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Abstract

Label embedding has been widely used as a method to ex-
ploit label dependency with dimension reduction in multi-
label classification tasks. However, existing embedding meth-
ods intend to extract label correlations directly, and thus they
might be easily trapped by complex label hierarchies. To
tackle this issue, we propose a novel Two-Stage Label Em-
bedding (TSLE) paradigm that involves Neural Factorization
Machine (NFM) to jointly project features and labels into a
latent space. In encoding phase, we introduce a Twin Encod-
ing Network (TEN) that digs out pairwise feature and label
interactions in the first stage and then efficiently learn higher-
order correlations with deep neural networks (DNNs) in the
second stage. After the codewords are obtained, a set of hid-
den layers is applied to recover the output labels in decoding
phase. Moreover, we develop a novel learning model by lever-
aging a max margin encoding loss and a label-correlation
aware decoding loss, and we adopt the mini-batch Adam to
optimize our learning model. Lastly, we also provide a kernel
insight to better understand our proposed TSLE. Extensive
experiments on various real-world datasets demonstrate that
our proposed model significantly outperforms other state-of-
the-art approaches.

Introduction
Single-label classification (Gong et al. 2015; 2016; Deng et
al. 2018b) is one of the most well-known machine learning
problems, where each instance x is associated with a single
label. However, in many real-world applications, an object
can be associated with multiple labels simultaneously. For
instance, a document may belong to a set of topics such as
finance and news (Liu et al. 2018); a video can be annotated
with government and policy (Liu and Tsang 2017); an image
can be tagged with various keywords like beach and trees
(Liu, Tsang, and Müller 2017).

Many techniques (Schapire and Singer 2000; Zhang and
Zhou 2007) have been proposed to deal with Multi-Label
Classification (MLC) problems. Binary Relevance (BR)
(Tsoumakas, Katakis, and Vlahavas 2010) is one of the most
popular methods which decomposes the multi-label task into
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several independent binary classification tasks. However,
these methods fail to exploit label dependency which may
lead to degenerated performance. The key challenging is-
sue for multi-label learning is how to learn the correlations
between labels, and some methods have been developed to
address this issue. For example, Rank-SVM (Elisseeff and
Weston 2001) learns pairwise label interactions and Classi-
fier Chains (Read et al. 2011) exploit high-order label corre-
lations.

Embedding method (Hsu et al. 2009; Cao et al. 2016;
Yang et al. 2018; Deng et al. 2018a) is one of the most pop-
ular frameworks to learn label and feature correlations and
has shown promising results. MMOC (Zhang and Schneider
2012) proposes a max margin formulation to produce dis-
criminative and predictable codewords. LM-kNN (Liu and
Tsang 2015) reduces the exponentially large number of con-
straints in MMOC to linear order by preserving pairwise dis-
tances between only the closest (rather than all) label vec-
tors.

Several state-of-the-art techniques (Zhang and Zhou
2006; Wang et al. 2016; Yeh et al. 2017; Nam et al. 2017)
exploit deep neural network (DNN) for MLC. For instance,
BP-MLL (Zhang and Zhou 2006) is one of the earliest meth-
ods to use neural network architectures in MLC. Wang et
al. (2016) propose a unified CNN-RNN framework that lin-
early embeds labels using recurrent neural network (RNN)
to model label dependency. To discover higher-order la-
bel correlations, C2AE (Yeh et al. 2017) learns deep latent
spaces by combining DNN and embedding framework. Al-
though DNN brings about inspiring results, it is difficult to
learn high-order correlations directly due to the sparsity of
labels.

To ameliorate this problem, we propose a novel Two-
Stage Label Embedding (TSLE) paradigm that involves
Neural Factorization Machine (NFM) (He and Chua 2017)
into embedding framework for MLC. In encoding phase, we
introduce a Twin Encoding Network (TEN) to obtain the
codewords. TEN is comprised of two parts: a feature net-
work and a label network. The two networks share a similar
Two-Stage Label Embedding architecture. As a variant of
NFM, TEN involves Factorization Machines (FMs) (Ren-
dle 2012), which demonstrates great promise in prediction
tasks under sparse setting, to learn pairwise interactions in
the first stage. Then it uses deep neural network to learn
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higher-order correlations in the second stage. In decoding
phase, output labels are recovered from the codewords with
a set of hidden layers. Moreover, we develop a novel learn-
ing model by leveraging a max margin encoding loss and a
label-correlation aware loss of decoding network.

