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Abstract

With the ubiquity of smart devices, Spatial Crowdsourc-
ing (SC) has emerged as a new transformative platform
that engages mobile users to perform spatio-temporal tasks
by physically traveling to specified locations. Thus, various
SC techniques have been studied for performance optimiza-
tion, among which one of the major challenges is how to
assign workers the tasks that they are really interested in
and willing to perform. In this paper, we propose a novel
preference-aware spatial task assignment system based on
workers’ temporal preferences, which consists of two com-
ponents: History-based Context-aware Tensor Decomposi-
tion (HCTD) for workers’ temporal preferences modeling and
preference-aware task assignment. We model worker prefer-
ences with a three-dimension tensor (worker-task-time). Sup-
plementing the missing entries of the tensor through HCTD
with the assistant of historical data and other two context ma-
trices, we recover worker preferences for different categories
of tasks in different time slots. Several preference-aware task
assignment algorithms are then devised, aiming to maximize
the total number of task assignments at every time instance, in
which we give higher priorities to the workers who are more
interested in the tasks. We conduct extensive experiments us-
ing a real dataset, verifying the practicability of our proposed
methods.

Introduction
Spatial Crowdsourcing (SC) is a recently proposed concept,
which employs smart device carriers as workers to physi-
cally move to some specified locations and accomplish spa-
tial tasks, such as taking photos, monitoring traffic condition
and reporting local hot spot.

Most existing research focuses on the task assign-
ment (Deng, Shahabi, and Zhu 2015; Cheng et al. 2015a;
Alt et al. 2010; Tong et al. 2016a; 2016b; Song et al. 2017;
Li, Yiu, and Xu 2015; Cheng et al. 2017; Zhao et al. 2017;
Tong et al. 2018a; 2017; 2016b; 2018b), which aims to max-
imize the total number of completed tasks (Kazemi and Sha-
habi 2012), the number of performed tasks for a worker
with an optimal schedule (Deng, Shahabi, and Demiryurek
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2013), or the diversity score of assignments (Cheng et al.
2015b). An implicit assumption shared by these work is
that the workers are willing to perform the tasks assigned
to them. In practice, however, different task-performing in-
tentions and preferences can lead to different types of behav-
iors. For example, two workers with different preferences for
the same category of tasks may exhibit different behaviors:
one is willing to report a hot spot for its popularity, while
the other may not due to its complexity. Actually, a worker
is unlikely to honestly and promptly complete the assigned
tasks when she is not interested in them, which cannot guar-
antee the quality of task results. Therefore the key to con-
trol quality for task accomplishment is how to accurately
capture worker preferences in her task-performing context.
Among these existing contextual dimensions, time informa-
tion, especially temporal dynamics, is of great importance
since the characteristics of worker preferences with respect
to the task types may change over the time of day. For in-
stance, a worker is happy to report promotion activities of
a shopping center during her lunch break but will definitely
refuse to do it in her working hours. Therefore, incorporat-
ing temporal dynamics in worker preferences can improve
the accuracy of spatial task assignment.

Several previous approaches infer worker preferences
from past task-performing patterns or explicit feed-
backs (Ambati, Vogel, and Carbonell 2011; Buchholz and
Latorre 2011; Yuen, King, and Leung 2012). However, they
fail to effectively incorporate temporal dynamics and work-
ers’ historical task-performing records. The overall task-
performing behavior of a worker may be determined by her
long-term interest. But at any given time, a worker is also
affected by her instant preference due to transient events,
such as the tasks’ publishing and performing condition in
the current time. In addition, the above methods are not able
to make suitable task assignment since the task-performing
data is extremely sparse and there exists cold start problem
(no historical task-performing records for new workers or
new tasks). Lastly, we are not aware of any existing task as-
signment techniques that consider the temporal dynamics in
workers’ preferences, which can be a key factor for improv-
ing the quality of task assignment in spatial crowdsourcing.

