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Abstract

Answer-Set Programming (ASP) is an expressive rule-based
knowledge-representation formalism. Lazy grounding is a
solving technique that avoids the well-known grounding bot-
tleneck of traditional ASP evaluation but is restricted to nor-
mal rules, severely limiting its expressive power. In this work,
we introduce a framework to handle aggregates by normaliz-
ing them on demand during lazy grounding, hence relieving
the restrictions of lazy grounding significantly. We term our
approach as lazy normalization and demonstrate its feasibil-
ity for different types of aggregates. Asymptotic behavior is
analyzed and correctness of the presented lazy normalizations
is shown. Benchmark results indicate that lazy normalization
can bring up-to exponential gains in space and time as well
as enable ASP to be used in new application areas.

1 Introduction
Answer-Set Programming (ASP) is an expressive rule-based
knowledge-representation formalism whose success is much
due to efficient solver technology available for evaluation
(Gebser, Kaufmann, and Schaub 2012; Alviano et al. 2013;
Leone et al. 2002). State-of-the-art ASP systems follow the
ground-and-solve approach, where a first-order input pro-
gram is turned into a corresponding ground (variable-free)
program for which answer sets are then computed. But, in
the worst case, the resulting ground program may become
exponentially larger than the original non-ground input pro-
gram. Even a polynomial-size increase may already be pro-
hibitive in practice. This drawback impairs the scalability
of ASP for practical applications (cf. (Falkner et al. 2016))
and is known as the grounding bottleneck of ASP. To cir-
cumvent such blow-ups, lazy-grounding ASP solvers have
been developed; cf. (Palù et al. 2009; Lefèvre et al. 2017;
Dao-Tran et al. 2012; Weinzierl 2017). The main idea is
to interleave grounding with solving and to generate only
ground rules necessary in each position of the search space.

However, existing lazy-grounding ASP systems only ac-
cept normal rules as input and they do not support a broad
range of syntactic primitives as defined by, e.g., the ASP
core language (Calimeri et al. 2012). Most notably miss-
ing are aggregates, which occur in many ASP programs,
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because they are highly expressive and enable a program-
mer to state complex conditions in a very concise manner.
The importance of aggregates is witnessed by a rich body
of research, see e.g., (Greco 1999; Simons, Niemelä, and
Soininen 2002; Liu and Truszczynski 2006; Ferraris 2011;
Faber, Pfeifer, and Leone 2011; Gelfond and Zhang 2014;
Alviano, Faber, and Gebser 2015). The integration of aggre-
gates into lazy-grounding ASP systems, however, has not
been attempted so far, although there is work on first-order
rewriting of aggregates for ground-and-solve ASP systems
(Polleres et al. 2013). Realizing aggregates is feasible as na-
tive extensions of solvers in the form of propagators or by
unfolding (monotone) ground aggregates as normal rules.
The latter is known as normalization (Janhunen and Niemelä
2011; Bomanson and Janhunen 2013). Both approaches are
logical avenues of research in the lazy grounding setting.
However, normalization is particularly appealing because it
readily benefits from existing lazy solving techniques, such
that conflict-driven learning and lazy instantiation naturally
carry over to normalized aggregates. Furthermore, it eas-
ily allows to revise encodings of aggregates in a systematic
fashion. For these reasons, we focus on normalization as the
implementation strategy in this work. Moreover, we concen-
trate on monotone aggregates, and in particular count and
sum aggregates with only lower bounds and non-negative
weights. This provides a natural basis for implementing ag-
gregates in practice, and paves a way for future support of
non-monotone aggregates via rewritings into monotone ones
(Alviano, Faber, and Gebser 2015).

Lazy grounding poses some unexpected challenges to
normalization, because matters like enumerating all ground
instances that are trivial in the ground-and-solve approach
suddenly become challenging: for every variable X it is un-
clear what the ground instances are, how many of them will
appear, and in what order. E.g., counting inherently requires
that the counted ground atoms are totally ordered; so for an
aggregate counting the cardinality of p(X) it is not known
whether the ground instances p(a) and p(c) will be grounded
lazily at some point, nor is it then known if p(c) is the sec-
ond ground instance since some later grounded p(b) might
come between p(a) and p(c) in a natural order. Thus it is
not clear whether normalization can be efficiently applied in
a lazy-grounding setting. Another challenge is that the nor-
malization of an aggregate must not require any portion of
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the program to be fully grounded, since due to predicate de-
pendency this can easily cascade and require large portions
of the program to be fully grounded and hence degenerate
into requiring a full grounding of the input program.

Our investigation revealed that ground instance enumer-
ation is the key principle to enable non-ground normaliza-
tion in a lazy-grounding setting and, based on this, the con-
tributions of this paper are: (1) the introduction of an ele-
gant framework for lazy normalization where the result of
normalization can be instantiated lazily; (2) effective lazy
normalizations for counting and summation aggregates with
lower bounds; (3) a far optimized lazy normalization for
count aggregates based on lazily generated sorting circuits,
inheriting attractive properties from ground-and-solve nor-
malizations; (4) proof-of-concept implementations of lazy
normalizations within the Alpha solver; (5) several bench-
marks showing, i.a., that lazy normalization opens up new
application areas like simulation with many time steps, and
enables up-to exponential savings in space and time; and (6)
an unprecedented lazy-grounding ASP evaluation beyond
normal rules and a significant step towards the full expres-
sive power of ASP in lazy-grounding ASP.

Following preliminaries in Section 2, Section 3 introduces
the lazy normalization framework. Actual lazy normaliza-
tions are presented in Section 4 whereas their evaluation
takes place in Section 5. Related work and generalizations
are addressed in Section 6, and Section 7 concludes.

