
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Fair and Efficient Memory Sharing: Confronting Free Riders

Eric J. Friedman
ICSI and UC Berkeley

Vasilis Gkatzelis
Drexel University

Christos-Alexandros Psomas
Carnegie Mellon University

Scott Shenker
ICSI and UC Berkeley

Abstract

A cache memory unit needs to be shared among n strategic
agents. Each agent has different preferences over the files to
be brought into memory. The goal is to design a mechanism
that elicits these preferences in a truthful manner and outputs
a fair and efficient memory allocation. A trivially truthful and
fair solution would isolate each agent to a 1/n fraction of the
memory. However, this could be very inefficient if the agents
have similar preferences and, thus, there is room for cooper-
ation. On the other hand, if the agents are not isolated, unless
the mechanism is carefully designed, they have incentives to
misreport their preferences and free ride on the files that oth-
ers bring into memory. In this paper we explore the power and
limitations of truthful mechanisms in this setting. We demon-
strate that mechanisms blocking agents from accessing parts
of the memory can achieve improved efficiency guarantees,
despite the inherent inefficiencies of blocking.

1 Introduction
Resource allocation is the foundation of any computer sys-
tem, and a particularly challenging problem in cloud envi-
ronments. In shared computer systems, the users have access
to the same (relatively small) cache memory unit, which they
can use for high-speed access to data files. A naive memory
management approach would be to partition this memory
into as many blocks as the number of users and to isolate
each user to her dedicated block. Traditional memory allo-
cation policies, e.g., LRU (Least Recently Used) or MRU
(Most Recently Used), could then be used to decide which
files to keep in each block based on the frequency of the cor-
responding user’s requests. This approach offers individual
fairness guarantees to each user and users have no motive to
misrepresent their preferences. However, this isolation can
come at a great cost in terms of efficiency.

Although most of the files may be “private”, i.e., only a
single user wants each file, there may also exist a “public”
file, e.g., a massive dataset that multiple users wish to ac-
cess. Depending on how frequently each user is expected to
access the public file, a much more efficient utilization of
the memory may be achieved through sharing. For instance,
several user blocks could be used to store as much of the
public file as possible, and the users could then access all of

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that memory without isolation. But, mechanisms that strive
for non-trivial efficiency guarantees through memory shar-
ing are susceptible to unfairness and user manipulation. Our
goal in this paper is to design novel memory sharing mech-
anisms that optimize efficiency while guaranteeing fairness
and truthfulness (i.e., non-manipulability).

A fundamental notion of fairness, known as sharing in-
centives in systems or proportionality in AI, asks that ev-
ery user should always be at least as happy as she would
be if memory isolation was used instead. Many of to-
day’s multi-tenant environments, including cache systems
for cloud serving and big data storage (e.g., (Redis 2009;
Memcached 2003)), optimize efficiency by sharing all of
the memory and using LRU or MRU to decide which files
to keep in it. But, these policies are based only on the fre-
quency of the requests and not on the identity of the request-
ing users, so they can inadvertently favor some users at the
expense of others, and violate proportionality.

As fairness becomes more relevant in large computing
systems (Verma et al. 2015; Ghodsi et al. 2013; 2011), users
demand individual quality of service guarantees (QoS). A
lot of recent work in AI focuses on building the foundations
necessary to design new fair protocols for a variety of rele-
vant settings (e.g., (Kurokawa, Procaccia, and Wang 2018;
Fain, Munagala, and Shah 2018; Conitzer, Freeman, and
Shah 2017; Kurokawa, Procaccia, and Wang 2016; Parkes,
Procaccia, and Shah 2015; Goldman and Procaccia 2015;
Dickerson et al. 2014; Friedman, Ghodsi, and Psomas 2014;
Cole, Gkatzelis, and Goel 2013a; 2013b; Chen et al. 2013;
Maya and Nisan 2012; Gutman and Nisan 2012)).

The other important concern is the manipulability of the
mechanism. For instance, users can manipulate some mem-
ory allocation policies by artificially inflating the frequency
of their requests for some files. (Pu et al. 2016) experimen-
tally demonstrated that strategically making excessive ac-
cess requests for files can improve a user’s average response
time for the files that she actually wants. Strategic user be-
havior has also been observed in multiple other real sys-
tems (e.g., (Verma et al. 2015; Ghodsi et al. 2011)). Two
aspects of memory allocation that make the design of truth-
ful mechanisms particularly challenging are i) the fact that
memory is a non-rival good, i.e., multiple users can simulta-
neously benefit from its contents, and ii) the inability to use
monetary payments to appropriately incentivize the users.