The main contributions of this paper include:

1. We present a neural network based architecture dubbed
Two-Stage Label Embedding to jointly embed features
and labels into a lower dimensional space and recover out-
put labels from the codewords of features.

2. To the best of our knowledge, we are the first to involve
Neural Factorization Machine to exploit feature and label
correlations in MLC. A factorization layer is introduced
to dig out pairwise feature and label interactions in the
first stage. In the second stage, we efficiently learn higher-
order correlations with deep neural network.

3. We provide a kernel insight to better understand our pro-
posed TSLE.

4. Extensive experiments on a number of real-world multi-
label datasets indicate that TSLE outperforms state-of-
the-art approaches.

The rest of this paper is organized as follows. We first re-
view some related algorithms. Next, we provide a detailed
description and a kernel view of TSLE. Then our experi-
ments are reported, followed by the conclusion of our work.

Preliminaries
Neural Factorization Machine
Factorization Machines (FMs) (Rendle 2012) are a class of
powerful algorithms for digging out pairwise interactions
between features. Given a real-valued feature vector x ∈ Rp
where p denotes the number of features, FM models the tar-
get by the inner product of two embedding vectors:

ŷFM (x) = w0 +

p∑
j=1

wjxj︸ ︷︷ ︸
linear regression

+

p∑
j=1

p∑
k=j+1

vTj vk · xjxk︸ ︷︷ ︸
pairwise factorization

(1)

where xj is a singular that represents the j-th entry of x.
vj ∈ Rt denotes the embedding parameter for feature j and
t is the size of vj . Note that vTj vk models the factorized
interaction between j-th and k-th features. HereMT repre-
sents the transpose of matrixM. wj models the interaction
of the j-th feature to the target, and w0 is the global bias.

It is worth noting that FM can only model the second-
order feature interactions, which leads to insufficient rep-
resentation ability for modelling real-world data with com-
plicated inherent structures and regularities. To learn high-
order and non-linear feature interactions, He and Chua
(2017) develop a novel NFM model to deepen FM under
the neural network framework. NFM estimates the target as:

ŷNFM (x) = w0 +

p∑
j=1

wjxj + f(x) (2)

where the first and second terms are the same as the regres-
sion part of FM and the third part f(x) is a multi-layered
neural network.

In this work, we employ a variant of NFM to sufficiently
exploit feature and label correlations in TEN. It is worth not-
ing that TSLE is the first label embedding technique that in-
volves FM in MLC.

Max Margin Based Embedding Approaches
We denote the instance vectors by X = [x1,x2, ...,xN ] ∈
Rp×N and label vectors by Y = [y1,y2, ...,yN ] ∈
{0, 1}q×N . p, q andN are the number of features, labels and
training samples respectively. For each sample i, MMOC
(Zhang and Schneider 2012) jointly maps instance xi and
label yi to a low-dimensional latent space to obtain their
codewords cxi

and cyi
. Then xi and yi can be compared

in the latent space (d-dimension). Intuitionally, if the encod-
ing scheme works well, the prediction distance to the correct
codeword, denoted by ||cxi−cyi ||22, should tend to zero and
be smaller than the prediction distance to any other code-
word ||cxi − cỹ||22, where cỹ denotes the codeword of any
label ỹ ∈ {0, 1}q . However, searching the entire label space
involves an exponential huge number of constraints w.r.t.
the number of labels, which makes it prohibitive to high-
dimensional datasets. To tackle this problem, LM-kNN (Liu
and Tsang 2015) proposes the following formulation to cap-
ture the label dependency by preserving pairwise distances
between only the closest label vectors.