2 Preliminaries
We refer to (Eiter, Ianni, and Krennwallner 2009) for a com-
prehensive introduction to ASP, and present here briefly a
fragment of ASP containing aggregates. A rule is of the form

a1 ∨ . . . ∨ am ← b1, . . . , bn

where m,n ≥ 0 and a1, . . . , am are atoms over a first-order
languageL, and b1, . . . , bn are literals overL, where a literal
is either an atom a, a negated atom not a, or an aggregate.
Aggregates are of the form

l ≺ #func{T1 : l1; . . . ;Tn : ln} ≺ u (1)

where l (resp. u) are integer lower (resp. upper) bounds;
≺ the comparison relation ≤ or <; #func the aggregate
function #count , #sum or #max ; T1, . . . , Tn the (lists of)
terms involving non-negative weights over which the aggre-
gate is evaluated; and l1, . . . , ln the (conjunctions of) posi-
tive and negative atoms that specify the condition(s) under
which the corresponding terms should be considered by the
aggregate function. The upper bound of an aggregate may
be omitted, leaving a lower-bounded aggregated.

The head of a rule r is the set H(r) = {a1, . . . , am},
the body is B(r) = {b1, . . . , bn}, and the positive body is
B+(r) = B(r)∩L. A rule with m = 0 is a constraint, a rule
with n = 0 is a fact. A rule r is a ground instance of another
rule if it is the result of substituting all first-order variables
in that other rule with ground terms, r is ground if it is a
ground instance of itself, and r is called normal if m ≤ 1,
i.e., its head contains at most one atom. The ASP core lan-
guage (Calimeri et al. 2012) standardizes further language
constructs such as comparison relations and choice rules.

A program P is a set of rules. Its Herbrand base HB(P ) is
the set of all ground atoms based on the predicates, constants
and function symbols in P . An interpretation I ⊆ HB(P )
is an assignment of truth values to HB(P ). Given an inter-
pretation I , the satisfaction relation |= for ground objects is
such that I |= a if the atom a is assigned true, i.e., if a ∈ I;
I |= not a if I 6|= a; I |= ag for an aggregate ag of the form
(1) if the application of #func to the set of first elements of
tuples Ti for which each literal in li is satisfied by I returns a
value within the lower and upper bounds l and u in the sense
of ≺ (cf. (Calimeri et al. 2012) for details); I |= r if r is a
ground rule and I |= bi for all bi ∈ B(r) implies that I |= aj
for some aj ∈ H(r); I |= P holds if I |= r for all r ∈ P .
For first-order programs P , I |= P if I |= r′ for all ground
instances r′ of all rules r ∈ P . The reduct of a program P
w.r.t. I is the set of ground instances of rules r in P whose
body is satisfied in I . An interpretation I is a model of P if
I |= P and an answer set of P if it is a ⊆-minimal model of
the reduct of P w.r.t. I .

The semantics of aggregates as defined in (Calimeri
et al. 2012) follows the intuition, for example an aggre-
gate ag=7≤#sum

{
3:p(a); 4:p(b); 5:p(c)

}
is true when-

ever the sum of 3, 4, and 5 is at least 7, given that p(a), p(b),
and p(c) holds, respectively. This holds whenever two out
of the three literals p(a), p(b), and p(c) are true. Given an
interpretation I with I |= p(a), I 6|= p(b), and I |= p(c),
then the sum amounts to 3 + 5 = 8 ≥ 7, so I |= ag .

In general, lazy grounding is an implementation technique
that avoids upfront grounding and instead produces indi-
vidual ground instances of rules only as they become rele-
vant, implying that more ground rules appear gradually dur-
ing solving. Moreover, a typical lazy grounder recursively
guesses and deduces tentative truth values for atoms, which
are detracted or revised in a backtracking process upon con-
flict. A ground instance r′ of a normal rule r becomes rel-
evant when these tentative assignments amount to a partial
interpretation I that satisfies the positive body B+(r′) of r′
and subsequently the ground head H(r′) is obtained.

Count and sum aggregates in ground programs can be
normalized into sets of normal rules (Bomanson 2017). In
particular, count aggregates can be replaced with encodings
of odd-even merge sorting networks (Batcher 1968). A sort-
ing network is a data-oblivious sorting algorithm for a fixed
number of inputs that conditionally swaps input element
pairs at predetermined positions (Batcher 1968).
Example 1. Below is a sorting network with four wires and
a depth of three operating on Boolean inputs from left to
right. Values on vertically connected wires are sorted using
comparators, whose wires I < J and depths D we give in
facts comp(I , J ,D) on the right.

0
1
1
0

1
0
1
0

1
0
1
0

1
1
0
0

comp(1,2,1).
comp(3,4,1).
comp(1,3,2).
comp(2,4,2).
comp(2,3,3).

For instance, the top left comparator comp(1 , 2 , 1 ) sorts
the pair 01 to 10. Observe that the sorted output on the very
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right expresses the cardinality of the inputs in such a way
that the kth output tells whether k or more inputs are true.

These networks and their evaluation on Boolean inputs
can be conveniently encoded in ASP due to their data-
oblivious nature. With such encodings, a ground aggregate
with n input terms and a bound of k can be turned into
O(n(log k)2) normal rules involving auxiliary atoms in the
same order of magnitude (Bomanson 2017).