1965

The fact that memory is a non-rival good permits a more
effective utilization, but it can also lead to free riding, a phe-
nomenon which is well documented in the economics lit-
erature (Groves and Ledyard 1977; Samuelson 1954). The
main cause of free riding is the fact that users can often en-
joy the benefits of non-rival goods without contributing to
their value, knowing that other users will do so. In Section 2
we provide an example of how this may arise in our set-
ting. Confronting the free riding motives without resorting to
memory isolation requires a careful mechanism design pro-
cess that yields the desired incentives. The long literature on
mechanism design has supplied us with several widely ap-
plicable tools, but the vast majority of these tools leverages
monetary payments. Since the use of such payments would
be unreasonable or infeasible in a memory allocation setting,
we resort to the alternative approach of money burning.

Broadly speaking, a money burning mechanism may in-
tentionally underutilize some resource, effectively “penal-
izing” some users, and simulating the impact of a mone-
tary payment without the use of money. In our setting, we
achieve this effect through the use of blocking. A mem-
ory allocation mechanism controls not only which files are
brought into memory, but also the access rights that each
user has on each file. So, for example, a file j can be brought
into memory and the system can give some user i1 full ac-
cess to j, completely prevent another user i2 from accessing
it, while allowing partial access to some third user i3.

Recent work in systems has implemented memory shar-
ing solutions attempting to address fairness (Kunjir et al.
2017) or incentive concerns (Yu et al. 2018; Pu et al. 2016).
However, (Yu et al. 2018) argue that the system of (Pu et al.
2016) actually fails to prevent free-riding and, as it happens,
the system proposed by (Yu et al. 2018) is not truthful either.
The authors make the unusual assumption that it is accept-
able for a user to lie, as long as this does not hurt the other
users. However, basic game-theoretic arguments show that
the resulting equilibria of the induced game among the users
can actually end up hurting some of them.

Our Results
We study the extent to which we can optimize the efficiency
of memory sharing mechanisms that are guaranteed to be
truthful and fair. As a crucial tool in creating the right in-
centives for the users, we consider two types of blocking,
which we refer to as uniform and non-uniform, with the lat-
ter being more powerful than the former (see Section 2 for
formal definitions).

For instances with two users we show that uniform-
blocking mechanisms cannot provide non-trivial efficiency
guarantees, but using nonuniform blocking can surpass this
obstacle. Specifically, we provide a nonuniform-blocking
mechanism that is 83%-efficient, which is close to optimal.

For instances with multiple users we show that uniform-
blocking mechanisms fail to achieve any constant approx-
imation of efficiency. However, once again, we provide a
nonuniform-blocking mechanism that performs much bet-
ter; surprisingly, this mechanism can guarantee a 1 − 1

e ≈
63% approximation of efficiency for all instances, even with
an arbitrary number of users.

2 Model
A unit of cache memory is shared among a setN of n agents
who need high-speed access to large data files. We virtu-
ally partition this memory into n equal-sized blocks, one for
each agent. Each file is a sequence of bits and its total size
is at least one block, allowing us to treat the files as divis-
ible items. Each agent has a favorite “private” file that no
other agent is interested in, and there is also a “public” file
which corresponds to a massive dataset that multiple agents
may wish to access. Our goal is to design a mechanism that
elicits each agent’s interest in the public file relative to her
private one and decide how much of the public file should be
brought into the cache, which private files it should replace,
and how much access to it should be granted to each agent.

We denote the public file as file 0 and use j ∈ {1, ...n}
to index the favorite private file of agent j. A memory al-
location xxx = (x0, x1, . . . , xn) specifies, for each file j ∈
{0, ..., n}, the amount, xj , of this file that is in memory. For
notational convenience we measure these amounts in blocks,
i.e., xj = 1 means that the amount of file j in memory
is equal to one block (a 1/n fraction of the memory) and
xj ∈ [0, n] for all j. Each agent attaches a value to each file,
which is proportional to the frequency with which the agent
needs to access this file. Without loss of generality1, we nor-
malize these values so that every agent’s value for a block of
her favorite private file is 1. We let vi ≥ 0 denote agent i’s
value for each block of the public file. If vi < 1, then agent
i has a higher value for her private file than she has for the
public file. We use vi = max{1, vi} to denote the maximum
value of agent i between the public file and her private file.

Free Riding Example. In a setting involving two agents,
if each of them used her block of memory for her private
file, then they both receive a total value of 1, since they
get no value from the other agent’s private item. Now, as-
sume that they both value the public item at 0.75 (less than
their private item). If each agent used her half of the memory
to store a distinct block of the public file instead, then they
would each get a value of 0.75 from their own half, as well
as an additional 0.75 from the other agent’s half, leading to
a total value of 1.5 for both; a considerably more efficient
outcome. However, if the first agent brings a block of the
public file in her own half and the second agent brings her
private file instead, then the second agent’s value becomes
1.75; she is effectively free-riding by taking advantage of
the first agent’s contribution without reciprocating.

