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Abstract

We address the problem of unsupervised disentanglement of
latent representations learnt via deep generative models. In
contrast to current approaches that operate on the evidence
lower bound (ELBO), we argue that statistical independence
in the latent space of VAEs can be enforced in a principled
hierarchical Bayesian manner. To this effect, we augment the
standard VAE with an inverse-Wishart (IW) prior on the co-
variance matrix of the latent code. By tuning the IW param-
eters, we are able to encourage (or discourage) independence
in the learnt latent dimensions. Extensive experimental re-
sults on a range of datasets (2DShapes, 3DChairs, 3DFaces
and CelebA) show our approach to outperform the β-VAE
and is competitive with the state-of-the-art FactorVAE. Our
approach achieves significantly better disentanglement and
reconstruction on a new dataset (CorrelatedEllipses) which
introduces correlations between the factors of variation.

1 Introduction
Learning semantically interpretable representations of data
remains an important open problem in artificial intelligence.
In particular, there has been considerable attention on learn-
ing disentangled representations—equivariant codes that ex-
hibit predictable changes in a single associated dimension
when a factor of variation is altered (Bengio, Courville, and
Vincent 2013). Disentangled representations are beneficial
for a variety of tasks including exploratory data analysis
(EDA), transfer learning, and generative modeling. For ex-
ample, one may seek to change a single aspect of a gen-
erated face (e.g., lighting, orientation, or hair color). With
an appropriate disentangled representation, only one dimen-
sion of the latent code needs to be modified to obtain the
required change. By analogy to inverse graphics, the disen-
tangled representation can be regarded as independent pa-
rameters fed to a rendering engine to synthesize an image.

In this work, we focus on pure unsupervised learning
of disentangled representations with deep generative mod-
els. Alternative (semi-) supervised approaches have been ex-
plored in recent work (Reed et al. 2014; Kulkarni et al. 2015;
Siddharth et al. 2017; Mathieu et al. 2016), but these meth-
ods require labels that can be costly to obtain. Moreover, in
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certain applications such as EDA, the factors of variation are
unknown and precisely the information we seek to uncover.

In the unsupervised setting, a prior notion of disentangle-
ment is required: we adopt a current standard assumption
that the data is generated from a fixed number of statisti-
cally independent factors. A popular generative model under
this assumption is the β-VAE (Higgins et al. 2017), which
learns good disentangled representations whilst being easy
to train. However, the mechanism employed to encourage
disentanglement—by increasing the weight on the KL diver-
gence between the variational posterior and prior—sacrifices
reconstruction fidelity.

Recognizing this deficiency, very recent models—the
FactorVAE (Kim and Mnih 2018) and β-TCVAE (Chen et
al. 2018)—have improved upon the β-VAE by augmenting
the VAE loss with an extra penalty term that encourages in-
dependence in the latent codes. Although this penalty term
is well-motivated via total correlation, the drive to maxi-
mize statistical independence in this manner may not be ro-
bust to factor correlations in the data that exist due to biased
sampling. Furthermore, the need to add additional weighted
terms to the variational lower bound is unsatisfying from
a probabilistic modeling perspective; it points to an inade-
quacy in the underlying model formulation.

This paper takes a step back and asks whether trading-
off reconstruction and disentanglement can be handled in a
more principled fashion. Rather than introducing additional
terms or weights to the VAE evidence lower bound (ELBO),
we focus instead on the generative model and specifically,
its latent representation prior p(z). In the standard VAE,
p(z) is a standard multivariate Gaussian p(z) = N (0,Σ)
where Σ = I. By introducing a suitable hyperprior on the
covariance matrix—e.g., the inverse-Wishart (IW) used in
this study—one imagines that we can encourage (or discour-
age) independence in the learnt latent dimensions via the
hyperprior’s parameters. When trained via variational infer-
ence using an approximate distribution q(z,Σ), the hyper-
prior’s effect naturally manifests as additional terms in the
ELBO, rather than having to be inserted post-hoc as in pre-
vious studies. This approach is very natural from a Bayesian
perspective, but surprisingly, has yet to be explored in the
literature.