3 Framework for Lazy-Grounding
First-Order Normalization

The expressive power of aggregates is reflected by the high
numbers of normal rules required to state them otherwise.
In the process of normalization, an aggregate is replaced
by a sub-program solely consisting of normal rules. In the
traditional ground-and-solve approach, this takes place after
grounding which means that all atoms occuring in a partic-
ular aggregate are already ground and known a priori. This
facilitates the normalization step substantially, since the di-
mensions and parameters of the aggregate have been fixed.
Example 2. Consider an aggregate ag = 2 ≤ #count{X :
p(X)} and the set of constants C = {a, b, c} acting as the
universe for instantiation. The resulting grounding of ag is
2 ≤ #count{a : p(a); b : p(b); c : p(c)}. One potential
normalization of this aggregate consists of

holds(ag)← p(a), p(b). holds(ag)← p(a), p(c).
holds(ag)← p(b), p(c).

These rules simply encode subsets of conditions that suffice
to reach the given lower bound 2 of the aggregate.

It is not immediately clear how to normalize aggregates
when rules are instantiated lazily. If all ground instances of
some predicate p(X) are determined, it may require the re-
cursive grounding of rules used to derive atoms over p, po-
tentially degenerating into a full grounding of the entire pro-
gram. Therefore, lazy-grounding normalization should not
presume the knowledge of all ground instances of predicates
involved. This is why normalizations deployed in the tradi-
tional ground-and-solve approach are not directly feasible.

In Example 2, the normalization effectively enumerates
all ground instances of p(X). In the lazy-grounding setting,
they are not readily available and forming such an enumera-
tion becomes a challenge of its own. In principle, there is a
natural order for ground terms (cf. (Calimeri et al. 2012)),
but the exploitation of this order in lazy normalization is
jeopardized by two factors. First, particular ground terms
might never occur as arguments of predicates due to the
rules of the program. Second, the underlying lazy-grounding
solver could produce ground instances of predicates against
such a predetermined order of terms. In the following, we
present a surprisingly simple yet practical solution to the
enumeration problem in question: built-in atoms that keep
track of the order in which ground terms are lazily formed.
Definition 1. An enumeration built-in is an atom

enum(ag , t, i)

where the term ag identifies an aggregate with a grounding
order, t is a ground term, and i is the index of t in the order.

In practice, when a given ground term t is formed by the
solver for the first time, the index i ≥ 1 for enum(ag , t, i)
can be computed as i′ + 1 for the largest index i′ in the
ground atoms enum(ag , t′, i′) generated so far. As a conse-
quence, the index of t is unique for each identifier ag and
the indices introduced for ag are contiguous. On the other
hand, the term t may be assigned different indices for dif-
ferent aggregates, i.e., enum(ag1, t, i) and enum(ag2, t, j)
with ag1 6= ag2 and i 6= j may be formed. As regards imple-
mentation, the enumeration built-in can be realized by using
a counter and a map data structure for each aggregate.

Since first-order variables are naturally available in the
lazy-grounding setting, it is possible to encode particular
normalizations in terms of non-ground rules, to be subse-
quently instantiated on demand only. This paves the way for
fixed-size first-order normalizations that do not depend on
the actual instantiations of aggregates. To preserve the an-
swer sets of the original, non-normal ASP program P , the
sub-program realizing the aggregate evaluation must be kept
transparent with respect to reported answer sets. This holds
in particular for the enumeration built-in, whose extension
depends on the order of grounding. To formalize this, all
predicates occurring in P are considered visible while any
auxiliary predicates introduced in the normalization ofP are
kept invisible as detailed by the following definition.
Definition 2. Given a finite set of rules R, a lazy normal-
ization program of R is a pair (S,G) of sets of normal rules
such that (i) all rules in S are over invisible predicates and
(ii) all rules in G are over both visible and invisible predi-
cates, including the built-in enumeration predicate.

Intuitively, a lazy normalization program (S,G) consists
of a sub-program S for the actual normalization of aggre-
gates and a gluing program G that connects S into its con-
text. Typically, such a normalization takes place in a con-
text of some program P that is already normal. However,
Definition 2 is also applicable to individual rules r by set-
ting R = {r} and allowing non-normal contexts. The roles
played by the different programs are demonstrated below.
Example 3. Consider the rule r =

ok ← 10 ≤ #max{V : pick(I), cand(I, V )}.
with an aggregate in the context of the normal program

P =

{
cand(a, 7). cand(b, 12). cand(c, 13).
pick(I)← not drop(I), cand(A, V ).
drop(I)← not pick(I), cand(A, V ).

}
Intuitively, the program P ∪ {r} determines if the highest
value of picked items is at least 10 units. One potential lazy
normalization program (S,G) of r is given by
S = {out(ag)← B ≤ V, in(ag , I, V ), bound(ag , B).}

G =

{
in(ag , I, V )← pick(I), cand(I, V ).
bound(ag , 10). ok ← out(ag).

}
Here ag identifies the aggregate in r and S checks the lower
bound of the aggregate, which boils down to the simple ques-
tion of whether there exists some aggregate input whose
value is higher than the bound. The gluing program G feeds
the picked items as input to S, sets the bound to 10, and
derives the original head atom if the aggregate is satisfied.
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Note that the built-in predicate enum is not needed here
but will be vital for the normalizations presented later. As re-
gards the semantics of lazy normalization programs, answer
sets are obtained as projections over visible atoms:
Definition 3. Given a lazy normalization program (S,G) of
a rule set R with aggregates, a set A of ground atoms is an
answer set of (S,G) in the context of a program P , if there is
an ordinary answer set A+ ⊇ A of P ∪S∪G such that A =
{a ∈ A+ | the atom a is based on a predicate in P ∪R}.
Example 4 (Ex. 3 continued). One answer set of r in the
context of P is A = {cand(a, 7), cand(b, 12), cand(c, 13),
pick(a), pick(b), drop(c), ok}. The corresponding an-
swer set A+ of P ∪ S ∪ G extends A by bound(ag , 10),
in(ag , a, 7), in(ag , b, 12), and out(ag). Likewise, one can
show that the answer sets of P ∪ {r} and P ∪ S ∪ G coin-
cide in the sense of Definition 3.