Blocking Mechanisms
A memory allocation mechanism asks each agent i to report
her value for the public file, it collects a bid bi (possibly dif-
ferent than the true vi), and it outputs an allocation xxx as well
as memory access rights for the agents. Using these access
rights, the mechanism can choose to block agents from parts
of the memory. We consider three types of mechanisms, de-
pending on the extent to which they employ blocking. The

1The efficiency and fairness notions considered in this paper are
scale-independent, avoiding interpersonal comparisons of utility.

1966

no-blocking mechanisms cannot block the agents from any
part of the memory. The uniform-blocking mechanisms can
block the agents from accessing some parts of the memory
but, if they choose to block-off something, then no agent
can access it. This is equivalent to keeping some part of the
memory empty, i.e.,

∑
j∈M xj < n, where M = {0, ..., n}.

Finally, the nonuniform-blocking mechanisms can block dif-
ferent agents from different parts of the memory. That is, in-
stead of being able to access all of the xj amount of file j
that is in memory, agent i can access only an fi,j fraction,
i.e., fi,j ≤ xj .

Without loss of generality, we can restrict our attention
to mechanisms that never block the agents from accessing
any of the private files in memory,2 i.e., fi,j = xj for all
j ∈ [n], so the only relevant information is fi,0, which
we denote by just fi for clarity. Therefore, given a vec-
tor of reported values bbb = (b1, . . . , bn) a mechanism out-
puts a vector xxx(bbb) = (x0(bbb), x1(bbb) . . . , xn(bbb)), along with
a vector fff(bbb) = (f1(bbb), . . . , fn(bbb)) of values correspond-
ing to the access to the public item allowed to each agent
i ∈ N . A mechanism is feasible if

∑
j∈M xj(bbb) ≤ n and

maxi∈N{fi(bbb)} ≤ x0(bbb).

Preferences and Incentives
Each agent’s preferences over the possible outcomes of a
mechanism are defined via a linear utility function that de-
pends on the agent’s valuation. Formally, the utility of agent
i for allocation xxx, given blocking fff , is ui (xxx,fff) = xi+fivi.
We also use ui(bbb) to denote the utility of agent i in the out-
come that will arise if bbb is the set of bids reported. The lin-
earity of the utility, which we discuss further in Section 6, is
standard (Yu et al. 2018; Pu et al. 2016), and it corresponds
to the delay that the agent avoids due to the blocks of the file
that are already in memory.

A mechanism is truthful if no agent ever has an incentive
to lie, i.e., if for every agent i, every possible reported bid
bi ∈ R, every b−i ∈ R(n−1) (every possible report of all
other agents), and every true valuation vi, the mechanism
satisfies ui(vi, b−i) ≥ ui(bi, b−i). In other words, every
agent’s utility in the outcome that will arise if she is truthful
is never less than her utility after any possible lie. Since our
mechanisms are truthful, we often replace bi with vi.

Fairness and Efficiency
A mechanism is anonymous if its outcome does not depend
on the “names” of the agents or the items and, hence, no
permutation of these names would affect the outcome. A
mechanism is proportional if the utility of agent i in every
outcome of the mechanism is at least vi. These two proper-
ties ensure that each one of the participating agents receives
individual QoS guarantees. That is, an agent cannot be dis-
criminated against based on irrelevant information, and is
guaranteed to receive her “fair-share” of the memory, i.e.,

2This is because blocking agent i from some other agent’s pri-
vate item is pointless (i has no value for it anyway) and blocking
i from her own private file means that we can instead replace that
fraction of her item with a fraction of the public item and block
everyone from accessing it, without affecting the outcome.

the utility that she would receive if we isolated each agent
to a 1/n fraction of the memory. We note that, although we
use anonymity as an elementary notion of “symmetry” for
our impossibility results, the mechanisms we provide in this
paper actually satisfy much stronger symmetry properties.

A mechanism that yields a utility profile uuu = (ui)i∈N for
the agents is Pareto efficient if there exists no other feasible
utility profile (u′i)i∈N such that, u′i ≥ ui for very i ∈ N and
u′k > uk for some k ∈ N . In order to measure the efficiency
of our mechanisms we use a common notion of approximate
Pareto efficiency, initially defined in (Ruhe and Fruhwirth
1990). An outcome with utility profile uuu is ρ-Pareto efficient
if there is no feasible utility profile in which, compared to uuu,
every agent is more than 1/ρ times better off. We also prove
a negative result for a much more demanding variant of this
measure: we say that a mechanism with utility profile uuu is ρ-
strongly Pareto efficient if there is no feasible utility profile
in which, compared to uuu, no agent is worse off, and at least
one agent is more than 1/ρ times better off.