Unlike previous work, our model formulation entails
learning a full covariance matrix Σ; this allows the model
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to capture possible correlations in the dataset, but requires
additional treatment to ensure stable training. We employ a
structured variational posterior and present approximation
techniques to enable efficient and stable inference. We term
the resulting model and inference scheme as the Covariance
Hyperprior VAE (CHyVAE).

Experiments on a range of image datasets—2DShapes,
CelebA, 3DFaces, and 3DChairs—show that CHyVAE out-
performs β-VAE both in terms of disentanglement and re-
construction error and is competitive with the state-of-the-
art FactorVAE. We also compare the three models on a novel
dataset (CorrelatedEllipses) which introduces strong corre-
lations between the factors of variation. Here, CHyVAE out-
performs both β-VAE and FactorVAE by a significant mar-
gin. These results indicate that disentanglement and recon-
struction can be traded-off in an alternative manner, i.e.,
at the model specification level, compared to existing ap-
proaches that operate on the ELBO.

In summary, this paper makes the following key contribu-
tions:
• A hierarchical Bayesian approach for learning disentan-

gled latent space representations in an unsupervised man-
ner;

• A specific generative model with an inverse-Wishart hy-
perprior and an efficient inference scheme with a struc-
tured variational posterior, which results in the CHyVAE;

• Extensive empirical results and analyses comparing CHy-
VAE to β-VAE and the FactorVAE on a range of datasets,
which show that disentanglement can be achieved with-
out resorting to “ELBO surgery” (Hoffman and Johnson
2016; Kim and Mnih 2018; Chen et al. 2018).

2 Generation and Disentanglement with the
Variational Autoencoder

To begin, we give a brief overview of the Variational Au-
toencoder (VAE) (Kingma and Welling 2013)1 and the alter-
ations used to encourage disentanglement. We first consider
the standard generative scheme, where our objective is to
find parameters θ that maximize the expected log probabil-
ity of the dataset under the data distribution,

argmaxθEdata[log pθ(x)] (1)

and x ∈ X is an observed data item of interest. For real
world data, pθ(x) may be highly complex and non-trivial to
generate samples from. Furthermore, in unsupervised learn-
ing, we may wish to obtain representations of x that are
more amenable to downstream analysis. One approach for
achieving these aims is to further specify the log-distribution
within Eq. (1),

log pθ(x) = logEp(z)[pθ(x|z)] (2)

where we introduce the conditional distribution pθ(x|z) and
variables z ∈ Z with prior p(z). Intuitively, each z is a la-
tent representation or code associated with x. By choosing

1We refer readers wanting more detail on the VAE and an al-
ternative derivation to related work (Doersch 2016; Kingma and
Welling 2013).

an appropriate condition and setting the prior p(z) to be a
simple distribution, e.g., N (0, I), we can easily generate x
by sampling from p(z). In addition, the diagonal covariance
I indicates a prior expectation that underlying data represen-
tation comprises statistically independent Gaussians (one for
each latent dimension), and is therefore disentangled.

Computing log pθ(x) requires marginalizing out the la-
tent variables z which is generally intractable, e.g., when
pθ(x|z) = p(x|f(z)) and f is a nonlinear neural net-
work. To perform approximate inference, the VAE employs
a recognition or inference model, qφ(z|x), and maximizes
the variational or evidence lower bound (ELBO),

LVAE
ELBO =

1

N

N∑
n=1

Eqφ [log pθ(x|z)]−DKL(qφ(z|x)||p(z))

The above can be seen as the expectation of the data likeli-
hood under the inference model with a KL divergence term
that measures how different qφ(z|x) is from the prior p(z).