Next, we address the correctness of lazy normalization in
a simplified setting where a first-order program has only one
rule r involving an aggregate. Let (Sr, Gr) be the corre-
sponding normalization program in the context P forming
the rest of the program, i.e., Gr glues the first-order nor-
malization Sr with P . Since P is an arbitrary context for
Sr ∪ Gr, the correctness of Sr ∪ Gr as a normalization of
r must aim at the strong equivalence of r and Sr ∪ Gr to
cater for arbitrary interactions between r and P as well as
recursion through the aggregate in r. However, since auxil-
iary predicates are allowed in Sr ∪ Gr, we must resort to a
notion of strong equivalence (Woltran 2004) that excludes
any interactions through such auxiliary predicates.
Definition 4. Let r be a first-order rule with an aggregate.
A first-order normalization (Sr, Gr) of r is called faithful, if
r and Sr ∪Gr induce the same answer sets in every context
P not referring to the auxiliary predicates of (Sr, Gr).
Let us illustrate the faithfulness of normalization in practice.
Example 5. Consider a rule r = ok ← 1 ≤ #count{1, X :
p(X)} with a count aggregate ag and its first-order normal-
ization determined by Sr and Gr below:

Sr = { out(ag)← in(ag , X). }
Gr = { in(ag , X)← p(X). ok ← out(ag). }

Intuitively, the atom ok is included in an answer set A iff
p(t) ∈ A for some ground term t. Such an inclusion is
equally feasible given either r or (Sr, Gr). Also, an empty
answer set is obtained in the recursive context of p(a)← ok.

As regards negative literals not a occurring in an aggre-
gate, it is possible to remove such occurrences by substitut-
ing a new atom na defined by a normal rule na ← not a.
Thus, since normalizations to be presented in Section 4 are
based on positive programs, we may assume without loss of
generality that aggregates and normalizations addressed in
correctness proofs are negation-free. The proposition below
formalizes our proof strategy based on Herbrand models.
Proposition 1. A negation-free first-order normalization
(Sr, Gr) of a negation-free aggregate rule r is faithful, if
the classical Herbrand models of r coincide with those of
Sr ∪ Rr, neglecting the ⊆-minimal interpretations of any
auxiliary predicates used in the normalization (Sr, Gr).

4 Lazy-Normalization of Aggregates
In what follows, we apply our normalization framework and
obtain the first normalizations of count aggregates in lazy-
grounding answer-set solving. We present two novel eval-
uation programs S with a gluing program G to form two
alternative lazy normalization programs (S,G).
Definition 5. Given a rule r of the form

h← K ≤ #count{T1 : l1; . . . ;Tn : ln}, dom(K), B.

where T1, . . . , Tn are (lists of) terms and l1, . . . , ln are (lists
of) literals, B is a list of ordinary literals, and the aggregate
is identified by ag , the gluing program Gr for r is:{

in(ag , element tuple(Ti))← li, B. (∀i : 1 ≤ i ≤ n)

idx (R, I)← in(R,X), enum(R,X, I).

bound(ag ,K)← dom(K).

h← out(ag ,K), dom(K), B.
}

The terms Ti of satisfied input literals li are captured by
the in predicate and then mapped to indices obtained via
enum for storage in idx . Based on these indices and lower
bounds marked with bound , the evaluation program S is ex-
pected to define the output atom out(R,K), which substi-
tutes the original aggregate in the final gluing rule for h.

Counting Grid. Our first evaluation program is essen-
tially a first-order version of the counting grid encoding of
ground cardinality rules (Janhunen and Niemelä 2011) or
equivalently the sequential counter encoding of cardinality
constraints (Hölldobler, Manthey, and Steinke 2012).
Definition 6. The counting grid evaluation program S is:{

span(R, 1..I−1)← idx (R, I).

sum(R, 0, 0)← idx (R, ).

sum(R, I, S)← sum(R, I−1, S), span(R, I).

sum(R, I, S+1)← sum(R, I−1, S), idx (R, I),

bound(R,K), S < K.

out(R,K)← bound(R,K),K ≤ S, sum(R, , S).
}

This encoding defines sum(R, I, S) to be equivalent
to a count aggregate with a lower bound S and inputs
idx (R, 1), . . . , idx (R, I). The definition proceeds by induc-
tion on I: for each atom idx (R, I), any bounds already sat-
isfied at I − 1 are carried over and also incremented by one
if the atom is satisfied. An output atom out(R,K) is derived
if a bound K of the original aggregate is reached at any in-
dex I . The use of any index I instead of the last index only
enables lazy-grounding to work properly without having to
unnecessarily ground all input atoms of the aggregate.
Proposition 2. The ground size of a counting grid program
is O(kn) for n inputs grounded so far and the bound k.
Sorting Network Application. Next we present an alterna-
tive encoding that yields a more compact grounding. It con-
sists of two parts, one defining a sorting network (SN), and
another applying (any) SN to evaluate count aggregates. The
idea of an SN is that its kth sorted output value is true exactly
if at least k of the inputs are true. We first start with the part
that applies a given SN.
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Definition 7. The sorting network application (SNA) pro-
gram A is{
span(R, 1..I)← idx (R, I).

v(R, I,D)← idx (R, I), D = 0.

v(R, I,D)← v(R, I,D−1), comp(I,, D), dh(R,D).

