding one column
into a matrix or deleting one column, based on which the
algorithm is computationally feasible.

Theoretically, we prove that POCSS using polynomial
time can find a solution Ŝ with at most k columns such that
‖ŜŜ+A‖2F ≥ (1 − e−γ) · ‖SoptS+

optA‖2F , where γ is the
submodularity ratio (Das and Kempe 2011) characterizing
how close the function ‖SS+A‖2F is to submodular. Fur-
thermore, we prove that using slightly more than k columns,

i.e., 16k/(εσ), POCSS can achieve an approximation ratio
of (1 − ε) w.r.t. ‖SoptS+

optA‖2F , where ε > 0 is a constant
and σ denotes the smallest squared singular value of the nor-
malized Sopt, i.e., each column of Sopt is scaled to a unit
vector.

The experimental results on 10 real-world data sets clearly
show the superiority of POCSS over the state-of-the-art al-
gorithms, including Two-stage (Boutsidis, Mahoney, and
Drineas 2009), AprxSVD (Civril and Magdon-Ismail 2012),
Greedy (Farahat, Ghodsi, and Kamel 2011), IterFS (Ordoz-
goiti, Canaval, and Mozo 2016) and WA∗ (Arai et al. 2016).

The rest of the paper first introduces the studied problem,
and then presents the proposed method, its theoretical anal-
ysis and empirical study. Finally we conclude this paper.

Unsupervised Feature Selection
We first give some notations that will be used in the paper.
• [n]: set {1, 2, · · · , n}.
• 0: all-zeros vector.
• ‖ · ‖2: `2-norm of a vector.
• 0m,n: zero matrix of size m× n.
• In: identity matrix of size n.
• Cij : entry of the i-th row and j-th column of matrix C.
• Ci:: i-th row of matrix C.
• C:i: i-th column of matrix C.
• CT : transpose of matrix C.
• C+: Moore-Penrose inverse of matrix C.
• tr(·): trace of a square matrix.
• ‖ · ‖F : Frobenius norm of a matrix.
• | · |: number of columns of a matrix.

Unsupervised feature selection can be naturally charac-
terized by the CSS problem in Definition 1. It is to select
at most k columns from all the n columns of a matrix A
to best approximate A. The goodness of approximation is
measured by the sum of squared errors between the original
matrix A and the approximation SS+A based on the se-
lected columns of S. Note that SS+ denotes the projection
matrix onto the space spanned by the columns of S.
Definition 1 (Column Subset Selection (CSS)). Given a ma-
trix A ∈ Rm×n and a positive integer k < n, it is to find
a submatrix S of A with at most k columns that minimizes
‖A− SS+A‖2F , that is,
argminS: a submatrix of A ‖A− SS+A‖2F s.t. |S| ≤ k.
For the ease of theoretical treatment, this minimization

problem is often equivalently transformed into a maximiza-
tion problem:

argmaxS: a submatrix of A ‖SS+A‖2F s.t. |S| ≤ k.
The equivalency can be verified by
‖A− SS+A‖2F = tr((A− SS+A)T (A− SS+A))

= tr(ATA−ATSS+A) = tr(ATA)−tr(ATSS+A)

= tr(ATA)− tr(AT (SS+)TSS+A)

= tr(ATA)− ‖SS+A‖2F ,
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where the second and the fourth equalities are derived by the
properties of S+, i.e., (SS+)T = SS+ and S+SS+ = S+.
Note that tr(ATA) is a constant. In our theoretical analysis,
we will consider maximization.

The Proposed Approach
In this section, we propose a Pareto optimization based ap-
proach for the CSS problem, POCSS. Note that Pareto op-
timization is a general framework that uses bi-objective op-
timization as an intermediate step to solve single-objective
optimization problems. It has been successfully applied to
solve the general subset selection problem (Friedrich and
Neumann 2015; Qian, Yu, and Zhou 2015; Qian et al. 2017a;
2017b) as well as the problems of multiset selection (Qian
et al. 2018b), k-subsets selection (Qian et al. 2018a) and se-
quence selection (Qian, Feng, and Tang 2018).