To address these challenges, we propose a Preference-
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aware Task Assignment (PTA) framework, based on sparse
task-performing records generated in the recent time slots as
well as in history. The framework is comprised of two pri-
mary components. First, we model different workers’ pref-
erences on different categories of tasks in different time slots
with a three dimensional tensor. Supplementing the missing
entries of tensor through History-based Context-aware Ten-
sor Decomposition (HCTD) with the aid of workers’ task-
performing history and two context matrices, we recover
worker preferences for different categories of tasks in dif-
ferent time slots. Secondly, we design three algorithms to
maximize the overall task assignments by giving higher pri-
orities to workers who are more interested in the tasks at
every time instance.

In summary, our work has four primary contributions:
1) To the best of our knowledge, this is the first work in SC

that considers workers’ temporal preferences and performs
task assignment based on these temporal preferences.

2) To address the task-performing data sparsity and cold
start problem of individual workers, we propose a Temporal
Preferences Modeling (TPM) method, which learns work-
ers’ temporal preferences from the task-performing data
generated in the recent time slots as well as in history
through HCTD with the assistant of other two context ma-
trices.

3) We propose three alternative task assignment algo-
rithms to solve our proposed problem. The first approach,
Preference-aware Task Assignment (PTA) algorithm, fol-
lows the optimization strategy by maximizing the overall
task assignments and giving higher priorities to workers with
higher preferences for tasks at every time instance. The rest
two algorithms, namely Spatial-weighted Preference-aware
Task Assignment (SPTA) algorithm and Temporal-weighted
Preference-aware Task Assignment (TPTA) algorithm, im-
prove PTA by considering workers’ travel cost and tasks’
expiration time respectively.

4) Extensive experiments are conducted to verify the ef-
fectiveness of the proposed methods on a real dataset.

Problem Definition
Definition 1 (Spatial Task) A spatial task, denoted by
s =< s.l, s.p, s.φ, s.c, s.maxW >, is a task to be per-
formed at location s.l, published at time s.p, and will expire
at s.p + s.φ, where s.l : (x, y) is a point in the 2D space.
Each task s is also labelled with a category s.c (e.g., taking
photos, reporting local hot spot) and s.maxW is the maxi-
mum number of workers allowed to be assigned to perform
s at the same time instance.

For simplicity, we assume that the processing time of each
task is 0, which means that a worker will go to the next task
upon arriving the location of the current task.

Definition 2 (Worker) A worker, w =< w.l, w.r >, is a
carrier of a mobile device who volunteers to perform spatial
tasks. A worker can be in an either online or offline mode. A
worker is online when she is ready to accept tasks. An online
worker is associated with her current location w.l and her
reachable circular range with w.l as the center and w.r as
the radius, where w can accept assignment of spatial tasks.

In our model, a worker can handle only one task at a cer-
tain time instance, which is reasonable in practice. Once the
server assigns a task to a worker, the worker is considered
being offline until she completes the assigned task.

Definition 3 (Task-performing History) Given a worker
w who has performed n tasks in a time period, we define her
task-performing history as a task set, Sw = {(s1, tas1 , t

d
s1),

...,(sn, tasn , t
d
sn)}, with each triplet (si, tasi , t

d
si) comprising

the performed task si, worker’s arrival time tasi and depar-
ture time tdsi at the location of task si.

For brevity, we simplify Sw =
{(s1, tas1 , t

d
s1), ..., (sn, t

a
sn , t

d
sn)} as Sw = {s1, ..., sn}.

Definition 4 (Frequency-based Worker Preference)
Given a task category c and the task-performing history
of worker w, we define the frequency-based preference of
worker w in task category c in a certain time slot T, denoted
by PT

w(c), as the ratio of tasks in category c to the total
tasks that worker w has performed during T, i.e.,

PT
w(c) =

∑
si∈Sw

η(si.c)

NT(Sw)
(1)

η(si.c) =

{
1, si.c = c and [tasi , t

d
si ] ∩ T 6= ∅

0, otherwise

where NT(Sw) is the number of tasks performed by w in a
certain time slot T.

In the rest of the paper, we will use worker preference and
frequency-based worker preference interchangeably when
the context is clear.

Definition 5 (Spatial Task Assignment Instance Set)
Given the online worker set Wi = {w1, w2, ...} and
available task set Si = {s1, s2, ...} at time instance ti, we
define Ai as the spatial task assignment instance set at time
ti. Ai consists of a set of tuples of form < w, s >, where
a spatial task s is assigned to worker w, satisfying all the
workers’ and tasks’ constraints. We use |Ai| to denote the
number of task assignments at time instance ti.