2.1 Encouraging Disentanglement in VAEs
In our context, the second term in the ELBO is of partic-
ular interest: when p(z) is intentionally chosen to factorize
across the dimensions, minimizing the KL divergence en-
courages independence in the learned latent representations.
The β-VAE (Higgins et al. 2017) takes advantage of this ob-
servation and encourages disentanglement by emphasizing
the KL divergence with a weight β:

Lβ =
1

N

N∑
n=1

Eq[log p(x|z)]− βDKL[q(z|x)‖p(z)]

With larger β and a factorized prior, maximizing this
modified objective favors latent representations possessing
greater independence across the dimensions.

However, disentanglement gains in the β-VAE are often
off-set by a decrease in reconstruction performance. Recent
work (Kim and Mnih 2018; Chen et al. 2018) has argued that
increasing β has the undesirable side-effect of inadvertently
penalizing the mutual information between x and z. This can
be seen by decomposing the KL divergence term:
Edata[DKL[q(z|x)‖p(z))]] = I(x; z) +DKL[q(z)‖p(z)]

where I(x; z) is the mutual information between x and
z (Hoffman and Johnson 2016). Penalizing the first term de-
creases the informativeness of z about x and hence, reduces
reconstruction quality. To overcome this problem, both Kim
and Mnih and Chen et al. optimize an augmented objective:

Lγ = LVAE
ELBO − γDKL

[
q(z)‖

∏
i

q(zi)

]
(3)

where DKL[q(z)‖
∏
i q(zi)] is the total correlation (TC).

Computing the TC is generally intractable and has to be ap-
proximated; the FactorVAE (Kim and Mnih 2018) estimates
TC by means of a discriminator using the density-ratio trick,
where else β-TCVAE (Chen et al. 2018) uses a minibatch-
based alternative. Empirical results show that optimizing Lγ
leads to better reconstruction with similar disentanglement
compared to the β-VAE.
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3 A Hyperprior Approach for Learning
Disentangled Representations

We observed in the previous section that current state-of-
the-art methods attempt to procure disentanglement by aug-
menting the ELBO. In this section, we describe an alterna-
tive approach by further expanding upon the log-distribution
within Eq. (1). At a high-level, we desire a means to “regu-
larize” the latent codes towards a disentangled form, yet pre-
serve sufficient flexibility to achieve good reconstruction. A
natural Bayesian approach to achieve these aims is to place
a hyperprior p(Σ) on the covariance parameter of p(z|Σ):

log pθ(x) = logEp(z|Σ)p(Σ)[p(x|z)]. (4)

Our proposed model denotes a modified generative pro-
cess relative to the standard VAE. In particular, an observed
sample x ∈ RD is generated by first sampling a covariance
matrix Σ ∼ p(Σ), followed by the latent representation
z ∼ p(z|Σ) and finally, x ∼ pθ(x|z). As such, the joint
probability factorizes as

p(x, z,Σ) = p(x|z)p(z|Σ)p(Σ) (5)

since x and Σ are independent conditioned on z. Notice that
Σ is no longer constrained to be simply I, but disentangle-
ment can be encouraged in a straight-forward manner sim-
ply by placing greater weight on independence between the
latent dimensions. In other words, tuning the strength or in-
formativeness of the hyperprior would then allow us to nat-
urally vary of level of disentanglement desired. By allowing
some deviation from strict independence, the model recog-
nizes that individual latent representations may have corre-
lated factors of variation; this is potentially a more accurate
reflection of real world data where different sub-populations
(e.g., dog breeds) often have correlated factors of variation
(e.g., color, size).