v(R, I,D)← v(R, J,D−1), comp(I, J,D), dh(R,D).

v(R, J,D)← v(R, I,D−1), comp(I, J,D), dh(R,D),

v(R, J,D−1).

v(R, I,D)← v(R, I,D−1), pass(I,D), dh(R,D).

out(R,K)← bound(R,K), v(R,K,D), done(N,D),

K≤N.

out(R,K)← bound(R,K),K ≤ 0.
}

For a given aggregate, the span predicate marks a range
of indices that covers all its inputs, and v encodes wire val-
ues computed from those inputs based on an SN. In figures
of networks such as the one in Example 1, wire values are
the 0s and 1s overlaying the network. Here, satisfied atoms
v(R, I,D) mark indices I and depths D that correspond
to the vertical and horizontal coordinates of the 1s, respec-
tively. The comparators comp(I, J,D) are shown as vertical
wires in the figures and are implemented by taking as inputs
the values of the wires I and J from the previous depth,
from the left of the comparators, and computing new val-
ues for I and J as the disjunction and conjunction of those
inputs, respectively. This causes true values to gravitate to-
wards low indices. Wire values at passthroughs pass(I,D),
corresponding to unconnected wires and depths, are simply
copied from the previous depth. The predicates comp and
pass are defined by the encoding of the SN, which also in-
dicates via a predicate dh(R,D) the range of depths D that
are relevant for sorting the inputs of an aggregate R, as well
as via predicate done(N,D) depths D at which exactly N
of the first inputs are known to be sorted. The done(N,D)
predicate guarantees that aggregate bounds up to N are im-
plied by corresponding wire values at depth D, and this is
used in defining the output out of the network. Inferring the
output based on multiple stages of the computation, instead
of the final sorted output, is crucial for lazy-grounding, as
the output may be inferred early without fully grounding.
Proposition 3. The ground size of an SNA program is
O(nd) ground rules for n inputs and a relevant depth d.
In practice, d is a function of n determined by the SN.
Example 6. The SN from Ex. 1 is encoded by comp(1, 2, 1),
comp(3, 4, 1) comp(1, 3, 2), comp(2, 4, 2), comp(2, 3, 3),
pass(1, 3), pass(4, 3), done(1, 0), done(2, 1), and
done(4, 3). Let us then consider a count aggregate with
four grounded input terms, such that idx (ag , 1..4) have been
generated using enum and, moreover, that bound(ag , 2),
idx (ag , 2..3), and dh(ag , 1..3) hold. The encoding yields
the locations of 1s in Ex. 1 as v(ag , 2, 0), v(ag , 3, 0),
v(ag , 1, 1), v(ag , 3, 1), v(ag , 1, 2), v(ag , 3, 2), v(ag , 1, 3),
and v(ag , 2, 3). Finally, the output out(ag , 2) depends on
v(ag , 2, d) for d = 1, 3 since done declares that enough
values are sorted at these depths; and the case with d = 3
gives the result out(ag , 2).

Odd-Even Sorting Network. Encoding an SN is a matter
of determining which pairs of wires are mutually connected
by a comparator at a given depth. We employ Batcher’s odd-
even sorting networks (Batcher 1968), since these are well
known for encodings of cardinality constraints in SAT (Eén
and Sörensson 2006) as well as for normalizations of ground
cardinality rules (Bomanson and Janhunen 2013). In the
ground case they are typically realized via two intertwined
divide-and-conquer algorithms, which generate networks
that sort and merge, respectively. To make a first-order en-
coding possible, we substitute the divide-and-conquer algo-
rithms by a closed form expression (Bekbolatov 2015) that
unfolds them. The encoding allows that a single ground in-
stance of it can support any number of SNA programs in-
stantiated for count aggregates, even for differing sizes.
Definition 8. The odd-even sorting network (OESN) pro-
gram F is{
part(P )← span( , I), P = P1 + 1, log2 (I − 1, P1).

lvl(1, 1, 1)← part(1).

lvl(L,P + 1, D + L)← L = 1..P + 1, lvl(P, P,D),

part(P + 1).

comp(I, J,D)← lvl(1, P,D), span( , I), I < J,

J = (I − 1)⊕ 2(P−1) + 1.

comp(I, J,D)← lvl(L,P,D), span( , I), J = I + S,

1 < L,N 6= 0, N 6= B − 1, 1 = N mod 2,Φ.

pass(I,D)← lvl(L,P ,D), span( , I), 1 < L,N = 0,Φ.

pass(I,D)← lvl(L,P ,D), span( , I), 1<L,N=B−1,Φ.

dh(R, 1..D)←span(R,N+1),done(N, ),done(2N,D).

done(N,D)← log2 (N,P ), lvl(P, P,D). done(1, 0).

log2 (Ip2, I)← Ip2 = 2I , I = 0..30.
}

where ⊕ stands for bit-wise XOR and Φ for the conditions:
B = 2L, S = 2(P−L), N = (I−1)/S−((I−1)/S/B) ·B.