Problem Statement: Given a set of online workers Wi and
a set of available tasks Si at the current time instance ti on a
SC platform, our problem is to find an allocation between the
workers and tasks to maximize the total number of task as-
signments (i.e., |Ai|) by considering workers’ temporal pref-
erences of tasks at time instance ti.

Framework Overview
Our framework (see Figure 1) is comprised of two major
parts: 1) Temporal Preferences Modeling (TPM) for workers
using History-based Context-aware Tensor Decomposition
(HCTD); and 2) Preference-aware Task Assignment (PTA)
based on workers’ temporal preferences.

The TPM procedure constructs a 3D tensor X based on
workers’ recent and historical task-performing data, where
the three dimensions stand for workers, task categories and
time slots, respectively. Each entry is the preference of a
particular worker for a particular task category in a certain
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Figure 1: Framework of Our Model

time slot. Meanwhile, we build up two context matrices. One
is the time-task matrix with two dimensions respectively
standing for time slots and task categories, in which each en-
try is the number of times that the tasks in the corresponding
category have been performed in a time slot. The other is the
task-feature matrix whose values are extracted from histor-
ical worker profile. With the aid of the above two matrices,
the missing entries of tensor X can be filled by HCTD. Then
we can infer workers’ preferences on all types of tasks in the
current time. The idea behind it is that workers with similar
contexts could have similar preferences. The context matri-
ces reveal this inherent similarity and possess a much higher
proportion of non-zero entries than X , which can effectively
reduce decomposition error and improve inference accuracy.

In the PTA phase, by considering trip constraints in-
cluding workers’ reachable region and tasks’ expiration
time, we optimize the task assignment based on work-
ers’ current preferences at every instance of time, and
propose three algorithms, i.e., Preference-aware Task As-
signment (PTA) algorithm, Spatial-weighted Preference-
aware Task Assignment (SPTA) algorithm, and Temporal-
weighted Preference-aware Task Assignment (TPTA) algo-
rithm.

Workers’ Temporal Preferences Modeling
In this section, we model workers’ temporal preferences,
which consists of three parts: 1) workers’ temporal pref-
erences (including recent and historical preferences) tensor
construction; 2) context matrix construction that captures the
temporal correlation of task-performing conditions as well
as the similarity between different task categories; and 3)
history-based context-aware tensor decomposition and com-
pletion, which decomposes the tensor with the aid of work-
ers’ historical preferences tensor and context matrices col-
laboratively, achieving a higher accuracy for workers’ tem-
poral preferences modeling.

Workers’ Temporal Preferences Tensor
Construction
In this section, we build a worker-task-time tensor, Xr ∈
RN×M×L, based on the task-performing records in the most
recent L time slots, to model the workers’ temporal prefer-
ences for different categories of tasks, as illustrated in Fig-
ure 2. The tensor consists of three dimensions, i.e., workers,
task categories and time slots, and each entry Xr(i, j, k) = e
denotes the i-th worker’s preference e on the j-th task cat-
egory in time slot k (e.g., 10 : 00am − 11 : 00am). Ob-
viously, there exists missing entries in tensor Xr. Once the
missing entries are inferred from other non-zero entries, we
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Figure 2: Workers’ Temporal Preferences Modeling

can obtain all the workers’ preferences on any tasks in all
the L time slots.

However, the tensor is over sparse with large quantities of
missing entries since only a few tasks can be performed by
an individual worker in a short time period. It is not accu-
rate enough to decompose Xr solely based on its own non-
zero entries, so we introduce another tensor, Xh, based on
the historical task-performing records over a longer period
of time (e.g., one month) aggregated by the corresponding
time slots from 1 to L, which has the same structure as Xr
shown in Figure 2. Clearly, Xh, representing the historical
task-performing patterns and workers’ long-term interests,
is much denser than Xr. The error of supplementing Xr can
be greatly reduced by decomposing Xr and Xh together.

Context Matrix Construction
For more effective decomposition of the tensor Xr, we also
construct another two matrices, i.e., time-task matrix Y and
task-feature matrix Z.