argmin
V,{ξi≥0}Ni=1

λ

2
||V ||2F +

1

N

N∑
i=1

ξi

s.t. ||cxi − cyi ||22 + ∆(yi,y)− ξi
≤ ||cxi

− cy||22,∀y ∈ Nei(i),∀i

(3)

where ||·||F is the Frobenius norm, ||·||2 is the l2 norm, λ is a
regularization parameter. Note that LM-kNN maps instance
xi and label yi as follow:

cxi
= V TPTxi

cyi
= V Tyi

(4)

where V ∈ Rq×d and P ∈ Rp×q are projection matrices.
To give Eq. (3) more robustness, LM-kNN subtracts slack
variable ξi and adds ∆(yi,y) = ||y−yi||1 as margin, where
|| · ||1 is the l1 norm. Nei(i) is the output set of k nearest
neighbors of the input instance xi, whose elements can be
encoded in the same way as yi. Here, the Euclidean distance
in original feature space is used as the metric for searching
Nei(i).

We adapt the max margin based objective function in
TEN. The detailed architecture will be discussed in the fol-
lowing section.

Two-Stage Label Embedding (TSLE)
We propose a novel deep neural network based Two-Stage
Label Embedding paradigm to efficiently characterize the
high-order correlations via Neural Factorization Machine
for MLC. The illustration of TSLE is shown in Fig. 1. The
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Figure 1: The architecture of the proposed TSLE paradigm.
TEN is comprised of two networks, and each of which is a
Two-Stage Label Embedding network: a factorization layer
in the first stage; several hidden layers in the second stage.
The decoding network includes a set of hidden layers.

proposed model contains two phases: a Twin Encoding Net-
work projects instances and labels into a lower embedding
space to get their codewords; a decoding network recovers
label outputs from the codewords with a set of hidden layers.

Twin Encoding Network (TEN)

We present a novel neural network based encoding scheme.
Since TSLE projects features and labels into a shared la-
tent space, we introduce an architecture called Twin Encod-
ing Network for encoding process. Note that instances and
labels have their own distribution. Therefore TEN uses a
feature network and a label network which have a similar
two-stage encoding architecture to produce codewords re-
spectively. In what follows, we elaborate the feature network
of TEN while the label network is under the same schema.
Concretely, the feature network is comprised of two parts: a
factorization layer and a set of hidden layers.

Factorization Layer In the first stage, the factorization
layer maps each feature to a dense vector representation.
Formally, we feed an instance vector x = [x1, x2, ..., xp]

T ∈
Rp into the layer and then obtain a set of embedding vectors
Vemb = {v1x1,v2x2, ...,vpxp} where vi ∈ Rt is the em-
bedding parameter corresponding to the i-th feature. Then,
we conduct a pairwise product of the embedding vectors,
which can be regarded as a pooling operation since it does
not involve extra parameters. Now we get a single vector
g(x;V ):

g(x;V ) =

p∑
j=1

p∑
k=j+1

xjvj � xkvk (5)

where V = [v1,v2, ...,vp] ∈ Rt×p is the feature embedding
matrix, and� denotes element-wise product. This is the core
operation of factorization layer that extracts second-order in-
teractions between features.

However, the time complexity of Eq. (5) is O(tp2), which
makes our model impractical when the inputs have a huge
number of features or labels. To address this problem, we
can reformulate Eq. (5) as:

g(x;V ) =
1

2
[(

p∑
j=1

xjvj)
2 −

p∑
j=1

(xjvj)
2] (6)

where v2 denotes v�v. Now the pairwise product operation
can be linearly computed in O(tp) time.

Moreover, owing to a sparse representation of inputs,
which is common in real-world applications, we can only
consider the embedding vectors for non-zero features,
i.e.,Vemb = {vixi|xi 6= 0}. Consequently, the time com-
plexity is reduced to O(tpx), where px may be a small pos-
itive integer that represents the average number of non-zero
elements of each vector in the input matrix.