We use a binary vector s ∈ {0, 1}n to denote a submatrix
S of A. Each element of s corresponds to one column of A.
For 1 ≤ i ≤ n, the i-th bit si = 1 means that the i-th column
of A is included into S; otherwise, the i-th column of A is
not selected. Note that the columns of S are in the order of
their appearance in A. We will not distinguish s ∈ {0, 1}n
and its corresponding submatrix S for notational simplicity.

POCSS reformulates the original problem, i.e., Defini-
tion 1, as a bi-objective minimization problem

argmins∈{0,1}n
(
f(s), |s|

)
where f(s) = ‖A − ss+A‖2F . That is, POCSS minimizes
the original objective function and the number of selected
columns simultaneously.

In the bi-objective setting, both the two objective values
have to be considered for comparing two solutions s and s′.
s weakly dominates s′ (i.e., s is better than s′, denoted as
s � s′) if f(s) ≤ f(s′) ∧ |s| ≤ |s′|; s dominates s′ (i.e.,
s is strictly better, denoted as s ≺ s′) if s � s′ and either
f(s) < f(s′) or |s| < |s′|. But if neither s is better than s′
nor s′ is better than s, they are incomparable.

The procedure of POCSS is described in Algorithm 1. In
the optimization process, we use the archive P to maintain
the non-dominated solutions produced so-far, and f(P ) =
{f(s) | s ∈ P} is the set of objective values of the solutions
in P . The algorithm starts from the all-zeros solution 0 rep-
resenting the empty matrix (line 1), and then iteratively tries
to improve the quality of the solutions in P (lines 4-15). In
each iteration, a solution s randomly selected from the cur-
rent P is used to generate a new solution y by flipping each
bit of s with probability 1/n (lines 5-6); y is then evaluated
(line 7); if y is not dominated by any previously archived so-
lution (line 8), it will be added into P , and meanwhile those
solutions weakly dominated by y will be removed (lines 9-
11). Note that the domination-based comparison makes P
always contain incomparable solutions.

POCSS repeats for T iterations. The value of T could in-
fluence the quality of the produced solution. Their relation-
ship will be made clear in the theoretical analysis, and we
will use the theoretically derived T value in the experiments.
After running T iterations, the best solution (i.e., having the
smallest f value) satisfying the size constraint in P is se-
lected as the final solution (line 16).

Algorithm 1 POCSS Algorithm
Input: matrix A ∈ Rm×n, cardinality constraint k ∈ [n]
Parameter: the number T of iterations
Output: a matrix s comprised by at most k columns of A
Process:

1: Let s = 0.
2: Let P = {s}, f(P ) = {f(s)}, P+ = {s+}.
3: Let t = 0.
4: while t < T do
5: Select s from P uniformly at random.
6: y := flip each bit of s with probability 1/n.
7: (f(y),y+) = Evaluate(s, f(s), s+,y).
8: if @z ∈ P such that z ≺ y then
9: Q = {z | z ∈ P , y � z}.

10: P = (P \Q) ∪ {y}.
11: f(P ) = (f(P ) \ {f(z) | z ∈ Q}) ∪ {f(y)}.
12: P+ = (P+ \ {z+ | z ∈ Q}) ∪ {y+}.
13: end if
14: t = t+ 1.
15: end while
16: return argmins∈P,|s|≤k f(s)

Acceleration
Note that in each iteration of POCSS, we need to evaluate
the objective value of a newly generated solution y, i.e.,
computing f(y) = ‖A − yy+A‖2F , which is very time-
consuming. For a matrix S ∈ Rm×k, the time of computing
S+ isO(k2m); then computing SS+A requires 2kmn time;
finally we need to compute ‖ · ‖2F , the time of which is mn.
Thus, computing f(S) directly costs time O(kmn), which
is expensive.

To accelerate this evaluation process, we build the recur-
sive relation between the objective values by deleting one
column from a matrix or inserting one column into a matrix,
as shown in Lemmas 1-2. Thus, f(y) can be computed from
f(s) by recursively deleting columns {A:j | sj = 1 ∧ yj =
0} and then inserting columns {A:j | sj = 0 ∧ yj = 1}.
From Lemmas 1-2, we can see that the recursive relation on
f relies on the Moore-Penrose inverse of the current matrix.
Thus, we also need to update the Moore-Penrose inverse ma-
trix accordingly, as shown in Lemmas 3-4. During the run-
ning process of POCSS, we use a set P+ to maintain the
Moore-Penrose inverse matrix for each solution in P , i.e.,
P+ = {s+ | s ∈ P}. P+ will be updated accordingly
in line 12 of Algorithm 1. Note that for the empty matrix
s = 0, s+ is also an empty matrix and f(s) = ‖A‖2F .