ELBO Decomposition Akin to the VAE, inference can be
achieved via variational approximation. Let q(z,Σ|x) be the
variational posterior distribution. Using Jensen’s inequality,
the log-likelihood can be written as

log p(x) ≥ Eq(z,Σ|x)
[
log

p(z,Σ,x)

q(z,Σ|x)

]
= LELBO (6)

Consider a structured variational distribution q(z,Σ|x) =
q(z|x)q(Σ|z). Then, the ELBO in Eq. (6) decomposes into
the following terms:

LELBO =

[
1

N

N∑
n=1

Eq(z|x) [log p(x|z)]

]
(average reconstruction)

− I(x; z)
(index-code MI)

−DKL(q(z)‖p(z))
(marginal KL to prior)

− Eq(z) [DKL(q(Σ|z)‖p(Σ|z))]
(covariance penalty)

(7)

We can combine the first three terms in Eq. (7) to obtain the
standard VAE ELBO (Hoffman and Johnson 2016):

LELBO = LVAE
ELBO − Eq(z) [DKL(q(Σ|z)‖p(Σ|z))]

revealing Eq(z) [DKL(q(Σ|z)‖p(Σ|z))] as an additional
quantity minimized in our model. Intuitively, this term

Σ0 ν = 10 ν = 100 ν = 1000

-0.5
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0.5

1.0

1.5

Figure 1: Desired matrix Σ0 and a random sample from an
inverse-Wishart distribution with ν = 10, ν = 100, and
ν = 1000. As ν increases, random samples become closer
to the desired matrix.

matches the approximate covariance distribution to the co-
variance prior (across the latent code distribution). Hence,
a factorized p(Σ|z) can encourage disentangled representa-
tions. A similar term was introduced directly into the ELBO
in the DIP-VAE (Kumar, Sattigeri, and Balakrishnan 2017),
which constrains the covariance matrix (averaged over the
mini-batch) to be near I. In contrast, our hyperprior ap-
proach enables this term to emerge naturally in the ELBO.

3.1 Model Specification and Inference
In this subsection, we derive a specific model—the Co-
variance Hyperprior VAE (CHyVAE)—under the hyperprior
framework outlined above. Specifically, we set a Gaussian
prior over the latent code, and an inverse-Wishart prior over
its covariance matrix. Note that the overarching framework
is not constrained to these specific distributions, i.e., alter-
native hyperpriors and variational distributions can be used
without significant changes to the overall methodology.

An Inverse-Wishart Hyperprior The inverse-Wishart
distribution W−1p (Ψ, ν) is a popular distribution that has
support over real-valued positive-definite matrices. It is pa-
rameterized by a positive-definite scale matrix Ψ ∈ Rp×p
and degrees of freedom (DoF) ν > p−1. An inverse-Wishart
distributed random matrix X ∈ Rp×p has probability den-
sity function

p(X) =
|Ψ|ν/2

2νp/2Γp
(
ν
2

) |X|−(ν+p+1)/2e−
1
2 tr(ΨX−1)

where Γp(.) is the multivariate gamma function. The mean
of an inverse-Wishart random variable is given by (ν − p−
1)−1Ψ. For a desired specification Σ0 of the covariance ma-
trix, a reasonable choice of Ψ would be (ν − p− 1)Σ0.

With a desired covariance matrix I, the DoF parameter
ν can be varied to control the desired statistical indepen-
dence (Fig. 1). Intuitively, ν can be regarded as pseudo-
observations and thus, controls the strength/informativeness
of the prior; high values (ν � p) indicate a strong prior,
while ν = p+ 1 is the least informative setting.

Approximate Inference In our model, we have

p(Σ) =W−1p (Σ|Ψ, ν) (8)

p(z|Σ) = N (z|0,Σ) (9)

and maximizing the log probability of the data (Eq. 4)
is intractable. Our initial approach was to completely em-
ploy a mean-field variational approximation, i.e., factorize
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q(z,Σ|x) into q(z|x)q(Σ|x). This factorization can be real-
ized using shared neural networks that output both the prior
and the hyperprior parameters. While simple and tractable,
our preliminary experiments with this factorized form were
unsuccessful; training was unstable and results were poor.
One potential reason is that the decoupling renders the hy-
perprior ineffective.