An Example. Figure 1 displays a small 2-agent instance,
where the public file is valued at v1 = 5/6 and v2 = 2/3.
Then, v1 = v2 = 1. There are six possible (integral) allo-
cations, which are represented as points in the utility profile
space of the two agents (the points of the form (u1, u2)).
E.g., the point (2, 0) corresponds to filling all the cache with
agent 1’s private item, and (5/6, 5/3) is from one block of
the public item and one block of agent 2’s private item. Note
that no-blocking mechanisms are restricted to generating
utility profiles that are convex combinations of these points,
whereas blocking mechanisms can output any utility pro-
file within the Pareto frontier. The point (v1, v2) shows the
minimum utility requirement that the proportionality con-
straint imposes. The dashed line in the figure defines the
approximate Pareto region for an approximation factor of
ρ = 80%, i.e., all the feasible utility profiles that are at least
80%-Pareto efficient. Figure 1 also shows what the approxi-
mate strong Pareto region looks like. The shaded blue region
corresponds to all outcomes where the utility of agent 1 (the
x-axis agent) is a 80% of the best it could be without hurting
agent 2. Similarly, the shaded red region serves the analo-
gous purpose for agent 2, and the intersection of these two
regions is the approximate strong Pareto region.

3 No-Cooperation Mechanism
Before delving into blocking mechanisms, and to get a sense
of the performance guarantees that we can achieve with a
very simple no-blocking mechanism, we first briefly define
the No-Cooperation (No-Coop) mechanism, which we can
use as a benchmark for the subsequent results. This mecha-
nism virtually partitions the memory into n blocks, and for
each agent i it uses all of her block to store that agent’s fa-
vorite item, i.e., either her private item if vi < 1 or, other-
wise, the public one. As a result, if k agents prefer the public
item, then x0 = k. Note that this mechanism does not use
any blocking, so all of the agents can access the portion of
the public item that is in memory, but No-Coop does not
attempt to identify room for cooperation among the agents

1967

v2

v1 (2, 0)

(11/6, 2/3)

(10/6, 4/3)

(5/6, 5/3)

Figure 1: The dashed line defines the 80% approximate
Pareto region. The 80% approximate strong Pareto region
is the intersection of the two shaded regions.

that could yield higher efficiency outcomes. The following
lemma, whose simple proof can be found in the full version
of this paper, shows that No-Coop gives an approximation
of exactly 1/n.

Lemma 3.1. The No-Coop mechanism is anonymous, pro-
portional, truthful, and its approximation factor is exactly
1/n for both the Pareto and strong Pareto measures.

4 Memory Sharing with Two Agents
In this section, we study two-agent instances. Due to space
constraints, the proofs are deferred to the full version of this
paper.

Uniform Blocking
We begin by restricting ourselves to uniform blocking mech-
anisms, i.e., mechanisms that either block none of the agents
from accessing some part of the memory or all of the agents.
We first show that no such mechanism can outperform the
No-Coop mechanism in terms of efficiency.

Theorem 4.1. There exists no anonymous, proportional,
and truthful uniform blocking mechanism with a (0.5 + ε)
Pareto approximation for a constant ε > 0.

Proof Sketch. Let I = (v1, v2) denote an instance I where
the value of the two agents is v1 and v2 respectively, and
let δ be some constant such that δ

1−δ < ε. Then consider the
instances I1 = (1+δ, 0), I2 = (1+δ, 1−δ), I3 = (0, 1+δ),
I4 = (1− δ, 1 + δ), and I5 = (1− δ, 1− δ).

Using proportionality we can conclude that the outcome
of I1 needs to be (1, 0, 1); this outcome and the truthfulness
of agent 2 imply the outcome of I2 is also (1, 0, 1). Using
a symmetric sequence of arguments, one can conclude that,
facing problem instances I3 and I4, the mechanism would
need to choose the allocation (1, 1, 0).

Finally, using the truthfulness of agent 1 between in-
stances I2 and I5 and the truthfulness of agent 2 between
instances I4 and I5, we get a set of constraints in the allo-
cation of I5 which contradict the (0.5 + ε) Pareto approx-
imation claim. See the full version of this paper for more
details.

Nonuniform Blocking: Lower Bounds
Having observed the limitations of uniform blocking mech-
anisms in (approximately) maximizing Pareto efficiency, we
now turn to nonuniform blocking mechanisms. The main ad-
vantage of these mechanisms is the ability to penalize one
agent without necessarily also penalizing the other. How-
ever, as we show in this section, despite the significant ad-
ditional power that nonuniform-blocking mechanisms pos-
sess, they too fail to combine proportionality with 100%
Pareto efficiency. In fact, no such mechanism can achieve
more than a 91% approximation of Pareto.