Notice that FM consists of two parts: a regression part and
a pairwise factorization part. To generalize FM, the regres-
sion part is not fed into the neural network in vanilla NFM,
which limits its expressiveness. Hence, we combine the re-
gression operation and the factorization operation in the first
layer to sufficiently utilize the expressive ability of neural
network:

Fac(x;V,A) = a0 +

p∑
j=1

xjaj + g(x;V ) (7)

where A = [a0,a1, ...,ap] ∈ Rt×(p+1) is the regression
parameter. To output a vector rather than a singular, we per-
form multi-output regression which is different from the de-
fault setting in vanilla NFM.

In contrast to other neural network based models (Yeh et
al. 2017; Zhao et al. 2015) which learn high-order correla-
tions directly, TSLE uses the factorization layer to extract
second-order interactions between features and labels in ad-
vance. Then we can efficiently learn higher-order correla-
tions with deep neural network.

Hidden Layers Deep neural network has demonstrated its
ability in learning representations from the raw data. The
factorized vectors are then fed into a stack of fully con-
nected layers to learn higher-order correlations in the second
stage. Each layer can be customized to discover certain la-
tent structures between features or labels. It is subjected to
design and can be abstracted as cx = hE(Fac(x;V,A); Θx)
where hE denotes the hidden layers with parameters Θx.
cx ∈ Rd is the output codeword. In general, the input of
each layer is linearly transformed and then activated by a
non-linear function, e.g., sigmoid, hyperbolic tangent (tanh)
or Rectifier (ReLU).

Eventually, the last hidden layer outputs the codeword
vector cx without activation.

Label Network in TEN As for label network, the twin of
feature network, the structure is similar but the parameters
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are distinct. Formally, the model can be expressed as follow:
cy =hE(Fac(y;U,B); Θy)

=hE(b0 +

q∑
j=1

yjbj + g(y;U); Θy)
(8)

where cy ∈ Rd is the output codeword of labels. U =
[u1,u2, ...,uq] ∈ Rt×q and B = [b0,b1, ...,bq] ∈
Rt×(q+1) are the parameters of the label factorization layer.
Θy are the parameters of the hidden layers in the label net-
work.

Through such a twin architecture, we jointly encode the
features and labels to the latent space.

Decoding Network
The decoding procedure recovers label output ŷ from code-
word cx which is the feature representation in latent space.
Traditionally, decoding is performed by maximizing a joint
probability function (Zhang and Schneider 2011). Due to the
requirement of solving a quadratic problem, such decoding
technique is computationally expensive. To handle this prob-
lem, we adapt the idea of (Yeh et al. 2017) and introduce a
multi-layer decoding network hD:

s1 = σ1(Wd1cx + bd1)

s2 = σ2(Wd2s1 + bd2)

......

sL = σL(WdLsL−1 + bdL)

ŷ = WoutsL + bout

(9)

where si, Wdi, bdi, σi denote the output vector, weight ma-
trix, bias vector and activation function for the i-th layer re-
spectively. Wout and bout are the weight matrix and bias
vector for the last layer. By exploiting the inherent nonlin-
earity of deep neural network, we can reconstruct our pre-
dicted labels from the lower-dimensional codeword vector.

Training
Since our framework is comprised of two separate networks
(an encoding network and a decoding network), the final ob-
jective function can also be decomposed into two parts: a
encoding loss and a decoding loss.

In encoding phase, inspired by (Zhang and Schneider
2012; Liu and Tsang 2015), a max margin formulation is
involved such that the codeword is both discriminative and
predictable. Define µ(i) = maxy∈Nei(i){||cxi

− cyi
||22 −

||cxi
− cy||22 + ∆(yi,y)}, the encoding loss LE is designed

as follow:

LE =
1

N

N∑
i=1

max{0, µ(i)} (10)

For decoding, the goal is to reduce the prediction mistakes
on unseen data. Among various choices of global error defi-
nitions, we choose to adapt a popular label-correlation aware
error function which is proposed by (Zhang and Zhou 2006):

LD =
1

N

N∑
i=1

1

|y1
i ||y0

i |
∑

(e,g)∈y1
i×y0

i

exp((ŷi)g − (ŷi)e)

(11)