An alternative approach is to factorize q(z,Σ|x) =
q(z|x,Σ)q(Σ|x), but explicit reparameterization is not ap-
plicable to the inverse-Wishart2. It is also possible to em-
ploy a single variational distribution q(z|x) by recognizing
that marginalization of the prior p(z|Σ) under an inverse-
Wishart hyperprior leads to a multivariate Student’s t-
distribution. However, explicit reparameterization is also not
applicable in this case and analytic marginalization may not
be possible with arbitrary hyperprior specifications.

In the following, we describe approximate inference
using a structured variational distribution q(z,Σ|x) =
q(z|x)q(Σ|z). Unlike the VAE, we learn a full covariance
matrix and set the conditional q(z|x) = N (z|µ̃, Σ̃ = L̃L̃>)

where µ̃ is the mean vector and L̃ is the Cholesky factor
of the covariance matrix, Σ̃ = L̃L̃>. Both µ̃ and L̃ are ob-
tained via a neural network fφ(x). Samples of z from q(z|x)
are obtained via explicit reparameterization,

z = µ̃+ L̃ε (10)

where ε ∼ N (0, I). Next, we describe how q(Σ|z) can be
estimated efficiently. LELBO in Eq. (6) can be written as

LELBO = Eq(z|x)q(Σ|z)
[
log

p(x|z)p(z)

q(z|x)
+ log

p(Σ|z)

q(Σ|z)

]
= Eq(z|x)

[
log

p(x|z)p(z)

q(z|x)

]
− Eq(z|x) [DKL(q(Σ|z)||p(Σ|z))] . (11)

The first term in Eq. (11) is independent of Σ and the second
term is non-negative. As such, LELBO is maximized when
q(Σ|z) matches p(Σ|z). With this in mind,

q(Σ|z) ≈ p(Σ|z) =
p(z|Σ)p(Σ)∫

Σ′
p(z|Σ′)p(Σ′)dΣ′

(12)

For p(z|Σ) = N (z|0,Σ), p(Σ) = W−1p (Σ|Ψ, ν), and a
sample zi ∼ p(z|Σ), we can exploit the fact that the inverse-
Wishart is a conjugate prior for the multivariate normal. We
marginalize Σ′ from the denominator in Eq. (12) and obtain
p(Σ|z) = W−1p (Ψ + ziz

>
i , ν + 1). Using this distribution

for q(Σ|z), we now write the ELBO as

LELBO = Eq(z|x) [log p(x|z)]

− Ep(Σ|z)
[
DKL(N (µ̃, Σ̃)‖N (0,Σ))

]
(13)

− Eq(z|x)
[
DKL(W−1p (Φ, λ)‖W−1p (Ψ, ν))

]
where Φ = Ψ + ziz

>
i and λ = ν + 1.

2Very recent work (Figurnov, Mohamed, and Mnih 2018) may
alleviate this issue and applying this technique is future work.

All three terms in the lower bound above have closed-
form expressions and can be computed in a straight-forward
manner (please refer to the supplementary material3 for de-
tailed expressions). The first term is the reconstruction error,
similar to other VAE based models. The second term repre-
sents the distance from the prior and discourages the latent
codes from being too far away from the zero mean prior (this
enables sampling and ensures that CHyVAE remains a valid
generative model). The third term is an additional penalty
on the covariance matrix; to encourage disentanglement, the
prior is set as the identity matrix I. As previously mentioned,
when ν is increased, independence in the latent dimensions
is more enforced, leading to disentangled representations.

Sample Generation Generally, we use Bartlett decompo-
sition to obtain samples from the inverse-Wishart distribu-
tion (more details in the supplementary material). For mod-
els trained with large values of ν, we found that directly sam-
pling from N (0, I) also generates good images.