Time-task matrix. Matrix Y consists of Yr and Yh, cap-
turing the temporal correlation in terms of the distribution of
task-performing conditions over different task categories, in
which each row denotes a time slot and each column denotes
a task category. In our work, Yr and Yh respectively repre-
sent the recent and historical task-performing conditions in
the same span of time of day. An entry of Yr ∈ RL×M ,
Yr(k, j), represents the number of times that the tasks of cat-
egory j have been performed in time slot k. Consequently,
the similarity of two different rows indicates the correlation
of task-performing flows between two time slots. A worker
may perform some similar tasks in time slot tk and tg since
these two time slots share a similar worker task-performing
pattern. For instance, the task-performing behaviours of a
worker might be similar at 10:00am-11:00am and 2:00pm-
3:00pm, since she is likely to stay at her workplace and will-
ing to perform some simple tasks, which do not affect her
normal duties. Moreover, Yr can be more dense as its entries
are aggregated from all the workers, therefore can help re-
duce the error of decomposingXr. Yh has the same structure
as Yr, storing the number of times that the tasks with differ-
ent categories have been performed in different time slots
based on workers’ long term task-performing history.

Task-feature matrix. Matrix Z ∈ RM×Q captures the
similarity between different task categories by storing the
task features of each category. Many features can be ex-
tracted based on different application scenarios, such as task
popularity, task difficulty, task risk level, skill requirement,
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and statistical information derived from historical worker
profile. Each entry Z(j, f) of Z represents the f -th feature
of task category j. The value of Z(j, f) can be a real value
which indicates the weight of the feature for the task cate-
gory.

Tensor Decomposition and Completion
Due to our goal of modeling workers’ temporal preferences,
we need to estimate the missing entries of Xr. A straight-
forward solution is leveraging tucker decomposition model,
which is generally applied to higher-order principal compo-
nent analysis (Kolda and Bader 2009). It decomposes a ten-
sor into a core tensor multiplied (or transformed) by a few
matrices, based on the tensor’s non-zero entries. However,
decomposing Xr solely cannot get accurate enough results
since it is over sparse. For instance, when using one-day
task-performing records in our dataset and setting 1 hour as
a time slot, only 0.15% entries of Xr are non-zero.

To achieve a high accuracy of preference estimation, we
combine Xr and Xh (i.e., X = Xr||Xh) together and then
decompose X ∈ RN×M×2L with aid of the context matri-
ces Y and Z collaboratively, which is shown in Figure 2. We
utilize tucker decomposition to decompose X into the mul-
tiplication of a core tensor and three matrices as follows:

X ≈ O ×W W ×S S ×T T (2)

where O ∈ RdW×dS×dT is the core tensor and its entries
show the level of interaction between the three components;
W ∈ RN×dW , S ∈ RM×dS , and T ∈ R2L×dT are the low
rank latent factor matrices for workers, task categories and
time slots; dW , dS , and dT denote the dimensions of latent
factors.

The two context matrices can be factorized in the same
way. Y ∈ R2L×M can be factorized into the multiplication
of two matrices, Y = TST , and Z ∈ RM×Q can be factor-
ized into the multiplication of two matrices, Z = SV , where
V ∈ RdS×Q is the low rank latent factor for task features
and Q denotes the dimension of task features. It is easy to
see that tensor X shares matrix T with Y and shares matrix
S with Z. Based on the knowledge of tensor X and two con-
text matrices Y and Z, we then decompose X , in which the
loss function is defined in Equation 3 to control the errors.

L(O,W,S, T, V ) =
1

2
||X −O ×W W ×S S ×T T ||2+

λ1

2
||Y − TST ||2 +

λ2

2
||Z − SV ||2+

λ3

2
(||O||2 + ||W ||2 + ||S||2 + ||T ||2 + ||V ||2)

(3)

where ||·|| denotes the Frobenius norm, λ3

2 (||O||2+||W ||2+
||S||2 + ||T ||2 + ||V ||2) is a regularization of penalties to
avoid over-fitting, and λ1, λ2 and λ3 are parameters con-
trolling the contribution of different parts during the decom-
position. Note that the whole missing values are regarded
as zeros. In this work, we apply gradient descent algorithm
to minimize the loss function, and then recover the miss-
ing values in X by multiplying the decomposed factors as
Xrec = O ×W W ×S S ×T T .