Algorithm 1 Training procedure of TSLE

Input: Feature matrix X , label matrix Y , learning rate η,
leverage parameters λ and α, dimension parameters d
and t, size of nearest neighbor k

Output: The optimal trainable parameters of TSLE
1: Compute the label set Nei(i) of instance xi for i =

1, 2, ..., N
2: Initialize all trainable parameters with random values

from Gaussian distribution
3: repeat
4: Randomly select a data sample xj and yj
5: Compute the output of the factorization layer

Fac(xj ;V,A), Fac(yj ;U,B) and Fac(y;U,B)
where y ∈ Nei(j)

6: Compute the codewords cxj
, cyj

and cy
7: Recover the output label ŷj from cxj

8: Compute the encoding loss LE by Eq. (10) and the
decoding loss LD by Eq. (11)

9: Compute the final loss L by Eq. (12)
10: Update all trainable parameters with Adam algorithm
11: until Converge

Here, LD is the decoding loss. For the i-th instance xi,
y1
i is the set of the positive labels in yi and y0

i is that of the
negative labels. | · | measures the cardinality of a set. (ŷi)e
denotes the e-th entry of the predicted label ŷi.

We note that existing label embedding approaches usually
manipulate the encoding and decoding processes separately.
To give our proposed model more robustness, the encoding
and decoding losses are combined and leveraged by a posi-
tive constant α. A regularization term is also added to pre-
vent overfitting. Then the final loss L can be formulated as:

L = LE + αLD + λ
∑
φ∈Φ

||φ||2 (12)

where Φ denotes the set of all parameters and λ controls the
regularization strength. ||·|| represents the l2 norm of vectors
or the Frobenius norm of matrices.

We adapt Adam (Kingma and Ba 2014) instead of vanilla
Stochastic Gradient Descent to iteratively update the pa-
rameters with learning rate η. Adam has two main advan-
tages: capability of dealing with sparse gradients and non-
stationary objectives, and requiring little memory. Note that
our proposed model is clearly defined, thus the computa-
tional graphs (Fig. 1) can be easily built and the model can
be straightly implemented using Machine Learning Toolkits
like TensorFlow (Abadi et al. 2016) or Caffe (Jia et al. 2014).
The pseudo code of TSLE is summarized in Algorithm 1.

Once the parameters are learnt, we can predict the label
of a test input x̂ by rounding ŷ = hD(cx̂).

Kernel View of TSLE
It is well-known that the theoretical properties of deep neural
network are still not well understood. Therefore, we demon-
strate a different view of TSLE for a better understanding.

In the first place, let us focus on the hidden layers in TEN.
Technically speaking, each hidden layer can be designed as

3307



any function that takes a matrix as input and outputs a vec-
tor. Consequently, we can remove all the activation functions
and biases. Then the hidden layers linearly project the em-
bedding vectors into a latent space. Moreover, we preserve
only two hidden layers in the feature network and one in the
label network:

cx = W 2
xW

1
x Fac(x;V,A)

cy = W 1
y Fac(y;U,B)

(13)

where W 1
x , W 2

x and W 1
y are weight parameters. Here, we

set W 2
x = W 1

y . Comparing Eq. (4) with Eq. (13), we can
see that the specialised hidden layers project the embedding
vectors in the same way as LM-kNN encodes the inputs.

Recall that a factorization layer is used to obtain the em-
bedding vectors. While a recent work (Blondel et al. 2016)
provides a kernel view of FM, our factorization layer actu-
ally maps the original inputs into a polynomial kernel space.
It is worth pointing that TEN and LM-kNN have similar ob-
jective functions. Thus, if we regard the factorization layer
as a preprocessing procedure of data, the specialised TSLE
will have the same encoding phase as a kernelized LM-kNN,
where the kernel function is exactly FM.

We have demonstrated the generalization ability of our
proposed model. Furthermore, we show that TSLE has two
main advantages. First, instead of linear projection, deep
neural networks are used in encoding phase to better exploit
high-order dependency. Second, TSLE is a typical margin-
based algorithm and it is well-known that kernel trick can
provide significant improvements for such algorithms. Since
pairwise interactions commonly exist in multi-label datasets,
FM will be a promising kernel function. Empirical study
also proves that our proposed model outperforms LM-kNN.