4 Related Work
Early works that have demonstrated disentanglement in lim-
ited settings include (Schmidhuber 1992; Glorot, Bordes,
and Bengio 2011; Desjardins, Courville, and Bengio 2012),
and several prior research has addressed the problem of
disentanglement in supervised or semi-supervised settings
(Kulkarni et al. 2015; Kingma et al. 2014; Reed et al. 2014;
Siddharth et al. 2017). In this work, we focus on unsu-
pervised learning of disentangled features. Unsupervised
generative models such as (Kingma and Welling 2013;
Makhzani et al. 2015; Radford, Metz, and Chintala 2015)
have been also shown to learn disentangled representations,
although this was not the main motivation of these works.
Recent work has also sought to disentangle factors of vari-
ation in sequential data in an unsupervised manner (Denton
and Birodkar 2017; Hsu, Zhang, and Glass 2017).

VAE-based Models Our work builds upon the VAE and
is inspired by recent work on learning disentangled fac-
tors (Higgins et al. 2017; Kim and Mnih 2018; Chen et al.
2018). In addition to these papers (covered in Sec. 2), there
has been further work in uncovering the principles behind
disentanglement in VAEs. Burgess et al. (2017) argue from
the information bottleneck principle that penalizing mutual
information in β-VAE results in a compact and disentangled
representation. Based on their analyses, Kumar, Sattigeri,
and Balakrishnan (2017) add an additional penalty to the
VAE ELBO based on how much the covariance of q(z) devi-
ates from I. In contrast to these previous work, we attempt to
introduce disentanglement at the model specification stage
through the covariance hyperprior.

InfoGAN An alternative approach towards deep gen-
erative modeling is the Generative Adversarial Network
(GAN) (Goodfellow et al. 2014). Chen et al. (2016) have

3Supplementary material for this paper is available at https://
arxiv.org/abs/1809.04497
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argued that maximizing mutual information between the ob-
served sample and a subset of latent codes encourages disen-
tanglement and capitalized on this idea to develop the Info-
GAN. Kim and Mnih (2018) evaluated the disentanglement
performance of InfoWGAN-GP, a version of InfoGAN that
uses WGAN (Arjovsky, Chintala, and Bottou 2017) and gra-
dient penalty (Gulrajani et al. 2017).

Other priors Previous work has explored different priors
for the latent space in VAEs including mixture of Gaussians
(Jiang et al. 2016), Dirichlet process (Nalisnick and Smyth
2016), Beta, Gamma, and von Mises (Figurnov, Mohamed,
and Mnih 2018). With advancements in reparameterization
for discrete distributions, recent work (Esmaeili et al. 2018;
Pineau and Lelarge 2018) have proposed adding different
priors to different subsets of the latent code to separately
model discrete and continuous factors of variation in the
data. However, to the best of our knowledge, we are the
first to apply hierarchical priors towards learning disentan-
gled representations.

5 Experiments
In this section, we report on experiments comparing CHy-
VAE to two VAE-based unsupervised disentangling models:
the β-VAE and state-of-the-art FactorVAE4. Due to space
constraints, we briefly describe the experimental setup and
focus on the main findings; details are available in the sup-
plementary material and our code base is available for down-
load at https://github.com/crslab/CHyVAE.

5.1 Experimental Setup
Model Implementation and Training To ease compar-
isons between the methods and prior work, we use the
same network architecture across all the compared meth-
ods. Specifically, we follow the model in (Kim and Mnih
2018): a convolutional neural network (CNN) for the en-
coder and a deconvolutional NN for the decoder. We normal-
ize all datasets to [0, 1] and use sigmoid cross-entropy as the
reconstruction loss function. For training, we use Adam op-
timizer (Kingma and Ba 2014) with a learning rate of 10−4.
For the discriminator in FactorVAE, we use the parameters
recommended by Kim and Mnih (2018).

Datasets Our experiments were conducted using five
datasets, including four standard benchmarks:

1) Datasets with known generative factors:

(a) 2DShapes (or dSprites) (Matthey et al. 2017): 737,280
binary 64 × 64 images of 2D shapes (heart, square,
ellipse) with five ground truth factors of variation
namely x-position, y-position, scale, orientation, and
shape. All factors except shape are continuous.

