
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Learning Deviation Payoffs in Simulation-Based Games

Samuel Sokota
Swarthmore College
sokota@ualberta.ca

Caleb Ho
Swarthmore College

caleb.yh.ho@gmail.com

Bryce Wiedenbeck
Swarthmore College

bwieden1@swarthmore.edu

Abstract

We present a novel approach for identifying approximate
role-symmetric Nash equilibria in large simulation-based
games. Our method uses neural networks to learn a mapping
from mixed-strategy profiles to deviation payoffs—the ex-
pected values of playing pure-strategy deviations from those
profiles. This learning can generalize from data about a tiny
fraction of a game’s outcomes, permitting tractable analysis
of exponentially large normal-form games. We give a proce-
dure for iteratively refining the learned model with new data
produced by sampling in the neighborhood of each candi-
date Nash equilibrium. Relative to the existing state of the
art, deviation payoff learning dramatically simplifies the task
of computing equilibria and more effectively addresses player
asymmetries. We demonstrate empirically that deviation pay-
off learning identifies better approximate equilibria than pre-
vious methods and can handle more difficult settings, includ-
ing games with many more players, strategies, and roles.

Simultaneous-move games are among the most general tools
for reasoning about incentives in multi-agent systems. The
standard mathematical representation of a simultaneous-
move game is the normal-form payoff matrix. It describes
incentives in a multi-agent system by listing the strategies
available to each agent and storing, for every combination
of strategies the agents may jointly select, the resulting util-
ity for each agent. This tabular representation grows expo-
nentially: the payoff matrix for a normal form game with n
players andm strategies per player stores utilities for each of
mn pure-strategy profiles. As a result, explicit normal-form
representations are typically employed only for games with
a very small number of players and strategies.

To study larger games, it is common to replace the explicit
payoff table with a more compact representation of the util-
ity function, from which payoff values can be computed on
demand. However, pure-strategy utility functions are gen-
erally not sufficient for computing Nash equilibria. Instead,
Nash-finding algorithms typically depend on one or more of
the following quantities being efficiently computable: best
responses to profiles of mixed strategies, deviation payoffs of
mixed-strategy profiles (the expected utility of deviating to a
pure-strategy, holding other agents’ mixed strategies fixed),
or the derivatives of these deviation payoffs. Examples of

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

algorithms requiring each of these computations include, re-
spectively, fictitious play (Brown 1951), replicator dynam-
ics (Taylor and Jonker 1978), and the global Newton method
(Govindan and Wilson 2003). Computing any of these quan-
tities naively involves summing over all entries in the fully-
expanded payoff matrix.

This means that analyzing large games typically requires
carefully selecting a compact representation of the util-
ity function that supports efficient computation of mixed-
strategy deviation payoffs. For certain classes, like action-
graph games (Jiang, Leyton-Brown, and Bhat 2011), these
representations are known, but in other cases, no such repre-
sentation is available. Moreover, identifying such a compact
structure can be challenging, even when it does exist.

In this paper, we explore a machine learning approach to
efficiently approximating deviation payoffs and their deriva-
tives, under the hypothesis that sufficiently close approxi-
mation of these quantities will tend to yield ε-Nash equi-
libria. At the core of the approach is the idea that the ex-
pected payoffs of a mixed-strategy profile can be estimated
by the payoffs of pure-strategy profiles sampled from that
mixed-strategy profile. Such sampling is extremely noisy,
but by sampling from many different mixed-strategy profiles
and employing machine learning algorithms that generalize
across related mixed strategies, we can estimate a deviation
payoff function for the entire game.

Our methods are applicable in settings where a specific
compact structure is not known in advance, but where pay-
off estimates for arbitrary pure-strategy profiles can be ac-
quired. This setting is common in simulation-based games
(also known as empirical games (Wellman 2006; Tuyls et al.
2018)), where game-theoretic models are constructed from
payoffs observed in multi-agent simulations. Simulation-
based games were initially used to study trading agent com-
petitions (Wellman et al. 2006; Jordan, Kiekintveld, and
Wellman 2007) and continuous double auctions (Phelps,
Marcinkiewicz, and Parsons 2006; Vytelingum, Cliff, and
Jennings 2008) and have since been employed in numer-
ous applications, including designing network routing pro-
tocols (Wellman, Kim, and Duong 2013) and understanding
the impacts of high-frequency trading (Wah and Wellman
2017). Recently, simulation-based games have arisen in the
analysis of the meta game among AlphaGo variants (Lanc-
tot et al. 2017) and other multi-agent reinforcement learning

2173

settings including sequential social dilemmas (Leibo et al.
2017). Many of these applications can involve large num-
bers of symmetric players and would benefit from analy-
sis that scales efficiently and accurately by leveraging these
symmetries.