In the following lemmas, we assume that S is a full col-
umn rank matrix, i.e., rank(S) = |S|. Their proofs are pro-
vided in the Appendix.

Lemma 1. Ŝ is the matrix generated by deleting the i-th
column of S. Let ρ = ((S+)i:)

T and β = ATρ. Then,

f(Ŝ) = f(S) + ‖ρ‖−22 βTβ.

Lemma 2. Ŝ is the matrix generated by inserting the j-th
column of A into S as the i-th column. Let E:j = A:j −
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Algorithm 2 Evaluation Subprocedure
Input: S, f(S), S+ and Y
Output: f(Y) and Y+

Process:
1: fcur = f(S), S+

cur = S+.
2: Xdelete = {A:j | A:j ∈ S,A:j /∈ Y}.
3: Xinsert = {A:j | A:j ∈ Y,A:j /∈ S}.
4: for each column A:j in Xdelete do
5: ρ = ((S+

cur)i:)
T (where A:j is the i-th column of S).

6: β = ATρ.
7: S← delete the i-th column A:j from S.
8: fcur ← fcur + ‖ρ‖−22 βTβ.
9: S+

cur←delete the i-th row of S+
cur−‖ρ‖−22 S+

curρρ
T .

10: end for
11: for each column A:j in Xinsert do
12: E:j = A:j − SS+

curA:j and δ = ATE:j .
13: S← insert A:j into S as the i-th column.
14: fcur ← fcur − δT δ/δj .
15: S+

cur ← insert ((E:j)
TE:j)

−1(E:j)
T into (S+

cur −
((E:j)

TE:j)
−1S+

curA:j(E:j)
T ) as the i-th row.

16: end for
17: f(Y) = fcur, Y+ = S+

cur.
18: return f(Y) and Y+

SS+A:j (i.e., the residual column vector of A:j w.r.t. S),
E = A− SS+A and δ = ATE:j . Then,

f(Ŝ) = f(S)− δT δ/δj ,
where δj denotes the j-th entry of the vector δ.

Lemma 3. Ŝ is the matrix generated by deleting the i-th
column of S. Let ρ = ((S+)i:)

T . Then, Ŝ+ is the matrix by
deleting the i-th row of (S+ − ‖ρ‖−22 S+ρρT ).

Lemma 4. Ŝ is the matrix generated by insert-
ing the j-th column of A into S as the i-th col-
umn. Let E:j = A:j − SS+A:j . Then, Ŝ+ is the
matrix by inserting ((E:j)

TE:j)
−1(E:j)

T into (S+ −
((E:j)

TE:j)
−1S+A:j(E:j)

T ) as the i-th row.
Algorithm 2 describes the procedure of computing f(Y)

and Y+ of a new matrix Y based on the known f(S) and
S+ of an old matrix S. To generate Y from S, Xdelete and
Xinsert record the columns that need to be deleted and in-
serted, respectively. According to Lemmas 1 and 3, lines 4-
10 of Algorithm 2 updates the current objective value fcur
and the current Moore-Penrose inverse matrix S+

cur by delet-
ing columns in Xdelete. According to Lemmas 2 and 4,
lines 11-16 updates fcur and S+

cur by inserting columns in
Xinsert. After line 16, the current matrix S is just the matrix
Y. The algorithm returns fcur and S+

cur as f(Y) and Y+.
We then show how the evaluation is accelerated. For delet-

ing one column (lines 5-9), the time is determined by com-
puting β and S+

curρρ
T , whose time ismn and 2km, respec-

tively. For inserting one column (lines 12-15), the time is
determined by computing SS+

curA:j , δ and S+
curA:j(E:j)

T ,
whose time is 2km, mn and 2km, respectively. Thus, both

their time is in the order of O(mn). Note that in line 6 of
Algorithm 1, it will flip one bit in expectation, that is, it will
delete or insert one column in expectation. This implies that
the evaluation by Algorithm 2 costs time O(mn) in expec-
tation, which is much smaller than the time O(kmn) of di-
rectly computing f(Y).