Experiment
In this section, we evaluate the performance of our pro-
posed TSLE and five state-of-the-art multi-label techniques
on many real-world datasets over eight measurements. We
conduct all experiments on a same workstation with an i7-
5930K CPU, a TITAN Xp GPU and 64GB main memory
running Linux platform.

Experimental Settings
Datasets We conduct experiments on seven real-world
datasets from various domains.

• Cal500 (Turnbull et al. 2008): A music dataset containing
human-generated musical annotations that describes 502
popular western musical tracks with 174 tags representing
emotions, instruments, and other related concepts.

• Emotions (Trohidis et al. 2008): A music dataset consist-
ing of hundreds of songs from 6 genres.

• Yeast (Elisseeff and Weston 2001): A biology dataset
formed by micro-array expression data and phylogenetic
profiles with 14 genes.

• Eurlex (Mencı́a and Fürnkranz 2008): A collection of
documents about European Union law. Several EU-
ROVOC descriptors, directory codes and subject matters

are available, corresponding to three individual datasets:
Eurlex desc, Eurlex dc and Eurlex sm. Following the set-
ting of (Zhang and Schneider 2012), we select the 10 most
common labels to study.

• NUS-WIDE (Chua et al. 2009): A large-scale web image
dataset with hundreds of thousands of instances that in-
cludes 500-dimensional bag of words based on SIFT de-
scriptions for 81 concepts.

More detailed information about the datasets can be found
on the website1.

Baselines We compare TSLE with several state-of-the-art
multi-label classification approaches:
• BR (Tsoumakas, Katakis, and Vlahavas 2010): Binary

Relevance predicts each label independently with a binary
classifier. In this paper, we use neural network as the bi-
nary classifier.

• ML-kNN (Zhang and Zhou 2007): Derived from the tra-
ditional k nearest neighbor algorithm, ML-kNN utilizes
maximum a posteriori principle to determine the label set
for the unseen instance.

• CPLST (Chen and Lin 2012): Based on minimizing an
upper bound of the Hamming loss, CPLST combines the
concepts of Principal Component Analysis (PCA) and
Canonical Correlation Analysis (CCA) to improve PLST
(Tai and Lin 2012) through the addition of feature infor-
mation.

• LM-kNN (Liu and Tsang 2015): By linearly embedding
features and labels into a low dimensional space, LM-
kNN uses the Euclidean distance of instances in the latent
space as a metric to find k nearest neighbors and takes the
weighted average of their labels as the predicted labels.

• C2AE (Yeh et al. 2017): As the first deep neural network
based label embedding approach for multi-label classi-
fication, C2AE integrates Deep Canonical Correlation
Analysis (DCCA) (Reichart, Vulic, and Rotman 2018)
and autoencoder to exploit label dependency.

Parameter Settings We implement our proposed TSLE
based on TensorFlow. We randomly select 80% of the data
for training and predict the labels with the rest 20%. The
feature and label embedding matrices V and U are initial-
ized with random values sampled from a standard Gaussian
distribution. The dimension of embedding vector t is set to
256. Both hE and hD are composed of three fully connected
layers with ReLU as activation functions. The hidden di-
mensions of hE and hD are [64, 64, d] and [d, 64, q] respec-
tively, where d = min(32, q − 1) is the dimension of the
latent space. Each base classifier of BR is a neural network
with dimensions of [64, 64, 1]. We set k = 3 for ML-kNN,
LM-kNN and our method. The default learning rates η of all
baselines (expect CPLST) and TSLE are 10−3. The default
leverage parameter α and regularization parameter λ are set
to 1 and 0.01 respectively. To test the stability of the pro-
posed model, we also experiment TSLE on various learning
rates ranging from 10−4 to 5 × 10−3 and different leverage

1http://mulan.sourceforge.net/datasets-mlc.html
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Table 1: Results of Micro-F1 on all datasets (mean ± standard deviation), the best ones are in bold.