(b) CorrelatedEllipses: 200,000 grayscale 64 × 64 im-
ages of ellipses with dependent ground truth factors

4We exclude comparisons with InfoGAN as the VAE-based
models have been shown to obtain better disentanglement perfor-
mance relative to InfoGAN in previous work (Higgins et al. 2017;
Kim and Mnih 2018).
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Figure 2: Disentanglement Metric plotted against Recon-
struction error for CHyVAE, β-VAE, and FactorVAE on
2DShapes dataset averaged over 10 random restarts.
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Figure 3: Disentanglement Metric plotted against Recon-
struction error for CHyVAE, β-VAE, and FactorVAE on
CorrelatedEllipses dataset averaged over 10 random restarts.

x-position correlated with y-position and scale corre-
lated with orientation. This dataset embodies the “ad-
versarial” case where the factors may be correlated or
the dataset was obtained with sampling bias (arguably
common in many real-world data). Dataset construc-
tion details are in the supplementary material.

2) Datasets with unknown generative factors:

(a) 3DFaces (Paysan et al. 2009): 239,840 greyscale 64×
64 images of 3D Faces.

(b) 3DChairs (Aubry et al. 2014): 86,366 RGB 64 × 64
images of CAD chair models.

(c) CelebA (Liu et al. 2015): 202,599 RGB images of
celebrity faces center-cropped to dimensions 64× 64.

Disentanglement Metric and Latent Traversals Suit-
able evaluation criteria for disentanglement remains an area
of active research. Several metrics have been recently pro-
posed based on linear mappings from latent codes to gen-
erative factors (Higgins et al. 2017; Eastwood and Williams
2018) and mutual information (Chen et al. 2018).

We use the metric proposed by Kim and Mnih (2018) for
evaluating the models primarily because of its interpretabil-
ity and computational efficiency. The metric uses a majority
vote classifier matrix Vp×K that maps each latent dimension
to only one ground truth factor where p is the dimension of
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Figure 4: Disentanglement metric scores (left) and recon-
struction error (right) with iterations for β-VAE, FactorVAE,
and CHyVAE on CorrelatedEllipses dataset averaged over
10 random restarts.

the latent code and K is the number of ground truth factors.
Each element Vij for i ∈ {1 . . . p}, j ∈ {1 . . .K} is a count
of the number of batches with a fixed factor j that have min-
imum variance in the dimension i of the latent code. Using
the vote matrix in the metric each latent dimension can be
mapped to a ground truth factor and the dimensions can be
annotated. Note that quantitative evaluation can only be per-
formed on datasets with known factors of variation.

When the factors of variation are unknown, it is common
to examine latent traversals. These traversals are obtained by
fixing all latent dimensions and varying only one. Inspection
of latent traversals tells us little about the robustness of a
model but is currently the only available method of compar-
ing disentanglement performance on datasets with unknown
factors of variation.

5.2 Quantitative Evaluation
Our main results on the 2DShapes dataset are summarized in
Figure 2; it shows the disentanglement metric plotted against
the reconstruction error (scores averaged over 10 random
restarts) for varying values of β, γ, and ν5. Better perform-
ing methods fall on the top left of the graph (high disentan-
glement with low reconstruction error).

Figure 2 clearly shows that CHyVAE outperforms both
β-VAE and FactorVAE on the continuous factors, achiev-
ing far better reconstruction error at similar—if not, slightly
better—disentangling performance. Higher values of ν tend
to produce better disentanglement, while preserving recon-

5For β-VAE and FactorVAE, we show results using the best per-
forming hyperparameter values reported in Kim and Mnih (2018).
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Figure 5: Traversals across latent dimensions on Correlat-
edEllipses dataset annotated with the factor of variation as-
signed by the majority vote matrix for best performing β-
VAE, FactorVAE, and CHyVAE.

struction capability. When the discrete factor (shape) is in-
cluded, the FactorVAE achieves slightly higher disentan-
glement on average, but the best performing models are
comparable—0.909 (γ = 35) and 0.905 (ν = 13000) for
FactorVAE and CHyVAE respectively. However, the latent
traversals show that all the models struggle with the dis-
crete factor (in supplementary material). For the CHyVAE,
it is unsurprising that the disentanglement would be poorer
with discrete latent factors: CHyVAE enforces a hierarchi-
cal prior on a continuous latent space. Discrete factors can
handled in a principled manner within our framework by us-
ing a suitable prior (Esmaeili et al. 2018; Pineau and Lelarge
2018) with associated hyperprior.