Theoretical Analysis
In this section, we investigate the theoretical performance of
POCSS. For the CSS problem, we consider the equivalent
maximization formulation:

argmaxS: a submatrix of A g(S) = ‖SS+A‖2F s.t. |S| ≤ k.
Let Sopt denote an optimal submatrix.

The objective function g(S) can actually be seen
as a set function by treating S as a set of columns.
Then, it can be verified that g(S) is monotone and
non-submodular. The submodularity ratio γU,l(g) =

minL⊆U,S:|S|≤l,S∩L=∅

∑
v∈S(g(L∪{v})−g(L))

g(L∪S)−g(L) (Das and
Kempe 2011) can be used to measure the close-
ness of the function g to submodular. Note that
∀U ⊆ A, l ≥ 1 : 0 ≤ γU,l(g) ≤ 1.

In (Qian et al. 2016), it has been proved that the Pareto
optimization method using at most 2ek2n expected number
of iterations can achieve an approximation ratio of (1−e−γ)
for maximizing a general monotone set function. By using
the similar proof, we can prove the approximation bound
of POCSS for maximizing the function g as in Theorem 1,
where E[T ] denotes the expected number of iterations. The
only difference is the size of the archive P during optimiza-
tion. By the procedure of POCSS, we know that the solutions
maintained in P must be incomparable. Thus, each value of
one objective can correspond to at most one solution in P .
Since |S| ∈ {0, 1, . . . , n}, |P | ≤ n + 1. Note that for the
proof in (Qian et al. 2016), |P | ≤ 2k. Thus, the upper bound
on E[T ] changes from 2ek2n to ekn(n+ 1) accordingly.
Theorem 1. For the CSS problem, POCSS with E[T ] ≤
ekn(n+ 1) finds a submatrix S of A with |S| ≤ k and

g(S) ≥ (1− e−γmin) · g(Sopt),
where γmin = minU:|U|=k−1 γU,k(g).

Then, we further analyze the approximation guarantee of
POCSS by allowing more than k columns. Our analysis
needs Lemma 5, i.e., Lemma 1 of (Bhaskara et al. 2016),
which shows that for any submatrix T, there always exists
one column from a better submatrix, whose insertion into T
can bring an improvement proportional to their current dis-
tance. Let σmin(S) = inf‖α‖2=1

‖Snormα‖22
‖α‖22

, where Snorm
denotes the matrix by normalizing each column of S to a
unit vector. That is, σmin(S) is the smallest squared singular
value of Snorm. It can be verified that σmin(S) ≤ 1, because

σmin(S) = inf
‖α‖2=1

‖
∑|S|

i=1
αi(Snorm):i‖22

≤ inf
‖α‖2=1

|S|∑
i=1

‖αi(Snorm):i‖22 = inf
‖α‖2=1

|S|∑
i=1

α2
i = 1.

3537



Lemma 5. (Bhaskara et al. 2016) Let S, T be two subma-
trices of A with g(S) ≥ g(T). There exists one column of
S, inserting which into T can produce a matrix T′ such that

g(T′)− g(T) ≥ σmin(S)
(g(S)− g(T))2

4|S|g(S)
.

By Lemma 5, we prove that taking slightly more than k
columns, POCSS can obtain a constant approximation ratio
of (1 − ε). The proof is inspired from the analysis of the
greedy algorithm, i.e., Theorem 1 in (Bhaskara et al. 2016).
Theorem 2. Let ε be any positive constant. For the CSS
problem, POCSS with E[T ] ≤ 16e

εσmin(Sopt)
kn(n + 1) finds

a submatrix S of A with |S| ≤ 16k
εσmin(Sopt)

and

g(S) ≥ (1− ε) · g(Sopt).

Proof. We use σ to denote σmin(Sopt) for convenience. Let
Jmax denote the maximum integer value of j such that in the
archive P , there exists a solution s with |s| ≤ 8k

σ

∑j−1
i=0 2i

and g(s) ≥ g(sopt)− g(sopt)/2j . Note that the vector sopt
corresponds to the optimal submatrix Sopt. That is,

Jmax = max{j ∈ N≥0 | ∃s ∈ P,

|s| ≤ 8k

σ

∑j−1

i=0
2i ∧ g(s) ≥ g(sopt)− g(sopt)/2j}.