Related Work
Much recent progress in game-theoretic settings has been
achieved by the application of machine learning to large
extensive-form games. In Go and poker, the extensive form
is well-defined, but is far too big to be constructed explicitly,
so high-level play (Silver et al. 2017; Moravčı́k et al. 2017)
and approximate equilibrium analysis (Heinrich, Lanctot,
and Silver 2015) have required the aid of machine learning
based algorithms. These algorithms run simulations to esti-
mate payoffs for various game states and use learning to gen-
eralize to unexplored parts of the game tree. Our work em-
ploys a similar approach, generating observations by simu-
lation and making generalizations by machine learning only
in the context of normal-form deviation payoffs, instead of
extensive-form state or state-action values.

In the context of simultaneous-move games, a variety of
game models more compact than the normal-form payoff
matrix have been explored. Graphical games (Kearns 2007)
exploit independence among players, action-graph games
(Jiang, Leyton-Brown, and Bhat 2011) exploit independence
or partial independence among strategies, and resource-
graph games (Jiang, Chan, and Leyton-Brown 2017) exploit
independence among sub-decisions that comprise strategies.
All of these models can, in particular contexts, exponen-
tially reduce the size of the game representation. But they
all require detailed knowledge of a game’s structure, which
is unlikely to be available in the setting of simulation-based
games.

When a precise compact model is not known in advance,
it may still be possible to induce the parameters of such a
model from simulated or observed data. Duong et al. (2009)
construct graphical games from payoff data, and Honorio
and Ortiz (2015) construct linear influence games from be-
havioral data. An advantage of these approaches is that the
resulting models can offer structural insight that may gen-
eralize to other related settings. However, they suffer from
significant limitations in that only the specifically targeted
type of structure can be learned. So these approaches are
only useful when the analyst has advance knowledge of the
payoff structure. In contrast, deviation payoff learning is ag-
nostic to the detailed structure of the payoff functions, mak-
ing it applicable to a far wider variety of simulation-based
games.

We are aware of two papers that have addressed the
problem of learning generic models of simultaneous-move
games from simulation-based data. The first learns payoff
functions that generalize over continuous strategy spaces
(Vorobeychik, Wellman, and Singh 2007). The regression
takes as input a single-parameter description of a player’s
strategy and a single-parameter summary of the profile of
opponent strategies and outputs a utility. For all but the sim-
plest regression methods, equilibrium computation requires
using the learned functions to fill in a payoff matrix for a

discretization of the strategy space. This matrix grows expo-
nentially with the number of players, prohibiting analysis of
large games with complex payoff functions.

Closest to the present work, Wiedenbeck, Yang, and Well-
man (2018) learn payoff functions of symmetric games.
For each strategy, a regressor takes as input a pure-strategy
opponent-profile and outputs a utility. They provide an ap-
proximation method for deviation payoffs that allows for
computation of role-symmetric ε-Nash equilibria. This ap-
proach can learn complicated payoff functions and scales
well in the number of players. However, the approxima-
tion method, which is only valid for fully-symmetric games
learned via RBF kernel Gaussian process regression, is pro-
hibitively expensive, and thereby limited to small data sets
from games with small numbers of pure strategies. We com-
pare against this method in our experiments and demonstrate
favorable results for deviation-payoff learning.

Background and Notation
A simultaneous-move game Γ “ pP,S, uq is characterized
by a set of players P “ t1, . . . , nu, a space of pure-strategy
profiles S, and a utility function u. The pure-strategy pro-
file space S “

ś

iPP Si is the Cartesian product of strat-
egy sets Si for each player i P P . An element of the strat-
egy space ~s P S, specifying one strategy for each player,
is known as a pure-strategy profile. An n ´ 1 player profile
~s´i specifies strategies for all players except i. The utility
function u : S ÞÑ Rn maps a profile to a payoff for each
player; uip~sq P R is the component payoff for player i. In a
simulation-based game, an exogenously-specified simulator
provides noisy point estimates of the utility function. That
is, for any given profile ~s, we can observe samples ~v „ D~s,
where D~s is some unknown distribution with mean up~sq.