Note that enabling nonuniform blocking enriches the de-
sign space for mechanisms and, as a result, proving the im-
possibility of an approximation factor becomes harder. In
particular, the combinatorial arguments that we used in the
proof of Theorem 4.1 become significantly more compli-
cated. To overcome this obstacle, rather than using combi-
natorial arguments, we use duality theory.

Theorem 4.2. There exists no proportional and truthful
mechanism that can achieve a 91% Pareto approximation.

Proof Sketch. We first attempt to write a linear program
whose solution corresponds to the mechanism with the op-
timal approximation factor. After discretizing the valuation
space of the agents and defining a variable for each fi value
of the mechanism, one can express (as a linear function) the
utility ui (vi, bi, b−i) of an agent i when the other agent re-
ports valuation b−i, agent i reports bi, and her true valuation
is vi. Given these variables, ui (vi, bi, b−i), we express truth-
fulness, proportionality, and feasibility as linear constraints.

The objective is to maximize ρ, the Pareto approxima-
tion factor, such that the outcome of the mechanism is guar-
anteed to be within the ρ-approximate Pareto region. But,
we run into the following issue: the intersection of the ρ-
approximate Pareto region and the proportionality region
in utility space is not always convex (see Figure 2). This
means that, without a creative change of variables, this re-
gion cannot be expressed using linear constraints. We there-
fore identify a set of reported value profiles of the two agents
for which this region is convex (e.g., see Figure 3), and we
drop the Pareto constraints for all other value profiles. The
resulting linear program solves a relaxed, discretized, ver-
sion of the initial mechanism design problem. However, us-
ing this formulation, we can now construct a dual program.
A feasible solution to this dual program does, in fact, im-
ply an impossibility result for nonuniform-blocking mech-
anisms. Using this technique, we construct a feasible (and
quite complicated) solution for the dual which yields the in-
approximability bound of Theorem 4.2; the proof as well as
the primal and dual formulations can be found in the full
version of this paper.

Nonuniform-Blocking: Upper Bounds
We now provide a mechanism that achieves a 83% approx-
imation of Pareto. Although we cannot use payments, we
provide an interpretation of any instance in our setting as
one where each agent has a “budget”, corresponding to the
amount of her private item in memory, that she can “spend”

1968

(0, 2)

(2, 0)

(5
4
, 7
4
)

(1, 1)

Figure 2: The intersection of the approximate Pareto
region and the proportionality region is not convex.

(0, 2)

(2, 0)

(3
4
, 7
4
)

(1, 1)

Figure 3: The intersection of the approximate Pareto
region and the proportionality region is convex.

in order to bring more of the public item in memory. The
memory allocation mechanism can then be interpreted as an
auction that defines the “price” that each agent needs to pay
for accessing the public item. This mapping is very useful,
as it enables us to use well-known results from mechanism
design with payments in designing our mechanism.

Note that, if v1 = v2 = 0, i.e., both agents have no value
for the public item, then any proportional mechanism would
have to output the allocation (0, 1, 1), i.e., one block of each
private item and none of the public item, otherwise one of
the agents would get a value less than 1. We interpret this
outcome as both agents having a budget of 1, which they are
not willing to spend on the public item. Then, in instances
where the value of vi is higher, the mechanism may give
each agent i the opportunity to spend some of this budget in
order to increase x0. Using this interpretation, when the two
agents’ reported vi values are high, i.e., when there is room
for cooperation among them, we wish to design a mecha-
nism that provides them with the opportunity to “buy-into”
the public item, at the appropriate price. As a result, a good
mechanism needs to address the tension between efficiency,
truthfulness, and proportionality, by carefully deciding the
rate at which an agent can trade her private item blocks for
a fraction of the public item.

The seminal work of Myerson (1981) dictates what the
structure of a truthful mechanism needs to be in a setting
with actual monetary payments. It restricts the allocation
rule to being monotone and it also defines the form that
the pricing rule should obey. Given the interpretation of the
private item as a budget, we derive an analog of Myerson’s

characterization, which (1) restricts the function x0(v1, v2)
implied by the mechanism to be (weakly) monotone, and (2)
dictates the exact rate at which each agent i can exchange her
private item for the public item as vi changes, i.e., exactly
how fast xi needs to drop as a function of an x0 increase.
This allows us to only worry about choosing x0(v1, v2).
Lemma 4.3. A mechanism is truthful for agent i if and only
if for any fixed value of v−i reported by the other agent, the
following two properties are satisfied:

1. x0(vi, v−i) is a monotone non-decreasing function of vi.
2. For some function ci(.) that depends only on v−i,

xi(vi, v−i) = −vix0(vi, v−i) + vi

∫ vi

0

x0(z, v−i)dz

+ xi(0, v−i) + ci(v−i).