LetN be the minimum integer value of i such that 1/2i ≤ ε,
i.e., 1/2N−1 > ε and 1/2N ≤ ε. We then only need to
analyze the expected number of iterations until Jmax = N ,
since Jmax = N implies that there exists one solution s in
P satisfying that

|s| ≤ 8k

σ

∑N−1

i=0
2i =

8k

σ
(2N−1) ≤ 16k

σ
2N−1 ≤ 16k

εσ

and g(s) ≥ g(sopt)− g(sopt)/2N ≥ (1− ε) · g(sopt).

The initial value of Jmax is 0, since POCSS starts from
the empty matrix 0, which has |0| = 0 and g(0) = 0. As-
sume that currently Jmax = j < N . Let s be a correspond-
ing solution with the value j, i.e., |s| ≤ 8k

σ

∑j−1
i=0 2i and

g(s) ≥ g(sopt) − g(sopt)/2
j . It is easy to see that Jmax

cannot decrease because deleting s from P (lines 9 and 10
of Algorithm 1) implies that the newly generated solution
y � s, which must satisfy that |y| ≤ |s| and g(y) ≥ g(s).

Then, we show that Jmax can increase by at least 1 after
at most 8ekn(n+1)

σ 2j iterations in expectation. By Lemma 5,
g(s) < g(sopt) and |sopt| ≤ k, we know that flipping one
specific 0 bit of s (i.e., inserting one specific column) can
generate a new solution y, which satisfies that

g(y)−g(s)≥σ (g(sopt)−g(s))
2

4kg(sopt)
>σ

(g(sopt)/2
j+1)2

4kg(sopt)
.

The last inequality is derived by g(s) < g(sopt) −
g(sopt)/2

j+1, i.e., g(sopt)− g(s) > g(sopt)/2
j+1, because

otherwise, it implies that Jmax ≥ j + 1, contradicting with
our assumption Jmax = j. This process happens in one iter-
ation with probability at least 1

|P | ·
1
n (1−

1
n )
n−1 ≥ 1

en(n+1) ,
where 1/|P | is a lower bound on the probability of selecting

s in line 5 of Algorithm 1 and 1
n (1 −

1
n )
n−1 is the proba-

bility of flipping a specific bit of s while keeping other bits
unchanged in line 6. Note that |P | ≤ n + 1. Thus, after
at most en(n + 1) iterations in expectation, there must ex-
ist one solution s1 in P satisfying that |s1| ≤ |s| + 1 ≤
8k
σ

∑j−1
i=0 2i + 1 and g(s1) ≥ g(s) + σ

(g(sopt)/2
j+1)2

4kg(sopt)
≥

g(sopt) − g(sopt)/2j + σ
(g(sopt)/2

j+1)2

4kg(sopt)
. We then consider

such a process on s1, which can make the archive P contain
a solution s2 with |s2| ≤ |s1| + 1 ≤ 8k

σ

∑j−1
i=0 2i + 2 and

g(s2) ≥ g(s1)+σ (g(sopt)/2
j+1)2

4kg(sopt)
≥ g(sopt)−g(sopt)/2j+

2σ
(g(sopt)/2

j+1)2

4kg(sopt)
. By repeating this process l = 8k

σ 2j times
(we pessimistically assume that Jmax does not increase, thus
it holds that g(si) < g(sopt)− g(sopt)/2j+1 for any i < l),
P will contain a solution sl satisfying that

|sl| ≤
8k

σ

∑j−1

i=0
2i + l =

8k

σ

∑j

i=0
2i and

g(sl) ≥ g(sopt)−
g(sopt)

2j
+ lσ

(g(sopt)/2
j+1)2

4kg(sopt)

= g(sopt)− g(sopt)/2j+1.

This implies that Jmax ≥ j+1. Thus, after at most l ·en(n+
1) = 8ekn(n+1)

σ 2j expected number of iterations, Jmax can
increase by at least 1.