Datasets BR ML-kNN CPLST LM-kNN C2AE TSLE
Cal500 0.3643±0.0153 0.3162±0.0146 0.3329±0.0064 0.3551±0.0092 0.4586±0.0011 0.4648±0.0088

Emotions 0.6047±0.0178 0.6585±0.0110 0.6430±0.0051 0.6152±0.0113 0.4563±0.0113 0.6933±0.0040
Yeast 0.4037±0.0042 0.6262±0.0142 0.4670±0.0051 0.5365±0.0098 0.5459±0.0099 0.5908±0.0068

Eurlex desc 0.3605±0.0093 0.6584±0.0061 0.3173±0.0106 0.7050±0.0122 0.3671±0.0146 0.7057±0.0032
Eurlex dc 0.5455±0.0117 0.9193±0.0063 0.4928±0.0193 0.9206±0.0059 0.4091±0.0146 0.9492±0.0098
Eurlex sm 0.4155±0.0070 0.8177±0.0059 0.5897±0.0194 0.8046±0.0070 0.3583±0.0070 0.8230±0.0060

NUS-WIDE 0.2356±0.0053 0.1781±0.0102 0.2236±0.0036 0.2751±0.0029 0.3685±0.0044 0.3815±0.0098

Table 2: Results of Macro-F1 on all datasets (mean ± standard deviation), the best ones are in bold.

Datasets BR ML-kNN CPLST LM-kNN C2AE TSLE
Cal500 0.1065±0.0077 0.0482±0.0049 0.0642±0.0077 0.1356±0.0092 0.1703±0.0012 0.1994±0.0037

Emotions 0.5782±0.0115 0.6362±0.0140 0.5741±0.0131 0.6044±0.0143 0.3353±0.0085 0.6899±0.0036
Yeast 0.2618±0.0039 0.3741±0.0206 0.1403±0.0159 0.3603±0.0094 0.3888±0.0028 0.4044±0.0215

Eurlex desc 0.3320±0.0074 0.6022±0.0048 0.3024±0.0105 0.6800±0.0111 0.3657±0.0199 0.6903±0.0048
Eurlex dc 0.4610±0.0149 0.8910±0.0097 0.3202±0.0087 0.8934±0.0066 0.3467±0.0068 0.9286±0.0198
Eurlex sm 0.3448±0.0141 0.7980±0.0081 0.4729±0.0148 0.7819±0.0076 0.2758±0.0133 0.8011±0.0085

NUS-WIDE 0.0180±0.0023 0.0216±0.0035 0.0172±0.0007 0.0501±0.0076 0.0694±0.0104 0.0522±0.0021

Table 3: Results of Example-F1 on all datasets (mean ± standard deviation), the best ones are in bold.

Datasets BR ML-kNN CPLST LM-kNN C2AE TSLE
Cal500 0.3635±0.0163 0.3200±0.0135 0.3325±0.0056 0.3510±0.0082 0.4554±0.0011 0.4611±0.0073

Emotions 0.5629±0.0131 0.6175±0.0137 0.5011±0.0064 0.5855±0.0136 0.4498±0.0164 0.6714±0.0080
Yeast 0.3608±0.0058 0.5726±0.0155 0.4380±0.0060 0.5094±0.0098 0.5159±0.0098 0.5748±0.0076

Eurlex desc 0.2898±0.0087 0.5718±0.0064 0.3320±0.0083 0.7101±0.0156 0.3489±0.0129 0.7006±0.0050
Eurlex dc 0.4720±0.0121 0.8898±0.0090 0.5383±0.0066 0.9270±0.0053 0.4736±0.0062 0.9566±0.0112
Eurlex sm 0.3534±0.0103 0.7777±0.0087 0.5840±0.0013 0.7600±0.0083 0.3460±0.0037 0.8123±0.0077

NUS-WIDE 0.1643±0.0088 0.0813±0.0020 0.1116±0.0015 0.1663±0.0070 0.2864±0.0056 0.3334±0.0027

(a) Cal500 (b) Emotions (c) Yeast (d) Eurlex dc (e) NUS-WIDE

Figure 2: Precision@K of all methods on various datasets.

parameters ranging from 0.3 to 3. Other parameters in the
baselines are set to their default values.