The part predicate indicates how large parts of an SN
are required to accommodate the largest seen aggregate.
Part numbers from 1 to p suffice for 2p inputs. The atom
lvl(L,P,D) associates depths D with these parts P and lev-
els L within the parts. These concepts are depicted in Fig-
ure 1 and they stem from the two levels of hierarchy in the
typical divide-and-conquer generation algorithms. The rules
for comp apply the closed form expression, while the rules
for pass complement the conditions appropriately to detect
wires untouched by comparators. The rule for dh states that
for an aggregate with n inputs, as large depths are necessary
as are required to sort 2dlogne inputs.
Proposition 4. The OESN program when up to n input lit-
erals are needed has O(n(log n)2) ground rules. The com-
bined grounded size of the SNA and OESN programs for a
single aggregate is O(n(log n)2).
Example 7 (Ex. 6 continued). The SNA program A also
yields span(ag , 1..3), based on which the definition pro-
gram F produces the used sorting network in form of the
atoms part(1), part(2), lvl(1, 1, 1), lvl(1, 2, 2), lvl(2, 2, 3),
comp(1, 2, 1), comp(3, 4, 1), comp(1, 3, 2), comp(2, 4, 2),

2698



1 2 3

1,1,1 1,2,2 2,2,3 1,3,4 2,3,5 3,3,6

Figure 1: An odd-even sorting network for eight inputs with
part numbers captured by part at the top and tuples cap-
tured by lvl for each layer at the bottom. Part 1 sorts two
inputs, parts 1-2 sort four, and parts 1-3 sort all eight inputs.
Each part yields a depth(N,D) atom where N and D are
the greatest wire and depth indices of comparators within
them, respectively.

comp(2, 3, 3), pass(1, 3), dh(ag , 1), dh(ag , 2), dh(ag , 3),
done(1, 0), done(2, 1), and done(4, 3).

Definition 9. Let r be a rule of the form h ← K ≤
#count{T1 : l1; . . . ;Tn : ln}, dom(K) with a count aggre-
gate. The count aggregate lazy normalization of r is the lazy
normalization program (Ar∪Fr, Gr) where Ar, Fr, and Gr

are the SNA, OESN, and gluing programs for r, resp.

The following correctness result can be established, es-
sentially using the strategy provided by Proposition 1.

Theorem 1. Given a rule r with a count aggregate, the lazy
normalization (Ar ∪ Fr, Gr) is faithful.

Lazy-Normalization of Sum Aggregates. Sum aggre-
gates are similar to count aggregates in the sense that they
consider each ground instance and increment some aggre-
gated value, with the difference that counting increases the
value by 1 while summation increases by a given value.

The gluing program Gr is the same as in Definition 5,
except that the in predicate is now used in the form of
in(ag , element tuple(Ti), Vi) where Ti is a tuple of terms
as before and Vi is the value of Ti, which is the first term in
Ti (Calimeri et al. 2012). The evaluation program is almost
the same as in Definition 6 and mainly differs by the rule

sum(R, I, S + V )← sum(R, I − 1, S), idx (R, I, V ).

where S+V substitutes S+1 in the counting grid encoding.
The respective normalization program is defined below.

Definition 10. Let r be a rule h ← K ≤#sum{T1 : l1;
. . . ;Tn : ln}, dom(K) with a sum aggregate. The sum ag-
gregate lazy normalization of r is the lazy normalization pro-
gram (Sr, Gr) where Sr is the summation grid encoding and
Gr is the gluing program for r.

Theorem 2. Given a rule r with a sum aggregate, the lazy
normalization (Sr, Gr) is faithful.

5 Evaluation
Lazy grounding is a recent approach aimed at solving large-
scale instances in the long run and it is partially incom-
patible with existing ground-and-solve techniques, which
often require a complete grounding. Thus lazy-grounding
cannot directly be put on top of ground-and-solve systems.
Consequently, lazy-grounding ASP systems lack a decade
of solver optimizations and a variety of solving techniques
(e.g., equivalence preprocessing, learned clause deletion,
and rapid restarts). The ASP competition benchmarks, how-
ever, are tuned to exercise those techniques while problems
where grounding is an issue are explicitly excluded, see
(Gebser, Maratea, and Ricca 2017). We therefore evaluate
our approach, implemented in the lazy-grounding ASP sys-
tem Alpha (Weinzierl 2017), on a custom, yet meaningful,
set of benchmarks. Since no other lazy-grounding ASP sys-
tem supports aggregates, we can only compare with ground-
and-solve systems and chose Clingo (Gebser et al. 2016) and
Dlv2 (Alviano et al. 2017) as representatives. The evaluated
version of Clingo is 5.2.2 and the version of Dlv2 is 2.0. If
not otherwise indicated, each benchmark had 300 seconds
and 8GB of memory on a single core of a Linux cluster with
Intel Xeon E5-2680 v3 CPUs. For each instance we report
CPU time averaged over 10 runs of computing the first 10
answer sets. Count aggregates are evaluated using the com-
pact normalization.

Simulation. ASP is very suitable for encoding rule-based
simulations, but the number of potential outcomes is pro-
hibitive for ground-and-solve systems once many time steps
are to be simulated. As this benchmark shows, lazy ground-
ing with lazy normalization does not suffer from that issue.
This benchmark simulates a robot free to move on the edges
of a random graph as long as its energy resources are not de-
pleted, where depletion is checked using a count aggregate.
To avoid trivial solutions, visits to some pairs of nodes are
mutually exclusive and the robot may not end in its start-
ing position. Figure 2a shows the result of this benchmark
for time steps (and graph sizes) from 100 up to 2000, each
one being run on 10 random instances. Clingo is faster only
for 100 time steps, while at 200 time steps Alpha is already
faster. Clingo runs out of memory starting at 600 time steps
while Alpha can still deal with instances of size 2000. Dlv2
suffers from the same issues as Clingo and performs even
worse: it is always slower than Alpha and runs out of mem-
ory at 500 time steps.