Thus, the expected number of iterations for increasing
Jmax from 0 to N is at most
N−1∑
j=0

8ekn(n+1)

σ
2j≤ 16ekn(n+1)

σ
2N−1≤ 16e

εσ
kn(n+1),

which is just the expected number of iterations E[T ] for
achieving an approximation ratio of (1− ε).

Experiments
In this section, we empirically evaluate the effective-
ness of POCSS on 10 real-world data sets1. Five state-
of-the-art algorithms for the CSS problem are com-
pared, including Two-stage (Boutsidis, Mahoney, and
Drineas 2009), AprxSVD (Civril and Magdon-Ismail 2012),
Greedy (Farahat, Ghodsi, and Kamel 2011; Bhaskara et al.
2016), IterFS (Ordozgoiti, Canaval, and Mozo 2016) and
WA∗ (Arai et al. 2016). The detailed introduction of these
algorithms can be seen in the related work. For Two-stage,
2k columns are selected in the randomized stage. For WA∗,
we implement its best version WA∗-b and set the parameter
ε = 0.5. For POCSS, the number of iterations is ekn(n+1)
as suggested by Theorem 1. To improve its efficiency, sub-
matrices with at least 2k columns are excluded in the run-
ning process, thus the number of iterations is set to 2ek2n.

To evaluate an output submatrix S, we measure the ratio
of its reconstruction error f(S) w.r.t. the smallest rank-k ap-
proximation error obtained by SVD, i.e.,

error ratio = ‖A− SS+A‖2F /‖A−Ak‖2F .
1The data sets are downloaded from http://archive.ics.uci.edu/

ml/ and http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.
All feature vectors are normalized to unit vectors.
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Table 1: The error ratio (the smaller the better) of the compared methods on 10 data sets for k = 50. The mean±std is reported
for randomized algorithms. In each data set, the smallest values are bolded.

data set (#inst, #feat) Two-stage AprxSVD Greedy WA∗ IterFS POCSS
sonar (208, 60) 2.656 2.860 2.852 2.785 2.524±0.000 2.524±0.000
mediamill (30993, 120) 2.179 2.075 2.045 2.105 1.952±0.027 1.945±0.022
ComCri (2215, 147) 1.265 1.197 1.195 1.203 1.197±0.004 1.194±0.027
musk (7074, 168) 1.868 1.775 1.774 1.740 1.669±0.013 1.656±0.012
dna (2000, 180) 1.334 1.325 1.320 1.323 1.313±0.002 1.311±0.000
Arrhythmia (452, 279) 1.734 1.560 1.551 1.555 1.535±0.006 1.520±0.018
scene (1211, 294) 1.585 1.553 1.548 1.544 1.533±0.002 1.530±0.003
RlCTs (53500, 386) 1.535 1.432 1.433 1.446 1.452±0.051 1.420±0.003
madelon (2000, 500) 1.123 1.057 1.056 1.056 1.056±0.000 1.056±0.000
sEMG (1800, 2500) 1.259 1.226 1.224 1.224 1.218±0.001 1.216±0.001

average rank 5.7 4.55 3.3 3.8 2.45 1.2
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Figure 1: The comparison for cardinality constraints k ∈ {50, 60, . . . , 100} (error ratio: the smaller the better).

The error ratio is obviously always larger than 1. The smaller
it is, the better. For POCSS, Two-stage and IterFS, which are
randomized algorithms, we repeat the run 10 times indepen-
dently and report the average results.

The results for k = 50 are shown in Table 1. POCSS
achieves the smallest error ratio on all the data sets. Note
that we do not report the standard deviations of Two-stage,
because they are always 0, as observed in (Ordozgoiti,
Canaval, and Mozo 2016). We compute the rank of each
method on each data set as in (Demšar 2006), which are av-
eraged in the last row of Table 1. We can observe the order
“POCSS < IterFS < Greedy < WA∗ < AprxSVD < Two-
stage”, which are consistent with “IterFS < Greedy < Two-
stage” in (Ordozgoiti, Canaval, and Mozo 2016) as well as
“WA∗ < Two-stage” in (Arai et al. 2016). Note that although
IterFS is overall the second best, its performance is not very
stable. For example, on the RlCTs data set, IterFS is worse
than AprxSVD, Greedy and WA∗. Figure 1 examines the in-
fluence of the cardinality constraint k. We can observe that
POCSS is consistently better than other methods.