Measurements To better measure the performance, we
adapt several widely-used metrics:

• Micro-F1: It calculates true positives/negatives and false
positives/negatives over labels, and then computes an
overall F-measure.

• Macro-F1: It is the unweighted mean of label F-measure.

• Example-F1: It is the unweighted mean of instance F-
measure.

• Precision@K: It is the proportion of labels in the Top-K
set that are correctly predicted.

Experimental Results
Prediction Performance Table 1, 2 and 3 list the Micro-
F1, Macro-F1 and Example-F1 results of baselines and our
model in respect of different datasets. Fig. 2 shows the
Precision@K results on different datasets where the rank-
ing position K ranges from 1 to 5. From the results, we can
tell that:

• The proposed TSLE significantly outperforms all other
approaches on both medium-sized and large-scale
datasets. For example, on Emotions dataset, in term of
Micro-F1, Macro-F1 and Example-F1, TSLE improves
the best results of the baselines by 7.82%, 14.15% and
14.67%. From the precision perspective, TSLE shows
consistent improvements over other methods across po-
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(a) Micro-F1 (b) Macro-F1

Figure 3: Micro-F1 and Macro-F1 of TSLE w.r.t. different
learning rates (η)

(a) Micro-F1 (b) Macro-F1

Figure 4: Micro-F1 and Macro-F1 of TSLE w.r.t. different
leverage parameters (α)

sitions. These results demonstrate that TSLE achieves su-
perior performance than those baselines.

• BR and ML-kNN underperform LM-kNN and TSLE over
many measurements. Therefore, exploiting label correla-
tions can notably improve the prediction performance.

• CPLST is much inferior to C2AE, LM-kNN and TSLE.
With simple linear projection, CPLST cannot effectively
explore the latent label spaces.

• It is worth pointing that C2AE works well on many
datasets, which proofs that deep neural network can ef-
ficiently extract high-order label correlations. However,
since its criterion does not optimize the discriminability of
the codewords, it is unstable and sensitive to noisy data.
Moreover, C2AE ignores the difficulty of learning high-
order label correlations directly due to the sparsity of la-
bels, and thus underperforms TSLE.

• LM-kNN and TSLE are the most successful methods on
all datasets. However, TSLE is better for two reasons.
First, a factorization layer, which works well under sparse
setting, is used as a kernel function to learn pairwise cor-
relations in advance. Second, DNN can efficiently exploit
higher-order label dependency and effectively recover the
output labels from codewords.

Parameter Sensitivity In this section, we explore the hy-
perparameter sensitivity of our model to find out the strength
and relevance of the inputs in determining the variation in
the output. Fig. 3 reports Micro-F1 and Macro-F1 results un-
der different learning rates η on four datasets. Fig. 4 shows

the same measurements under different loss leverage param-
eters α. The experimental results fluctuate lightly according
to different orders of magnitude, but they are substantially
robust within an acceptable range. In conclusion, the above
results assure the quality and stability of TSLE.

Conclusion
To handle complicated label hierarchies, this paper proposes
a novel Two-Stage Label Embedding (TSLE) paradigm for
MLC. Based on NFM (He and Chua 2017), a Twin Encoding
Network is introduced to jointly embed features and labels
into a latent space. In the first stage, a factorization layer
extracts pairwise feature and label interactions. Then a set
of hidden layers is applied to learn higher-order correlations
in the second stage. Inspired by (Yeh et al. 2017), we use
deep neural network to recover the output labels from the
codewords of instances in decoding phase. To give TSLE
more robustness, the final objective function is leveraged
between two parts: a max margin formulated encoding loss
for discriminative and predictable codewords, and a label-
correlation aware decoding loss. Furthermore, a regulariza-
tion term is also added to alleviate overfitting. For a better
understanding, we provide a kernel insight to show the gen-
eralization ability of TSLE. In the experiments, we demon-
strate that our TSLE notably outperforms other state-of-the-
art methods with quality assurance.
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