A mixed strategy σ for player i is a probability distri-
bution over player i’s strategy set Si. The set of all mixed
strategies for player i is the simplex: ∆pSiq. A mixed strat-
egy profile ~σ specifies a mixed strategy for each player.
The set of mixed strategy profiles is a simplotope: S “
ś

iPP ∆pSiq. Similarly to pure profiles, ~σ´i is the n ´ 1
player profile that results from excluding player i from ~σ
and ~σi is the mixed-strategy of player i.

We define a deviation payoff for player i, strategy s P Si,
and mixed profile ~σ as the expected utility to player i for
playing s when all n´ 1 opponents play according to ~σ´i:

devPayips, ~σq :“ E
~s´i„~σ´i

uips,~s´iq.

We use devPayip~σq to denote the vector of deviation payoffs
for all strategies of player i. If players jointly play according
to mixed-strategy profile ~σ, then player i achieves expected
payoff E~s„~σ uip~sq “ devPayip~σq ¨ ~σi. The regret of a pro-
file ~σ is the largest amount any player could have gained by
deviating to a pure strategy:

εp~σq :“ max
iPP

max
sPSi

devPayips, ~σq ´ E
~s„~σ

uip~sq

A profile with zero regret is a Nash equilibrium; a profile
with regret below threshold ε is an ε-Nash equilibrium. Our
aim is to efficiently identify low-regret ε-Nash equilibria.

2174

Many common games, especially large simulation-based
games, exhibit player symmetries. Two players i, j P P are
symmetric if the game created by permuting i and j is equiv-
alent to Γ. To aid in representing player symmetries, we par-
tition a game’s players into roles. A role R Ď P is a maxi-
mal set of symmetric players. A game with one role is fully-
symmetric; a game with n roles is fully-asymmetric. The set
of roles R induces a partition tSR : R P Ru over the set of
pure strategies S :“

Ů

RPR SR, where SR denotes the pure
strategies available to players in role R. We use the notation
SR Ă S for the set of mixed-strategy profiles in which all
players sharing a role also share a mixed strategy (i.e. the
set of role-symmetric mixed-strategy profiles). For ~σ P SR,
we define ~σ´R as the n ´ 1 player role-symmetric mixed-
strategy profile induced by excluding a player in roleR from
~σ. Similarly, ~σR is the mixed-strategy in ~σ played by the
players in role R. We define π : SR Ñ

ś

RPR ∆pSRq to be
the natural projection operator identifying the shared mixed-
strategy of each role in a role symmetric mixed-strategy pro-
file together (note that π is bijective). To illustrate the differ-
ence between SR and πpSRq we can consider a small game
with role partition R “ tR1 “ t1, 2u, R2 “ t3, 4, 5uu. In
this case ~σ P SR takes the form p~σR1 , ~σR1 , ~σR2 , ~σR2 , ~σR2q,
while πp~σq “ ~σπ takes the form p~σR1 , ~σR2q. For a pure-
strategy s P SR and a role-symmetric mixed-strategy profile
~σ P SR, a deviation payoff is unambiguously defined by

devPayps, ~σq :“ E
~s´R„~σ´R

usp~s´Rq,

where usp~s´Rq denotes the payoff to a player playing strat-
egy s in the strategy profile ps,~s´Rq. In this case, we use
devPayRp~σq to denote the vector of deviation payoffs for
s P SR. Using this notation, regret can be defined

εp~σq :“ max
RPR

max
sPSR

devPayps, ~σq ´ devPayRp~σq ¨ ~σR.

Methods
Deviation payoff learning uses an exogenous simulator or
other data source to estimate deviation payoffs for a role-
symmetric mixed-strategy profile by first sampling a pure-
strategy profile according to the players’ mixed strategies
and then querying the simulator at the sampled pure-strategy
profile. We construct a data set of such samples and then
solve a regression problem to produce a regressor : S ˆ
πpSRq Ñ R. For this methodology to be successful, it is
crucial that the simulator possess a significant amount of
known player symmetry (otherwise the dimensionality of
the domain of the regressor can be very large, making the re-
gression problem difficult). Once this regressor is trained, it
allows us to compute candidate role-symmetric ε-Nash equi-
libria. We then gather additional samples in the neighbor-
hood of each equilibrium candidate and iteratively refine the
model.