We use this characterization to design the following
mechanism, whose presentation will be in two parts. We first
address what the mechanism does when neither of the agents
prefers the public item to her private item, i.e., when v1 ≤ 1
and v2 ≤ 1. In this set of instances, our mechanism does
not take advantage of its nonuniform blocking power and,
instead, uses only uniform blocking. We then move on to de-
scribe the mechanism for the remaining instances, in which
nonuniform blocking plays a crucial role.

Instances with v1 ≤ 1 and v2 ≤ 1. The mechanism that
we propose, the Buy-In mechanism, decides how much of
the public item to bring into memory as a function of the
product v1v2. If this product is at least 1/4, then the amount
of the public item that is brought into memory grows log-
arithmically as a function of v1v2. It starts from a value of
x0 = 0 when v1v2 = 1/4 and it goes up to 4

3 ln 4 ≈ 1.84
when v1 = v2 = 1. The product v1v2 captures, in a very
symmetric fashion, the extent to which there is room for co-
operation. Our mechanism allows the agents to take advan-
tage of that, as the product increases. On the other hand, if
the product is less than 1/4, the mechanism lets the agents
keep their budgets unspent.

Given a function for x0(v1, v2), the form of the x1(v1, v2)
and x2(v1, v2) is implied, up to a constant transformation,
by Lemma 4.3, in order to ensure the truthfulness. Since
x0(v1, v2) grows logarithmically with v1, Lemma 4.3 im-
plies that x1(v1, v2) should decrease linearly. However, the
exact form of x1(v1, v2) and x2(v1, v2) that we have chosen
below also ensures that the memory is never over-allocated,
while providing good Pareto guarantees as well.

Algorithm 2: *
1 Buy-In mechanism for v1, v2 ≤ 1. if v1v2 ≥ 1/4 then
2 x0(v1, v2) = 4

3 ln (4v1v2)

3 x1(v1, v2) = 3v2−4v1v2+1
3v2

4 x2(v1, v2) = 3v1−4v1v2+1
3v1

5 else
6 x0(v1, v2) = 0, x1(v1, v2) = 1, x2(v1, v2) = 1

1969

Instances with max{v1, v2} > 1. Since we have not used
nonuniform blocking so far, Theorem 4.1 implies that, to
achieve more than 50% approximation, we must use nonuni-
form blocking in the remaining instances. A closer look at
the proof of Theorem 4.1 reveals that a crucial truthfulness
constraint relates to a deviation from an instance with v1 > 1
and v2 ≤ 1 to one with both v1 ≤ 1 and v2 ≤ 1. In other
words, an agent who prefers the public item pretending to
prefer her private one. For uniform-blocking mechanisms,
this truthfulness constraint restricts the efficiency that can
be guaranteed at the initial instance; nonuniform blocking
alleviates these type of incentive issues. In particular, as the
value of vi increases, the moment it exceeds 1, we exchange
all of agent i’s private item with an equal fraction of the pub-
lic item, but block the other agent from accessing it. Further-
more, in terms of the allocation of the other agent, whether i
reports vi = 1 or any vi > 1 makes no difference. In Algo-
rithm 3, note that the value of x0(1, v2) when v2 ≤ 1 is bor-
rowed from the Buy-In mechanism for both values are less
or equal to 1, i.e., x0(1, v2) = 4

3 ln (4v2), and similarly for
all other allocations of (1, v2) or (v1, 1) when v1 or v2 ≤ 1.

Algorithm 3: Buy-In mechanism for max{v1, v2} > 1.
1 if v1 > 1 and v2 ≤ 1 then
2 x0(v1, v2) = x0(1, v2) + x1(1, v2)
3 x1(v1, v2) = 0, and f1(v1, v2) = x0(v1, v2)
4 x2(v1, v2) = x2(1, v2), and f2(v1, v2) = x0(1, v2)
5 else if v2 > 1 and v1 ≤ 1 then
6 x0(v1, v2) = x0(v1, 1) + x2(v1, 1)
7 x1(v1, v2) = x1(v1, 1), and f1(v1, v2) = x0(v1, 1)
8 x2(v1, v2) = 0, and f2(v1, v2) = x0(v1, v2)
9 else if v1 > 1 and v2 > 1 then

10 x1(v1, v2) = x2(v1, v2) = 0, and
f1(v1, v2) = f2(v1, v2) = x0(v1, v2) = 4

3 ln(4)

The non-trivial proof of the following result (see the full
version of this paper) carefully analyzes the mechanism in
terms of the tricky approximation measure based on Pareto
efficiency.