Considering the running time, measured by the number
of objective function evaluations, POCSS is set to use the
theoretical upper bound 2ek2n, i.e., the worst-case time. We
also empirically examine how effective POCSS is in prac-
tice. For the two data sets RlCTs and sEMG with k = 50,
we plot the curve of the error ratio over the running time for
POCSS and select Greedy and IterFS as the baselines. We
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Figure 2: Performance v.s. running time of POCSS.

can observe from Figure 2 that the time of POCSS to obtain
a better performance is much less than the worst-case time
2ek2n ≈ 271kn, implying that POCSS can be efficient in
practice.

Conclusion

In this paper, we study the CSS problem for unsupervised
feature selection, and propose the new algorithm POCSS by
Pareto optimization. POCSS employs a randomized itera-
tive procedure to minimize the reconstruction error and the
number of selected features simultaneously. We prove that
POCSS can achieve a good approximation guarantee. Em-
pirical results also show its excellent performance.
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Appendix
To prove Lemma 1, which shows the recursive relation on
f(S) by deleting one column from S, we first analyze the
recursive relation on E = A− SS+A.
Lemma 6. Ŝ is the matrix generated by deleting the i-th
column of S. Let ρ = ((S+)i:)

T . Then,

Ê = A− ŜŜ+A = E+ ‖ρ‖−22 SS+ρρTA.

Proof. According to Lemma 3, Ŝ+ is the matrix generated
by deleting the i-th row of (S+ − ‖ρ‖−22 S+ρρT ). Thus,

ŜŜ+= S(S+−‖ρ‖−22 S+ρρT )−S:i(S
+−‖ρ‖−22 S+ρρT )i:

= S(S+ − ‖ρ‖−22 S+ρρT ),

where the last equality is by (S+−‖ρ‖−22 S+ρρT )i: = ρ
T−

‖ρ‖−22 ρTρρT = ρT − ρT = 0. Then, we have

Ê = A− ŜŜ+A = A− (SS+ − ‖ρ‖−22 SS+ρρT )A

= E+ ‖ρ‖−22 SS+ρρTA.

Based on Lemma 6 and f(S) = ‖E‖2F , we can update the
objective f when deleting one column from a matrix.
Proof of Lemma 1.
f(Ŝ) = ‖Ê‖2F = tr(ÊT Ê)

= tr((ET+ ‖ρ‖−22 ATρρTSS+)(E+ ‖ρ‖−22 SS+ρρTA))

= tr(ETE) + 2‖ρ‖−22 tr(ATρρTSS+E)

+ ‖ρ‖−42 · tr(ATρρTSS+SS+ρρTA),

where the third equality is by Lemma 6 and (SS+)T =
SS+. Since S is assumed to have full column rank, S+S =
I|S|. Then, we have

ATρρTSS+E = ATρρTSS+(A− SS+A)

= ATρρTSS+A−ATρρTSS+A = 0n,n.

Since ρTSS+ = (S+)i:SS
+ = (S+S)i:S

+ = (I|S|)i:S
+ =

(S+)i: = ρ
T , we have

ATρρTSS+SS+ρρTA = ATρρTSS+ρρTA

= ATρρTρρTA = ‖ρ‖22ATρρTA = ‖ρ‖22ββT .

Applying the above two equations to f(Ŝ), we get f(Ŝ) =
tr(ETE)+‖ρ‖−22 tr(ββT ) = f(S)+‖ρ‖−22 βTβ. �

To prove Lemma 2, which shows the recursive relation on
f(S) by inserting one column into S, we use the recursive
relation on ETE, which has already been derived in Corol-
lary 3 of (Farahat, Ghodsi, and Kamel 2011).

Proof of Lemma 2. Let Ê = A − ŜŜ+A. According to
Corollary 3 in (Farahat, Ghodsi, and Kamel 2011), we get

ÊT Ê = ETE−ETE:j(E
TE:j)

T /
(
(ET )j:E:j

)
.

We then show that ETE:j is just δ. By (SS+)T = SS+ and
S+S = I|S|, we get

δ = ATE:j = (ET+ATSS+)E:j = ETE:j+ATSS+E:j

= ETE:j +ATSS+(A:j − SS+A:j)

= ETE:j +ATSS+A:j −ATSS+SS+A:j = ETE:j .