Approximating Deviation Payoffs
Given a simulator which draws samples fromD~s given ~s, we
can approximate deviation payoffs for ~σ by first sampling ~s
from ~σ, and then querying the simulator for payoffs ~v at ~s.
The expected values of the payoffs ~v are deviation payoffs

for deviating from ~σ to ~s. Thus, learning deviation payoffs
can be cast as a regression problem. In general, finding a
good solution to this regression problem can be very diffi-
cult, especially when alloted only a small number of queries
for a large game. In this paper, we are most interested in an-
alyzing large games using only a small number of queries,
so we ease the difficulty of the regression problem by limit-
ing ourselves to only learning the deviation payoff values of
role-symmetric mixed-strategy profiles. This constraint sig-
nificantly reduces the dimensionality of the domain of the
regressor in the presence of player symmetries. While this
constraint also ultimately limits the methods of this paper to
approximating role-symmetric Nash equilibria, it is what al-
lows us to consider extremely large games (in the presence
of player symmetries) that would otherwise be intractible to
analyze with a small number of queries.

Formally, we would like to construct a regressor minimiz-
ing the quantity,

ÿ

sPS

ż

~σPSR

rdevPayps, ~σq ´ regressorps, πp~σqqs2 .

To approximate the true loss, we use
ÿ

~σπPΣĂπpSRq

Lp~v,~s, ~σπq where ~v „ D~s and ~s „ π´1p~σπq

as the training loss, where

Lp~v,~s, ~σπq “
ÿ

sPt~si:iPP u

r~vs ´ regressorps, ~σπqs
2
,

and Σ is a finite number of randomly sampled projected role-
symmetric mixed-strategy profiles. In the limit as every pro-
jected role-symmetric mixed-strategy profile is sampled an
infinite number of times, the minimum of the training loss
coincides with the minimum of the true loss at almost every
profile.

We use a multiheaded neural network as our regres-
sor. The network takes a projected role-symmetric mixed-
strategy profile ~σπ P πpSRq as input and has a head for each
pure-strategy s P S whose output is the predicted deviation
payoff devPayps, π´1p~σπqq.

Figure 1 shows an example of a learned game with three
pure strategies. Each simplex represents the deviation pay-
off function of the labeled pure-strategy. Each point on a

Figure 1: A regressor can closely approximate the true devi-
ation payoffs in a 100-player symmetric game using payoff
samples.

2175

Figure 2: The black path shows movement of the candi-
date equilibrium across two iterations of sampling and re-
solving.

simplex (in barycentric coordinates) represents a mixed-
strategy. The heat corresponds to the value of the deviation
payoff at that mixed-strategy. The close match between top
(true deviation payoffs) and bottom (neural network esti-
mates) rows is typical; we find that the network is consis-
tently able to learn deviation payoffs with high accuracy.

Approximating Role-Symmetric Nash Equilibria
We choose to learn deviation payoffs because they provide
sufficient information to solve for Nash equilibria. Replica-
tor dynamics relies solely on deviation payoffs, while other
role-symmetric Nash equilibrium computation techniques
rely on a combination of deviation payoffs and their deriva-
tives (which can easily be provided by differentiable regres-
sors such as neural networks).

The existence of a Nash equilibrium depends only on the
deviation payoffs at that mixed-strategy profile, irrespec-
tive of deviation payoffs elsewhere in mixed-strategy profile
simplotope. So to find good approximate equilibria it is bet-
ter to emphasize learning in areas of the simplotope where
there are likely to be Nash equilibria, even at the cost of
weaker learning in other areas.

In order to do this in a query-efficient manner, we inte-
grate sampling and training with equilibrium computation,
as described in Algorithm 1. Specifically, the initial sam-
ple of mixed strategies is taken roughly uniformly at ran-
dom across the projected mixed-strategy profile simplotope
(this can be done with a Dirichlet distribution). A regres-
sor trained on these examples is used to solve for equilibria.
Then, additional samples are taken in the neighborhood of
the candidate Nash equilibria and we solve for Nash equi-
libria again using a regressor trained on the entire set of ex-
amples. The process of resampling and re-solving can be re-
peated for several iterations. We find that this process signif-
icantly lowers deviation payoff error in the areas of retrain-
ing, and is sufficient to find low regret approximate equilib-
ria, even with a small number of training examples.