Preference-aware Task Assignment
In the real-time scenario, where workers and tasks arrive
dynamically and require immediate responses from an SC
server, it is challenging to achieve the global optimal solu-
tion for PTA problem. Since an SC server only has a local
knowledge of the available tasks and workers at any instance
of time instead of a global view of all the workers and tasks,
we will optimize the task assignment locally at every time
instance by maximizing the current assignments and give
higher priorities to workers who show more preference on
the tasks simultaneously. In the sequel, we propose three
heuristics to solve our proposed problem including Basic,
Spatial and Temporal heuristics.

Preference-aware Task Assignment (PTA)
Algorithm
Taking workers’ preferences as the priority of task assign-
ment, we propose a basic solution to solve the preference-
aware task assignment problem by transforming it to Mini-
mum Cost Maximum Flow (MCMF) problem.

The MCMF is based on a flow network graph represen-
tation of the task assignment problem for time instance ti,
in which the graph is represented by Gi = (V,E) with
V corresponding to the set of vertices and E the set of
edges. Specifically, given a set of online workers, Wi =
{w1, w2, ...}, and a set of available tasks, Si = {s1, s2, ...},
at time instance ti, the number of V and the number of E are
fixed to |Wi| + |Si| + 2 and |Wi| + |Si| +m respectively,
where m is the number of available assignments for all the
workers. The available assignments for worker w (w ∈ Wi)
in time instance ti, denoted as Awi , should satisfy the follow-
ing three conditions: ∀ < w, s >∈ Awi , s ∈ Si,

1) d(w.l, s.l) ≤ w.r, and
2) ti + t(w.l, s.l) ≤ s.p+ s.φ and
3) task s has not been performed by worker w,
where d(w.l, s.l) is a given distance (e.g., Euclidean dis-

tance) between w.l and s.l, and t(w.l, s.l) is the travel time
from w.l to s.l. For the sake of simplicity, we assume all the
workers share the same velocity, so the travel time cost be-
tween two locations can be estimated with their Euclidean
distance, e.g., t(w.l, s.l) = d(w.l, s.l). However, our pro-
posed algorithms are not dependent on this assumption and
can handle the case where workers are moving at differ-
ent speeds. |Awi | denotes the number of available assign-
ments for worker w and thus we can sum the number of
available assignments for all the workers to get m, i.e.,
m =

∑
w∈Wi

|Awi |.
For the vertices construction, each worker wj maps to a

vertex, vj , and each spatial task sk maps to a vertex, v|Wi|+k.
In addition, two fictitious vertices src (labeled as v0) and dst
(labeled as v|Wi|+|Si|+1) are created to represent the source
and destination respectively.

Figure 3 depicts an example of such network flow graph
for three workers and six tasks at the same time instance. The
corresponding edges are created using the following steps:

1) Edges associated from src to the vertices mapped from
Wi are created. For each edge connecting src to vj (mapped
from wj), denoted by (src, vj), we set its capacity to 1 (i.e.,
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Figure 3: Flow Network-based Graph

c(src, vj) = 1), since every worker is only capable of per-
forming one task at the current time instance. The cost of the
these edges are set to 0.

2) We generate |Si| edges connecting the vertices mapped
from Si to dst, where the capacity of each edge is set to
maxW since every task is to be assigned to at most maxW
workers. Same to edge (src, vj), the cost of these edges are
set to 0.

3) Due to the spatial and temporal constraints, we add an
edge from vj for every worker wj to the vertex v|Wi|+k
mapped from sk ∈ Si if sk can be assigned to wj , i.e.,
< wj , sk >∈ Awj

i . For each edge (vj , v|Wi|+k), its capacity
is set to one and its cost (denoted by w(vj , v|Wi|+k)) can be
measured as the ratio between 1 and worker’s current pref-
erences, i.e., w(vj , v|Wi|+k) =

1
P T

wj
(sk.c)+1

.