It is also clear that (ET )j:E:j = δj . Thus, we have

f(Ŝ) = ‖Ê‖2F = tr(ÊT Ê) = tr(ETE)− tr(δδT )/δj
= f(S)− δT δ/δj . �

Let S̃ and Ŝ denote the matrix by zeroing-out and deleting
the i-th column of S, respectively. Lemma 7, i.e., Proposi-
tion 1 in (Ordozgoiti, Canaval, and Mozo 2016), gives the
Moore-Penrose inverse of S̃. By further investigating the re-
lation between the Moore-Penrose inverse of S̃ and Ŝ, we
can prove Lemma 3, which shows the recursive relation on
S+ by deleting one column from a matrix.

Lemma 7. (Ordozgoiti, Canaval, and Mozo 2016) S̃ is
the matrix resulting from zeroing-out the i-th column of S,
i.e., the i-th column of S̃ is comprised by all zeros. Let
ρ = ((S+)i:)

T . Then, S̃+ = S+ − ‖ρ‖−22 S+ρρT .

Proof of Lemma 3. Since the columns of S̃ and Ŝ span
the same space, their projection matrices are the same. That
is, S̃S̃+ = ŜŜ+. Let B denote the matrix by deleting the
i-th row of S̃+. Then, S̃S̃+ = ŜB, since the i-th column
of S̃ contains all zeros. Thus, ŜB = ŜŜ+, implying that
B = Ŝ+ŜŜ+ = Ŝ+. According to Lemma 7, Ŝ+ is the
matrix by deleting the i-th row of (S+ − ‖ρ‖−22 S+ρρT ).
Thus, the lemma holds. �

Lemma 4 shows the recursive relation on S+ by inserting
one column into a matrix. Our proof idea is to first analyze
the Moore-Penrose inverse of the resulting matrix when the
inserting position is the last column, and then analyze the
influence on the Moore-Penrose inverse by switching two
columns of a matrix.
Proof of Lemma 4. We first insert the j-th column of A
into S as its last column, and compute the Moore-Penrose
inverse of the resulting matrix [S A:j ]. For notational sim-
plicity, let v = A:j and B = STS.

[S v]
+
=

([
ST

vT

]
[S v]

)−1[
ST

vT

]
=

[
B ST v
vTS vTv

]−1[
ST

vT

]
=

[
B−1 + τB−1STvvTSB−1 −τB−1STv

−τvTSB−1 τ

] [
ST

vT

]
=

[
B−1ST+τB−1STvvTSB−1ST−τB−1STvvT

−τvTSB−1ST + τvT

]
=

[
S+ + τS+vvTSS+ − τS+vvT

−τvTSS+ + τvT

]
,

where the first equality is by the definition of the Moore-
Penrose inverse of a full column rank matrix, the third equal-
ity is by block matrix inversion and

τ = (vTv − vTSB−1STv)−1

= ((v − SS+v)T (v − SS+v))−1 = ((E:j)
TE:j)

−1,

and the fourth equality is by block matrix multiplication.
Since vTSS+ = (SS+v)T = vT − (E:j)

T , we have

[S v]
+
=

[
S+ − ((E:j)

TE:j)
−1S+v(E:j)

T

((E:j)
TE:j)

−1(E:j)
T

]
. (1)
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Then, we show that if C̃ is the matrix generated by switch-
ing the i-th and j-th columns of a matrix C, C̃+ is the matrix
that swaps the i-th row and j-th row in C+. Let T denote the
elementary matrix obtained by swapping the i-th row and j-
th row of the identity matrix I|C|. Then, C̃ = CT. Accord-
ing to Corollary 2.3 in (Cline and Greville 1970), we get

C̃+ = (CT)+ = (C+CT)+(CTT+)+

= (I|C|T)+(CI|C|)
+ = T+C+ = TC+.

Since TC+ is just swapping the i-th row and j-th row in
C+, our claim holds.

Note that the matrix Ŝ we are to analyze is generated by
inserting the j-th column of A into S as the i-th column.
Thus, by combining Eq. (1) (where v = A:j) with the above
claim, the lemma holds. �
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