Figure 2 shows an example of the sampling process across
two iterations of resampling and re-solving. A candidate
equilibrium is identified using the initial purple samples.

This candidate is revised using the blue samples taken in
a neighborhood of the candidate. Finally, the revised can-
didate is revised again using the green samples taken in its
neighborhood. The black path shows the movement of the
candidate equilibrium across iterations. The pink star is the
final guess for the location of the equilibrium.

Algorithm 1 Approximating Role-Symmetric Nash Equi-
libria

procedure APPXRSNASHEQUILIBRIA(
INITIALQUERIES, RESAMPLEQUERIES, NUMITERS):
r~σπs Ð sampleπpSRq

pinitialQueriesq
r~ss Ð sampleProfilespr~σπsq
r~vs Ð samplePayoffspr~ssq
data Ð pr~σπs, r~ss, r~vsq
regressor.fit(data)
repeat
r~σ˚π s Ð findNashpregressorq
r~σπs Ð sampleNbhdpr~σ˚π s, resampleQueriesq
r~ss Ð sampleProfilespr~σπsq
r~vs Ð samplePayoffspr~ssq
data Ð data` pr~σπs, r~ss, r~vsq
regressor.fitpdataq

until numIters
return findNashpregressorq

In general, sampling the neighborhood of a point on a
manifold can be difficult. To do so, we sample from an
isotropic Gaussian at the image of each mixed-strategy in
the projected role-symmetric mixed-strategy profile under
the coordinate patch parameterizing the mixed-strategy sim-
plex for that role, and then send each sample back to its re-
spective simplex under the inverse of its coordinate patch.
Sometimes, the samples will not fall within the simplex
when they are preimaged by the coordinate patch. This prob-
lem becomes particularly pronounced as the number of pure
strategies grows large (intuitively, this is because simplices
become pointier with the number of dimensions). Rejection
sampling quickly becomes highly impractical. To counteract
this, we project the preimage of each sample into its sim-
plex (Chen and Ye 2011). Projection sends samples that fall
outside the simplotope onto its edges, thereby putting more
emphasis onto the edges than rejection sampling would. In
practice, we find that overall performance benefits from the
extra emphasis on the edges of the simplotope, which are
otherwise difficult to learn because there is less nearby vol-
ume within the simplotope from which to generalize.

Formally, say we would like to sample a projected role-
symmetric mixed-strategy profile ~σ1π in the neighborhood
of ~σπ . Let αR : ∆pSRq Ñ UR be the coordinate patch pa-
rameterizing the mixed-stategy simplex for role R. Then the
mixed-strategy p~σ1πqR for role R in the sampled projected
role-symmetric mixed-strategy profile is given by

p~σ1πqR “ Ppα´1
R pσEqq where σE „N pαRpp~σπqRq, k ¨Iq,

and P is the projection operator described by (Chen and Ye
2011). We use the notation σE to capture the intuition that
σE is the Euclidean representation of a mixed-strategy.

2176

Figure 3: Gaussian process regression integration and deviation payoff learning achieve similar performance in congestion
games, but deviation payoff learning significantly outperforms Gaussian process regression integration in more difficult games.

Experiments
Experimental Specification
In the following experiments, we employed a network with
three dense hidden layers of 128, 64, and 32 nodes, followed
by a head for each strategy with 16 hidden nodes and a single
output. This architecture was tuned based on 100 player, five
pure-strategy games. We held the structure fixed through-
out our experiments, other than varying the number of input
nodes and heads to match the number of pure strategies. We
split queries half and half between the initial sample and re-
sampling for our experiments and used ten iterations of re-
sampling. For resampling, we chose the variance k ¨ I of the
distribution we sampled from such that the expected distance
between a random sample and the mean was about 0.05 (this
requires a different constant k for each dimension).

To perform our experiments, we generate action-graph
games to serve as a proxy for simulators. We consider three
classes of games: congestion games, additive sine games,
and multiplicative sine games. Additive and multiplicative
sine games are action-graph games whose function nodes
compute respectively the sum or the product of a low-degree
polynomial and a long-period sine function. Each class of
game is defined by a distribution over the parameters of
action-graph games of a particular structure. Using the per-
formance on sampled games, we present expectations of the
median and mean performance on each class, with 95% con-
fidence intervals. In order to have a basis of comparison
across different settings, the payoffs of every game are nor-
malized to mean zero and standard deviation one. Since we
are generating the underlying games, we are able to measure
the true regret of the computed approximate equilibria to use
as our metric of performance.