Theorem 4.4. The Buy-In mechanism is anonymous, pro-
portional, truthful, and it guarantees a 83% approximation
of Pareto.

5 Instances with Multiple Agents
This section studies the power and limitations of anony-
mous, proportional and truthful memory sharing mecha-
nisms for instances with multiple agents. Just like in two-
agent instances, we show that uniform blocking mechanisms
hit a significant road-block. The crucial information, which
implies how much of the public item should be placed in
memory, is how much the agents value the public item com-
pared to their private item. If no agent values the public item
then, clearly, none of it should be placed in memory. But,
if enough agents have considerable value for this item, then
they may benefit by sharing the public item using the mem-
ory that their private items would otherwise occupy. In this

setting, even the task of figuring out the optimal outcome is
not straightforward, let alone resolving the issue of agents
misreporting their preferences.

We first prove that uniform blocking mechanisms fail to
achieve any constant approximation of Pareto. We comple-
ment this result by providing a nonuniform-blocking mech-
anism that guarantees a 1 − 1

e ≈ 63% approximation of
Pareto. The proofs missing from this section can be found in
the full version of this paper.

Uniform Blocking
For the special case of two-agent instances where the agents
prefer their private item, our Buy-In mechanism achieved
a good approximation using only uniform blocking (Sec-
tion 4). Surprisingly, we prove that all attempts to extend this
result to n-agent instances are hopeless: even if all the agents
prefer their private items, the ideas used by the Buy-In and,
in fact, all uniform blocking mechanisms fail to achieve a
constant approximation. Intuitively, when many agents are
present, it becomes much more tempting to free-ride on the
public item.
Theorem 5.1. There is no anonymous, proportional and
truthful uniform blocking mechanism that can guarantee a
constant approximation of Pareto for any number of agents.

Proof Sketch. Since private items have value 1, if a sizeable
group of agents report a value of 1/

√
n for the public item,

any mechanism with good Pareto guarantees should bring
in memory a lot of the public item. If a sequence of agents
starts changing their valuation from 1/

√
n to 0, the propor-

tionality property dictates that they should receive a block
of their private file and Lemma 4.3 dictates that the devi-
ating agents should “pay” something in exchange for any
extra amount of this private file. The “payment” is the allo-
cation of the public item. Since nonuniform blocking is not
allowed, that payment has to affect all agents. This tension
allows us to prove this very strong negative result.

To gain a better understanding of the effect that propor-
tionality plays in the lower bound of Theorem 5.1, we also
provide a lower bound that does not leverage this property.
The following theorem shows that, even if we were will-
ing to relax the proportionality constraint, no truthful and
anonymous mechanism can combine an ω(1/

√
n) approxi-

mation of strong Pareto with a guarantee that every agent i
gets a value of ω(vi/

√
n). The proof uses similar ideas with

the previous proof, but a longer sequence of deviations is
required for the argument to go through.
Theorem 5.2. No truthful and anonymous uniform block-
ing mechanism can simultaneously guarantee an ω(1/

√
n)

approximation of strong Pareto and an ω(1/
√
n) approxi-

mation of proportionality.

Nonuniform Blocking
Our final result is the Opt-Out mechanism, an anonymous,
proportional and truthful mechanism for instances with mul-
tiple agents that uses nonuniform blocking and guarantees a
1 − 1

e ≈ 63% approximation of Pareto. This mechanism
begins with an allocation that places n blocks of the public

1970

item in memory. If there exists some agent i whose value
for a block of her private item is greater than her value for
n blocks of the public item, then a block of the public file is
replaced by a block of file i, i.e., xi ← 1 and x0 ← x0 − 1.
This agent i is then blocked from accessing any remaining
fractions of the public item (fi = 0). Among the remaining
agents, if there exists some other agent whose value for a
block with her private item i is greater than her value for the
remaining n − 1 blocks of the public file, the same process
is repeated, and this continues until either all agents switch
to their private files or no other agent prefers that switch.

Algorithm 4: The Opt-Out mechanism.
1 Let x0 = n and S = {1, 2, . . . n}.
2 while there exists an agent i such that vix0 ≤ 1 do
3 Remove i from S
4 Set xi ← 1 and x0 ← x0 − 1
5 fi = 0 for all i /∈ S.

Theorem 5.3. The Opt-Out mechanism is anonymous, pro-
portional and truthful, and achieves a 1− 1

e ≈ 63% approx-
imation of Pareto.