The task assignment problem is now converted into a
MCMF problem in the direct flow graph Gi from src to
dst, which is to achieve the maximum flow of the graph
while simultaneously minimize the cost. In our work, we use
the Ford-Fulkerson algorithm (Kleinberg and Tardos 2005;
Ford and Fulkerson 2009) to find the maximum flow of the
network and then apply linear programming to minimize the
cost of the flow (Kazemi and Shahabi 2012).

Spatial-weighted Preference-aware Task
Assignment (SPTA) Algorithm
The PTA does not consider travel cost between worker and
her designated tasks, which is critical in SC as workers have
to physically go to the locations of the tasks in order to per-
form them. In our work, the travel cost between a worker w
and a spatial task s, denoted as d(w.l, s.l), is computed as
a Euclidean distance between them. Due to the fact that a
worker is more likely to accept nearby tasks (Ghinita, Gh-
inita, and Shahabi 2014), we give higher priorities to the
closer tasks by verifying worker preferences at time instance
ti based on this heuristic. Given an online worker w and an
available task s at time instance ti, the weighted preference
of worker w for task s, denoted by P

′

w(s), can be computed
as followed:

P
′

w(s) = PT
w(s.c) · δ(w.l, s.l) (4)

δ(w.l, s.l) = 1−min(1, d(w.l, s.l)/w.r)
where δ(w.l, s.l) is a function calculating the discount to the
worker’s preference on the basis of her proximity to the task
location. SPTA adapts PTA by calculating the weight of each

edge (vj , v|Wi|+k) connecting wj and sk with the weighted
preference, i.e., w(vj , v|Wi|+k) =

1
P ′

w(s)+1
.

Temporal-weighted Preference-aware Task
Assignment (TPTA) Algorithm

This heuristic takes the temporal urgency of tasks into ac-
count to prioritize tasks, based on the intuition that a task
which is further away from its deadline is more likely to
be performed in the future, and vice versa. As a result,
near-deadline tasks should have higher priorities to be as-
signed than others. Thus, in time instance ti, we define
the priority of a task s as the ratio between its remaining
time and its vaild time, i.e., s.p+s.φ−ti

s.φ (s.p ≤ ti). TPTA
modifies PTA through setting the weight for each edge
(v|Wi|+k, v|Wi|+|Si|+1) connecting sk and dst with the pri-
ority of a task, i.e., w(v|Wi|+k, v|Wi|+|Si|+1) = s.p+s.φ−ti

s.φ

(s.p ≤ ti).

Experiment
Experimental Setup

We use a check-in dataset from Twitter to simulate our prob-
lem, which is a common practice in evaluation of SC plat-
form (Deng, Shahabi, and Demiryurek 2013; Cheng et al.
2017; Dang, Nguyen, and To 2013). Since the original Twit-
ter dataset does not contain category information of venues,
we extract the category information associated with each
venue from Foursquare with the aid of its API. The resulting
dataset provides check-in data across USA except Hawaii
and Alaska from September 2010 to January 2011, which
includes locations of 62,462 venues and 61,412 users.

For our experiments, we assume the users are the work-
ers of SC system since users who check in to different spots
may be good candidates to perform spatial tasks in the vicin-
ity of those spots, and their locations are those of the most
recent check-in points. Moreover, we set the granularity of
a time instance as 10 minutes (i.e., 10:00am-10:10am), dur-
ing which the task requests and available workers will be
packed and input to our framework. We assume all the users
who check in during a time instance as online workers for
that time instance. For each of the check-in venue, we use its
location and the earliest check-in time of the day as the lo-
cation and publish time of a task, respectively. Accordingly,
the categories of check-ins are regarded as the categories of
tasks and we extract 10 kinds of check-in features to sim-
ulate the task features. Checking in a spot is equivalent to
accepting a task. In addition, we set maxW for each task
as the number of check-ins at the corresponding venue in a
day. The travel cost is calculated by the Euclidian distance
from the location of a worker to that of the task assigned
to her. The default values of all parameters used in our ex-
periments are summarized in Table 1. In the experiments of
task assignment, we run the algorithms over four hours (i.e.,
10:00am–2:00pm) of a day, and report the average results.
All the algorithms are implemented on an Intel Core i5-2400
CPU @ 3.10G HZ with 8 GB RAM.
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Table 1: Experiment Parameters