Comparison to Existing Work
We compare deviation payoff learning to Gaussian pro-
cess regression integration (GPRI) (Wiedenbeck, Yang, and
Wellman 2018). GPRI is the existing state of the art for
generic model learning of fully-symmetric, simultaneous-
move games. However, the means by which GPRI recon-
structs deviation payoffs from learned utilities is expensive
and scales poorly both with the number of training examples

and the number of pure strategies in the game. In contrast,
we show that deviation payoff learning can handle orders of
magnitude more training examples and pure strategies, and
also generalizes to games with role-asymmetries.

In our comparison, we use symmetric 100 player games
with five pure strategies and up to 5,000 queries to the simu-
lator. We were unable to make a comparison on larger num-
bers of strategies or larger data sets due to the limitations of
GPRI. In Figure 3 we see that both deviation payoff learn-
ing and GPRI achieve strong results on congestion games.
However, on harder games, the performance of GPRI de-
teriorates significantly more than that of deviation payoff
learning. Thus, in addition to having a much wider range
of applicability than GPRI, deviation payoff learning tends
to achieve much lower regret within the range of applica-
bility of GPRI. Note that the regret scale on these graphs is
dramatically larger than on any of the subsequent plots ex-
amining deviation payoff learning.

Scaling in Noise
It is typical in an empirical game for the simulator to be
noisy. In our experimental setup, two different noise mod-
els are plausible: noise in player payoffs and noise in pure-
strategy payoffs. When there is noise in player payoffs, each
player receives their own noisy payoff. This provides a natu-
ral form of noise reduction, as we can average over the pay-
offs of the players choosing the same pure-strategy. Noise
in pure-strategy payoffs, where one noisy payoff is provided
for each pure-strategy supported in the payoff profile, offers
a strictly more challenging problem. In our experiment, we
consider the harder case of noise in pure-strategy payoffs
with the understanding that our method will only become
more robust under noise in player payoffs. We use sym-
metric 100 player, five pure-strategy additive sine games.
The noise is sampled from a mean zero Gaussian of vary-
ing width.

We see in Figure 4 that deviation payoff learning can tol-
erate large amounts of noise while maintaining strong per-
formance. Adding mean zero Gaussian noise with standard
deviation 1/10 appears to have a very marginal effect on
learning. Even with noise having standard deviation 1/2,
which is on the same order of magnitude as the standard de-

2177

Figure 4: Deviation payoff learning is robust to noise.

Figure 5: The performance of deviation payoff learning ac-
tually improves with the number of players for additive sine
games.

viation of payoffs of the game, deviation payoff learning is
still able to find comparably good mixed strategies to those
GPRI computed with the same number of queries, but with-
out noisy payoffs (see Figure 3). The robustness of devia-
tion payoff learning to noise is not surprising, as the central
idea of the learning process is to determine the mean of the
distribution of payoffs. Adding mean zero noise increases
the variance of this distribution but does not fundamentally
change the problem.

Scaling in the Number of Players
One of the advantages of learning deviation payoffs di-
rectly is that the learning process scales well with the num-
ber of players. In particular, unlike existing methods, devi-
ation payoff learning avoids learning the tabular representa-
tion of the utility function, which grows exponentially with
the number of players (although the deviation payoff func-
tion does tend to become more complex due to it being a
weighted sum over the exponentially growing utility func-
tion).

In Figure 5, we present results from symmetric additive
sine games with five pure strategies. It appears that devia-
tion payoff learning actually enjoys increased performance

Figure 6: Deviation payoff learning can scale into games
with large numbers of pure strategies when there are many
players.

with larger numbers of players for additive sine games. It is
possible that this is a result of having more training exam-
ples (since pure strategies are less often unsupported when
there are more players). This is strong evidence that devia-
tion payoff learning scales extremely well in the number of
players (though we are not suggesting that the performance
will improve with more players for games in general).

Scaling in the Number of Pure-Strategies
Past analyses of simulation-based games with large num-
bers of pure strategies, such as Dandekar et al. (2015), have
largely been limited to exploring strategies iteratively to
find small-support Nash equilibria. GPRI is similarly lim-
ited due to difficulty handling games with more than five
pure-strategies. In contrast, deviation payoff learning offers
a significant advancement in that it allows for direct analy-
sis of games with a much larger number of pure strategies.
This opens the possibility of discovering large-support Nash
equilibria in games with many strategies.