Large Input Aggregates. We evaluate lazy normalization
on two problem classes with aggregates that are non-trivial
to ground: a plain sum aggregate and an indegree counting
of a graph. The aggregates in these programs range over a
domain whose elements are guessed to avoid trivial ground-
ing. In the plain Summation benchmark, lazy-normalization
easily handles increasing domain sizes, while Clingo runs
into timeouts (cf. Figure 2b). We report no numbers for
Dlv2 here, because it was unable to compute correct an-
swer sets for this benchmark program. The Dynamic In-
degree Counting benchmark counts the indegrees of ver-
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Size Alpha Clingo Dlv2
100 2.6(0) 0.8(0) 4.7(0)
200 3.2(0) 6.2(0) 100.1(3)
500 9.1(0) 110.5(0) memout
600 7.7(0) memout memout
800 27.8(0) memout memout
1000 47.4(1) memout memout
2000 86.8(1) memout memout

(a) Simulation.

Size Alpha Clingo
100 1.9(0) 1.2(0)
150 2.2(0) 5.2(0)
200 2.5(0) 15.2(0)
250 2.9(0) 37.5(0)
300 3.0(0) 96.8(0)
350 3.2(0) 247.0(3)
1000 6.5(0) 300.0(10)

(b) Summation.

Size Alpha Clingo Dlv2
1k (100/10) 4.4(0) 1.5(0) 2.5(0)
3k (100/30) 13.0(0) 13.7(0) 8.1(0)
4k (200/10) 11.3(0) 25.1(0) 4.0(0)
5k (100/50) 18.7(0) 38.9(0) 3.4(0)
6k (250/10) 13.9(0) 62.7(0) 6.1(0)
12k (200/30) 36.5(0) 271.8(1) 9.6(0)
25k (500/10) 47.9(0) 300.0(10) 39.3(0)

(c) Dynamic Indegree Counting.

Figure 2: Benchmark results with runtimes in seconds and timeouts in parentheses. Size is: (a) number of time steps and graph
size, (b) size of the domain that numbers are selected from, and (c) approx. number of edges (number of vertices / percentage
of edge presence).

tices of a (random) graph, after one edge is removed non-
deterministically. Clingo is fast for small graphs, but lazy
normalization out-performs it on larger ones (cf. Figure 2c).
Interestingly, Dlv2 performs better than Alpha and Clingo.

Exponential Space Saving. Lazy normalization can save
up-to exponential space, as shown by the next ASP program:

dom(0..1). { a;b;c }. :- a, b.
exp(X) :- a,b, dom(X).
holds :- 2 <= #count { X1, X2, . . ., Xn :

exp(X1), exp(X2), . . ., exp(Xn) }.

There is a domain dom with 2 elements and a non-
deterministic guess over a , b and c such that a and b cannot
both hold (cf. (Calimeri et al. 2012) for the employed lan-
guage constructs). Atoms exp(0 ) and exp(1 ) are derived if
both a and b are true (which they are for no answer set). Fi-
nally, an aggregate counts the number of n-tuples over exp.
The results of this benchmark are shown in Table 1, where
size is the number n of variables in the aggregate and 40 GB
of memory are provided. Memory consumption of Clingo
is growing exponentially until it hits 40 GB with size 26,
where it runs out of memory. Dlv2 performs similarly but
has a significantly higher memory consumption and exhibits
some peculiar behavior starting at size 20, where it runs into
timeouts despite being able to compute all actual answer sets
of the program after a few seconds. Starting at size 26, how-
ever, Dlv2 also runs out of memory before being able to
compute any answer set. In contrast to that, Alpha never runs
out of memory, requires about 80 MB for small instances
(below size 30), and a constant amount of about 620 MB for
larger ones. Closer investigation of the latter cases revealed
a inefficiency in the grounding component of Alpha, occur-
ing only for rules with hundreds of body literals. The 620
MB memory requirement is a subsequent artifact of Java’s
garbage collection (GC) algorithm. Comparing Alpha with
Clingo and Dlv2, it is apparent that lazy normalization can
bring exponential space savings.

Comparing Normalizations. Since both lazy normaliza-
tions of count aggregates were realized in Alpha, we can also
show that the compact lazy normalization based on the odd-
even sorting network performs much better than the count-
ing grid-based one.

Alpha Clingo Dlv2
Size Time Memory Time Memory Time Memory
10 0.8 70 MB 0.0 3 MB 0.0 5 MB
18 0.8 83 MB 0.8 124 MB 249.3 1.4 GB
20 0.9 82 MB 3.3 504 MB 900.0 6.3 GB
22 0.8 82 MB 14.7 2.06 GB 900.0 12.0 GB
24 0.9 82 MB 63.7 8.47 GB 900.0 37.6 GB
26 0.9 83 MB 370.0 34.9 GB – memout
28 0.9 87 MB – memout – memout
500 12.3 620 MB – memout – memout
1000 80.0 616 MB – memout – memout

Table 1: Exponential Space Saving benchmark: time and
space consumption of Alpha, Clingo, and Dlv2. Size is the
number of variables in the aggregate. Maximum memory is
40 GB and timeout is at 900s.

6 Discussion
Related Work. Lazy normalization, in principle, can be
added to any lazy-grounding ASP system. So far, these are:
GASP (Palù et al. 2009), ASPeRiX (Lefèvre et al. 2017),
Omiga (Dao-Tran et al. 2012), and Alpha (Weinzierl 2017).
These solvers all have in common that they process only nor-
mal rules, i.e., they allow for only ordinary literals in rule
bodies and no disjunction in heads, and in particular, they
do not support aggregates. Recent developments around Al-
pha are on exploiting justifications (Bogaerts and Weinzierl
2018) as well as its use in evaluating external atoms (Eiter,
Kaminski, and Weinzierl 2017). Furthermore, Alpha is the
only lazy-grounding ASP system with efficient techniques
for search (CDNL), hence it was taken as basis for this work.