Results for CorrelatedEllipses are summarized in Fig. 3.
CHyVAE starkly outperforms β-VAE and FactorVAE both
in terms of the metric and the reconstruction error across the
different parameters. We posit that this was due to the extra
flexibility afforded by the prior and hyperprior and learning a
full covariance matrix; lower values of ν, which allow more
deviation from the identity covariance, achieve better disen-
tanglement and reconstruction. Figure 4 shows the the dis-
entanglement metric and the reconstruction error as training
progressed for different parameter values; compared to Fac-
torVAE and β-VAE, CHyVAE achieves lower reconstruc-
tion error and better disentanglement. Figure 5 shows the
latent traversals for best performing models on the disen-
tanglement metric. Interestingly, both β-VAE and CHyVAE
learn a slightly-entangled representation for the y-position
but the FactorVAE fails to capture this factor.
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Figure 6: Traversals across latent dimensions for β-VAE, FactorVAE, and CHyVAE on 3DFaces dataset annotated with the
factor of variation.
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Figure 7: Traversals across latent dimensions for β-VAE,
FactorVAE, and CHyVAE on 3DChairs dataset annotated
with the factor of variation.

5.3 Qualitative Evaluation
In absence of a metric for comparison of the disentangling
performance of different models on datasets with unknown
generative factors, the only evaluation method available is
inspecting latent traversals. Figs. 6 and 8 show that CHyVAE
is able to learn semantically reasonable factors of variation
for 3DFaces and CelebA. For 3DChairs (Fig. 7) CHyVAE
is able to learn the leg-style factor which is missed by Fac-
torVAE but learnt by the β-VAE. In terms of reconstruction,
CHyVAE achieves superior performance relative to β-VAE
and comparable to FactorVAE; see Fig. 9 and refer the sup-
plementary material for plots for 3DFaces and 3DChairs.

6 Conclusion
State-of-the-art methods for learning disentangled represen-
tations in VAEs have focussed primarily on manipulating the
ELBO. In contrast, we pursued an alternative principled ap-
proach by placing a hyperprior on the covariance matrix of
the VAE prior. The inverse-Wishart used in our study ex-
poses its degrees-of-freedom parameter which can be tuned
to control the informativeness of a desired independent co-
variance I and thus, encourage disentanglement.
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Figure 8: Traversals across latent dimensions for β-VAE,
FactorVAE, and CHyVAE on CelebA dataset annotated with
the most prominently varying factor of variation.
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Extensive experiments on a variety of datasets show that
our model, CHyVAE, outperforms the β-VAE and is compa-
rable to the FactorVAE in terms of disentanglement, while
achieving better reconstruction. Our experimental results
with a new dataset also demonstrate that encouraging fac-
torial codes may not learn suitable disentangled representa-
tions when correlations are present; instead, a more flexible
model such as CHyVAE may disentangle better.

While we have focussed on the inverse-Wishart hyper-
prior in this work, our key idea of using a hierarchical model
can be extended to alternative distributions. As future work,
we plan to examine the effects of different hyperpriors, and
extend the approach towards learning disentangled represen-
tations with both discrete and continuous latent variables.
We also plan to explore technical improvements, e.g., the
structured factorization explored in this work is an improve-
ment over standard mean-field, but it may lose information
due to the choice of simplified distributions and the optimal-
ity assumption underlying the approximation of q(Σ|z).
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