As the number of pure strategies becomes large with re-
spect to the number of players, it increases the difficulty of
the learning problem because there are fewer training ex-
amples per pure-strategy deviation payoff function. In order
to minimize this effect and focus on scaling in the number
of pure strategies, we fix a large number of players for this
experiment. Results are presented from symmetric 10,000
player additive sine games.

In Figure 6, we see that, in the case in which the number
of players significantly exceeds the number of pure strate-
gies, deviation payoff learning achieves surprisingly strong
results for additive sine games even for large numbers of
strategies. However, we note that our preliminary experi-
ments suggest that performance scaling deteriorates signifi-
cantly faster when the number of players in the game is more
comparable to the number of pure strategies.

Scaling in the Number of Roles
Perhaps the most significant advantage deviation payoff
learning can provide is the ability to handle games with role
asymmetries. In practice, many games of interest are not

2178

Figure 7: Validating equilibria can help catch mistakes, but on particularly hard (multiplicative sine) games, the sampling
estimate can be overly conservative. Dashed lines indicate 45˝, where true and estimated regrets are equal.

fully symmetric. Yet existing methods have difficulty rep-
resenting multi-role games. We assess the ability of devi-
ation payoff learning to handle role asymmetries by fixing
the number of players and strategies and varying the number
of roles. Each role is allotted an equal number of players and
an equal number of strategies. Results are from 1,200 player,
12 pure-strategy additive sine games.

Figure 8: Deviation payoff learning scales well with role
asymmetries.

We observe in Figure 8 that, for the most part, deviation
payoff learning scales positively with the number of roles.
This can likely be attributed to the game size decreasing as
the number of roles increases (holding |S| fixed). In other
words, the number of terms in the deviation payoff function
decreases with the number of roles.

Validating Learned Models
We have demonstrated that deviation payoff learning tends
to produce low regret mixed strategies. While many results
for congestion games and multiplicative sine games were
omitted due to space constraints, we found that performance

tended to trend similarly. Even in settings where outliers
cause higher expected regret, median regret mostly remains
low. It is desirable to be able to distinguish outlying, high
regret mixed-strategy profiles returned by deviation payoff
learning from the more typical, low regret mixed-strategy
profiles. In simulated games, accessing the regret directly is
not possible, but approximating deviation payoffs also al-
lows us to compute an approximation of regret (details can
be found in the Background and Notation).

We propose that after equilibria have been identified in
the model, the analyst verify the results by simulating many
profiles sampled from each equilibrium to estimate its regret.
If this estimate agrees with the learned model, analysts can
have confidence in the result, but disagreement may indicate
that additional data is required. We found that a large num-
ber of samples is required to achieve reliable estimates, so
Figure 7 shows results of 1,000 queries per role-symmetric
mixed-strategy profile in symmetric 100 player five pure-
strategy games. Each mixed-strategy profile was found by
rejection sampling to have low true-game regret, and we
compare against regret estimated by sampling. In conges-
tion games, these predictions are quite accurate, while in
sine games, overestimates are more common.

Conclusion
We have developed a novel methodology for learning ε-Nash
equilibria in simulation-based games. We have shown that
deviation payoff learning outperforms the previous best and
sets new performance standards for scaling in noise, num-
ber of players, number of strategies, and role asymmetries.
We believe that the tools presented here will enable new
simulation-based analysis of many exciting multi-agent in-
teraction domains.

References
Brown, G. W. 1951. Iterative solution of games by ficti-
tious play. Activity analysis of production and allocation
13(1):374–376.