Parameter Default value

Time span of historical data h 4 weeks
Valid time of tasks φ 1 h
Workers’ reachable radius r 5 km
Number of tasks |S| 2000

Experimental Results
Performance of Temporal Preferences Modeling. We
first evaluate the performance of workers’ temporal prefer-
ences modeling phase and its impact to subsequent task as-
signment. We set 1 hour as a time slot and use check-in data
over a period of x weeks (and x = 1, 2, 3, 4 with a default
value of 4) as historical data and check-in records of the day
before as the recent data. The parameters (e.g., λ1, λ2 and
λ3) of loss function in tensor decomposition are set to 0.01.

To evaluate the accuracy of estimating workers’ prefer-
ences for tasks, we adopt the widely-used measures, Root
Mean Square Error (RMSE) and Mean Absolute Error
(MAE). We randomly remove 20% of non-zero entries from
the tensor Xr, which are used as the testing set to evaluate
the inferred values, and the remaining 80% are used as the
training data. Then we introduce a baseline algorithm, Av-
erage Value Filling (AVF) algorithm, which complements a
missing entry with the average of all non-zero entries in the
tensor X that belong to the corresponding time slot. More-
over, we study the contribution of historical tensor (i.e., Xh)
and context matrices (i.e., Y and Z) for supplementing the
missing entries. The methods are as followed:

1) AVF: Average value filling approach.
2) TD: Tensor decomposition approach that fills the miss-

ing entries by decomposing the tensor Xr solely based on its
own non-zero entries.

3) TD+H: Tensor decomposition approach that fills the
missing entries by decomposing the tensor with historical
data (i.e., Xh).

4) TD+H+Y+Z (HCTD): Tensor decomposition approach
that fills the missing entries by decomposing the tensor with
historical data, time and task context.

Table 2 shows the evaluation results, in which AVF
achieves the worst performance while HCTD performs best
followed by TD+H and TD. That demonstrates our method,
HCTD, can provide more accurate estimates for worker
preferences by considering historical data, temporal features
and correlation between different task categories.

We further evaluate the performance of TPM phase and
its impact to subsequent task assignment by varying the
size of historical data. In particular, for accuracy of pref-
erence estimation, we compare the RMSE value of four dif-
ferent approaches including AVF, TD, TD+H, HCTD. In ad-
dition, we compare the assignment success rate of three dif-
ferent task assignment algorithms: HCTD-based Task As-
signment (HCTD-TA) algorithm, AVF-based Task Assign-
ment (AVF-TA) algorithm, and MCTA (Dang, Nguyen, and
To 2013) that solves task assignment problem by trans-
forming it into maximum flow problem without consider-

Table 2: Performance of Different Methods for TPM

Methods MAE RMSE

AV F 0.2979 0.3384
TD 0.2671 0.3056
TD +H 0.2129 0.2406
TD +H + Y + Z(HCTD) 0.2054 0.2344
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Figure 4: Performance of TPM: Effect of h

ing workers’ preferences. When an SC server assigns a task
s to worker w in a certain time instance (i.e., ti), we con-
sider the assignment successful for w if there exists a task
sharing the same category with the assigned task s in the
worker’s task-performing list in the corresponding time slot
T (i.e., ti ∈ T). Thus we introduce Assignment Success
Rate (ASR), the ratio of successful assignments to the to-
tal assignments for all workers in a certain time instance, to
measure the accuracy of task assignment.

Effect of h. As shown in Figure 4a, naturally the accu-
racy of all algorithms except TD gradually increases as the
time span of historical data grows. The estimation accuracy
of TD is not affected by the historical data since it decom-
poses the tensor Xr solely without historical information.
AVF achieves the worst performance amongst these meth-
ods. In addition, HCTD performs better than TD and TD+H,
which testifies that the contributions of historical tensor and
context matrices are effectiveness. In terms of task assign-
ment success rate in Figure 4b, MCTA keeps constant since
it does not consider worker preferences inferred from histor-
ical data. In addition, HCTD-TA has increasing assignment
success rate with varying h due to its increasing estimation
accuracy for workers’ preferences, and it significantly out-
performs the baseline algorithms for all values of h, which
confirms the superiority of our proposed algorithm.