Related to lazy grounding is recent work in (Cuteri et al.
2017) exploring lazy instantiation for constraints alone, i.e.,
rules without heads, through use of propagators. Although
aggregates are not addressed therein, the approach may ef-
ficiently solve some of our benchmark problems, provided
that the benchmarks were refactored to utilize a mix of con-
straints, aggregates, and additional guess-and-check atoms
in place of the current rules with aggregates.

The first aggregate-based extensions of ASP were choice
rules, cardinality rules, and weight rules (Simons, Niemelä,
and Soininen 2002) where the latter two involve counting
and summation aggregates in the terminology of this paper.
Ground-and-solve systems support such rules by means of
either native functions for propagation and calculation of
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reasons behind conflicts (Gebser et al. 2009) or normaliza-
tion on the ground level (Bomanson 2017). A first-order nor-
malization of these rules is already present in (Polleres et
al. 2013) along with the motivation of debugging answer-set
programs involving aggregates. Interestingly, the normaliza-
tion schemes of Polleres et al. (2013) rely on a fixed to-
tal order on input terms in contrast with the dynamic or-
der created by the enumeration built-in devised in this work.
On the downside, their encodings suffer from higher space
complexity, which is witnessed by the fact that an early ver-
sion of our normalization tool LP2NORMAL (Janhunen and
Niemelä 2011) produces more compact normalizations than
what is obtained by grounding the first-order translations de-
vised by Polleres et al. (2013).

Aggregates have their roots in database operations (see,
e.g., (Greco 1999)). The approach therein is based on DAT-
ALOG programs where dedicated predicates are used to
express summation, for instance. Consequently, linear con-
straints can be embedded into rules. In particular, recursion
through such special predicates is forbidden in terms of strat-
ification. The evaluation of summation aggregates resem-
bles our approach in the sense that (i) it is based on first-
order rewriting and (ii) terms contributing to the sum are
ordered and the aggregate is recursively evaluated in a cho-
sen order. However, this order is produced upfront via non-
deterministic choice, which is suitable for the implementa-
tion considered in (Greco 1999) but impractical in ASP solv-
ing. In contrast, we commit the next available position i in
an aggregate ag to a ground term t on-the-fly by using the
built-in predicate enum(ag, t, i). In this way, the evaluation
of the aggregate need not be delayed until the completion of
the resulting order of terms.

Aggregates in ASP have also been studied on a higher
level of abstraction and the central properties of aggre-
gates were identified when, e.g., monotone, anti-monotone,
and convex aggregates were studied (Liu and Truszczynski
2006). Since ASP deploys recursive definitions in terms of
rules, the introduction of aggregates posed a challenge from
the semantic perspective and a number of proposals were
made; cf. (Ferraris 2011; Faber, Pfeifer, and Leone 2011;
Gelfond and Zhang 2014)). Results on rewriting aggregates,
such as non-monotone aggregates into monotone ones (Al-
viano, Faber, and Gebser 2015), support the general idea
adopted in this paper that monotone aggregates provide a
natural basis for implementing aggregates in practical ASP
systems. We note that proper disjunctive rules seem indis-
pensable for such rewritings in general, and therefore such
techniques do not fall strictly under the concept of normal-
ization as understood in this paper.

Convex Aggregates. Monotone aggregates serve as natu-
ral primitives in practical implementations and more com-
plex aggregates can be realized on top of them. To illustrate
this, let us consider counting and summation aggregates with
upper bounds in addition to lower bounds, such as in:

ok ← 10 ≤ #sum{V, I : pick(I), cand(I, V )} ≤ 20.

The body of the rule is an example of a convex aggregate
condition that can be understood as a conjunction of mono-

tone and an anti-monotone aggregate conditions. This can
be made explicit by rewriting the rule using the ideas from
(Simons, Niemelä, and Soininen 2002):

enough ← 10 ≤ #sum{V, I : pick(I), cand(I, V )}.
toomuch ← 21 ≤ #sum{V, I : pick(I), cand(I, V )}.
ok ← enough, not toomuch.

Considering performance, both bounds can now be evalu-
ated lazily, but the upper bound poses some challenge: if the
solver assigns ok true and toomuch false before all relevant
ground instances of pick(·) are generated, then backtracking
may be necessary if new instances of pick(·) are grounded
later on. Besides that, convex aggregates can be evaluated
within our framework, but an implementation is future work.

7 Conclusion
In this paper, we presented a lean framework for lazy nor-
malization, which enables the first-order normalization of
aggregates subject to lazy grounding. To illustrate the feasi-
bility of the framework, we devised several novel first-order
encodings of counting and summation aggregates. Their cor-
rectness and asymptotic behavior was formally analyzed. To
the best of our knowledge, this is the first systematic ap-
proach to the evaluation of aggregates in a lazy-grounding
setting.

The lazy grounding ASP system Alpha was extended to
support lazy normalization of aggregates and benchmarks
demonstrate that lazy normalization can outperform the
state-of-the-art ground-and-solve system Clingo on aggre-
gate evaluation if grounding is an issue. Lazy grounding may
also bring up-to exponential savings in space and time, as
shown experimentally. Furthermore, the results on running
rule-based simulations for hundreds of time steps indicate
a potential new application area for ASP solving based on
lazy grounding and lazy normalization. Together this sug-
gests that lazy normalization is a useful new technique for
ASP solving and knowledge representation in general.

In future work, we plan to investigate further normaliza-
tion schemes for monotone/convex aggregates, potentially
with upper bounds and other aggregate types like average.
Lazy normalization may also prove useful with other for-
malisms such as FO(ID) proposed by de Cat et al. (2015).
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