2179

Chen, Y., and Ye, X. 2011. Projection onto a simplex. arXiv
preprint arXiv:1101.6081.
Dandekar, P.; Goel, A.; Wellman, M. P.; and Wiedenbeck, B.
2015. Strategic formation of credit networks. ACM Trans-
actions on Internet Technology (TOIT) 15(1):3.
Duong, Q.; Vorobeychik, Y.; Singh, S. P.; and Wellman,
M. P. 2009. Learning graphical game models. In IJCAI,
116–121.
Govindan, S., and Wilson, R. 2003. A global newton method
to compute nash equilibria. Journal of Economic Theory
110(1):65–86.
Heinrich, J.; Lanctot, M.; and Silver, D. 2015. Ficti-
tious self-play in extensive-form games. In Proceedings
of the 32nd International Conference on Machine Learning
(ICML-15), 805–813.
Honorio, J., and Ortiz, L. 2015. Learning the structure and
parameters of large-population graphical games from behav-
ioral data. Journal of Machine Learning Research.
Jiang, A. X.; Chan, H.; and Leyton-Brown, K. 2017. Re-
source graph games: A compact representation for games
with structured strategy spaces. In AAAI, 572–578.
Jiang, A. X.; Leyton-Brown, K.; and Bhat, N. a. R. 2011.
Action-Graph Games. Games and Economic Behavior
71(1):141–173.
Jordan, P. R.; Kiekintveld, C.; and Wellman, M. P. 2007.
Empirical game-theoretic analysis of the tac supply chain
game. In Proceedings of the 6th international joint confer-
ence on Autonomous agents and multiagent systems, 193.
ACM.
Kearns, M. 2007. Graphical games. In Vazirani, V.; Nisan,
N.; Roughgarden, T.; and Tardos, E., eds., Algorithmic game
theory. Cambridge, UK: Cambridge University Press. chap-
ter 7, 159–180.
Lanctot, M.; Zambaldi, V.; Gruslys, A.; Lazaridou, A.;
Tuyls, k.; Perolat, J.; Silver, D.; and Graepel, T. 2017. A uni-
fied game-theoretic approach to multiagent reinforcement
learning. In Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach,
H.; Fergus, R.; Vishwanathan, S.; and Garnett, R., eds., Ad-
vances in Neural Information Processing Systems 30, 4190–
4203. Curran Associates, Inc.
Leibo, J. Z.; Zambaldi, V.; Lanctot, M.; Marecki, J.; and
Graepel, T. 2017. Multi-agent reinforcement learning in se-
quential social dilemmas. In Proceedings of the 16th Confer-
ence on Autonomous Agents and MultiAgent Systems, 464–
473. International Foundation for Autonomous Agents and
Multiagent Systems.
Moravčı́k, M.; Schmid, M.; Burch, N.; Lisỳ, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science 356(6337):508–513.
Phelps, S.; Marcinkiewicz, M.; and Parsons, S. 2006. A
novel method for automatic strategy acquisition in n-player
non-zero-sum games. In Proceedings of the fifth interna-
tional joint conference on Autonomous agents and multia-
gent systems, 705–712. ACM.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354.
Taylor, P. D., and Jonker, L. B. 1978. Evolutionary stable
strategies and game dynamics. Mathematical biosciences
40(1-2):145–156.
Tuyls, K.; Pérolat, J.; Lanctot, M.; Leibo, J. Z.; and Graepel,
T. 2018. A generalised method for empirical game theoretic
analysis. CoRR abs/1803.06376.
Vorobeychik, Y.; Wellman, M. P.; and Singh, S. 2007. Learn-
ing payoff functions in infinite games. Machine Learning
67(1-2):145–168.
Vytelingum, P.; Cliff, D.; and Jennings, N. R. 2008. Strate-
gic bidding in continuous double auctions. Artificial Intelli-
gence 172(14):1700–1729.
Wah, E., and Wellman, M. P. 2017. Latency arbitrage in
fragmented markets: A strategic agent-based analysis. Al-
gorithmic Finance 5:69–93.
Wellman, M. P.; Jordan, P. R.; Kiekintveld, C.; Miller, J.;
and Reeves, D. M. 2006. Empirical game-theoretic analysis
of the tac market games. In AAMAS-06 Workshop on Game-
Theoretic and Decision-Theoretic Agents.
Wellman, M. P.; Kim, T. H.; and Duong, Q. 2013. Analyzing
incentives for protocol compliance in complex domains: A
case study of introduction-based routing. In 12th Workshop
on the Economics of Information Security.
Wellman, M. P. 2006. Methods for empirical game-theoretic
analysis (extended abstract). In Proceedings of the National
Conference on Artificial Intelligence, 1152–1155.
Wiedenbeck, B.; Yang, F.; and Wellman, M. P. 2018. A
regression approach for modeling games with many sym-
metric players. In 32nd AAAI Conference on Artificial Intel-
ligence.

2180