Performance of Preference-aware Task Assignment.
Next we evaluate three different task assignment algo-
rithms based on workers’ temporal preferences generated
by HCTD: PTA, SPTA and TPTA algorithm. Two metrics
are compared among these three methods: 1) CPU cost: the
CPU time cost for finding the task assignment in a time in-
stance; 2) ASR: Assignment Success Rate.

Effect of φ. We first study the effect of the valid time φ
of tasks. As illustrated in Figure 5a, all the methods have
the similar performances with respect to CPU cost. This is
because these methods all adopt the Maximum Flow Mini-
mum Cost (MFMC) algorithm by just changing the weight
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Figure 5: Performance of PTA: Effect of φ
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Figure 6: Performance of PTA: Effect of r

of the edges in the flow network graph, which does not affect
the computation complexity. Another observation is that the
CPU cost of all the methods increases almost linearly with φ,
since the number of available tasks in a time instance grows
when φ gets longer, which in turn leads to more edges in the
flow network graph of MFMC to be searched. The ASR val-
ues of all methods are enhanced with the increasing φ (see
Figure 5b) since a worker has more chance to be assigned
her interested tasks when φ grows longer. SPTA and TPTA
perform worse than PTA since they take workers’ travel cost
and tasks’ expiration time into account respectively, which
weakens the impact of workers’ preferences on task assign-
ment and leads to more inaccurate assignments.

Effect of r. We also study the effects of the length of work-
ers’ reachable radius r by changing it from 5 km to 20 km.
From Figure 6a we can see that, the CPU cost of all the
methods has similar increasing trend when r grows. The rea-
son behind it is that all the methods apply MFMC algorithm
and more workers with greater reachable radius tend to have
more available task assignments, which leads to more edges
in the flow network graph of MFMC. As shown in Figure 6b,
the assignment success rate of the three approaches has a
growing tendency as r is enlarged, with the similar reason
of the effects of tasks’ valid time, i.e., the larger the work-
ers’ reachable regions are, the more chance the SC server
has to assign the workers their interested tasks.

Effect of |S|. To study the scalability of the proposed algo-
rithms, we generate 5 datasets containing 500 to 2500 tasks
by random selection from the original dataset in four hours
(i.e., 10:00am–2:00pm) of a day. Besides the CPU cost and
assignment success rate, we compare another two metrics
among the three methods: 1) average travel cost of all the
task assignments; 2) the total number of assigned tasks. As
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Figure 7: Performance of PTA: Effect of |S|

expected, though the CPU cost increases as |S| increases,
our proposed algorithms perform well in improving the task
assignment success rate, which is demonstrated in Figure 7a
and Figure 7b. Figure 7c shows the average travel cost of
all algorithms decreases since there is a higher probability
that an assigned task is closer to a worker in a task-dense
area. Furthermore, we notice that SPTA outperforms both
PTA and TPTA by an astounding margin (up to 42%), which
demonstrates the effectiveness of the spatial (travel cost)
heuristic. As depicted in Figure 7d, naturally the assign-
ments of all approaches increase when more tasks exist. The
figure also illustrates the superiority of TPTA compared with
PTA and SPTA in terms of the number of assigned tasks (up
to 40%), which stems from applying the temporal heuristic.
Moreover, the impact of temporal heuristic becomes more
significant as the number of tasks grows. The reason behind
it is that with a larger number of tasks, more tasks are soon
to expire, and thus, prioritizing the near-deadline tasks to be
assigned becomes more effective.

Conclusion

In this paper, we take an important step toward effective
task assignment in spatial crowdsourcing based on work-
ers’ temporal preferences. We first address a few chal-
lenges arising from data sparsity and cold start by propos-
ing a History-based Context-aware Tensor Decomposition
(HCTD) method to model workers’ temporal preferences for
different task categories, and then design three different al-
gorithms to find the optimal task assignment based on work-
ers’ temporal preferences in every time instance. To the best
of our knowledge, it is the first work in spatial crowdsourc-
ing that gives task assignment with workers’ temporal pref-
erences considered. Extensive empirical study demonstrates
our proposed methods can significantly improve the effec-
tiveness of task assignment.
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