Proof Sketch. Proving that Opt-Out is anonymous, propor-
tional, and truthful is relatively straightforward. On the other
hand, the proof of the Pareto approximation is quite in-
volved. We start by identifying the worst case instances for
Opt-Out. Specifically, we show that among all n-agent in-
stances, the instances where agent i reports vi = 1/(n −
i + 1) (we call these “harmonic” instances) are the ones
where the approximation factor of Opt-Out is minimized.
Notice that in a harmonic n-agent instance, all agents choose
their private file instead of participating in sharing the pub-
lic file, which we refer to as having opted-out. In order to
show that harmonic instances are the worst case instances,
we show that given a worst case instance I where q < n
agents opt-out, we can construct an instance I ′ where an ad-
ditional agent opts-out and the Pareto approximation in I ′
is no better than the one in I . Therefore, we can focus on
instances where all agents opt-out; among all such instances
barely opting out is the worst case.

Having shown that harmonic instances are worst case in-
stances for Opt-Out, in order to conclude the proof of The-
orem 5.3 we need to also prove that the optimal allocation
for an n-agent harmonic instance is not more than e

e−1 times
better than Opt-Out. Our approach works as follows. First,
we constrain the optimal solution such that exactly k out of n
agents get a non-zero amount of their private item. Subject
to this constraint, we can characterize the optimal solution
and pinpoint the agent who improves the most by switching
from the allocation of Opt-Out. Her improvement is a func-
tion h(k, n) that we give a closed form for. We proceed to
optimize h(k, n). We show that the gap in performance be-
tween Opt-Out and the optimal allocation is maximized for
n going to infinity, and some k∗ ∈ Θ(n). The approximation
ratio follows. More details are relegated to the full version
of this paper.

6 Discussion
We conclude with a brief discussion on some central aspects
of the memory allocation setting. We first briefly discuss
why linear valuations are very-well justified in memory al-
location. Then, we address how bidding and manipulation
may actually take place in a real system where valuations
are not necessarily reported by the users in the form of a bid.
Finally, we also provide some additional context regarding
the fairness constraint that we enforced.

Linearity of Valuations. First, this assumption is quite re-
alistic in memory sharing: in a real system an agent’s utility
is proportional to the time the agent saves due to the cache.
Each agent requests access to a file and needs to retrieve
all of its memory blocks; accessing a memory block from
the main memory takes time t1, while accessing a block
from the cache takes much less time t2. Every time an agent
finds a requested block in cache implies t1 − t2 time saved.
Item valuations are proportional to their request frequency,
hence, each item’s contribution to an agent’s utility is linear
in the number of blocks of the item in cache and the valua-
tion of the agent for the item. Equivalently, an agent’s utility
is proportional to its expected cache hit-rate (also see (Yu et
al. 2018; Pu et al. 2016), who make the same assumption).
More importantly, the allocation outcome can be interpreted
as time-sharing (the fractions correspond to how often a file
is in memory) or a randomized choice of outcomes, in which
case the linearity of expectation provides an alternative jus-
tification.

Direct Revelation Mechanisms. For simplicity’s sake, we
present our model as if the agents actually send a mes-
sage to the mechanism, reporting their valuations. In re-
ality, rather than eliciting bids, the system can just ob-
serve the agents’ requests and regularly infer their valu-
ations based on these requests. Due to locality of refer-
ence, memory access patterns are good predictors of fu-
ture requests so there is no need for the agents to actu-
ally communicate their values. Analyzing direct revelation
mechanisms, which are subsequently implemented as dy-
namic systems is very common (e.g., (Ghodsi et al. 2011;
2013)).

Manipulation. Even if the mechanism observes the actual
requests of the agents, the agents can still manipulate the
valuations that the mechanism infers. Specifically, they can
generate excessive spurious requests for an item that they
do not really need, thus increasing its inferred valuation. At
first glance it seems like an agent can hence only increase
and not reduce a valuation, but this is not the case! Note that
both proportionality and (approximate) Pareto efficiency are
scale-independent measures (they are unaffected by scaling
all of an agent’s valuations by some constant). Hence, an
agent can decrease its (relative) valuation for an item by sim-
ply generating excessive requests for all other items.

Proportionality Constraint. Finally, the proportionality
constraint that we enforce on our mechanisms is one of the

1971

most fundamental and widely used measures in fair division,
and it also known as “sharing incentives”, “stand-alone”, or
“isolation guarantee” in systems. By default, memory is di-
vided into equal pieces, isolating each agent i, but guarantee-
ing them a value of vi. Proportionality requires that switch-
ing from this naive solution to another outcome should be
a Pareto improvement: no participant should be worse-off
than this “outside option” that the isolation offers. This is an
analog of what is known as “individual rationality” in mech-
anism design: no agent should lose value for participating.

7 Acknowledgments
This work is supported by the National Science Foundation,
under grants CCF-1755955, CCF-1216073, CNS-1161813,
and CNS-1704941.

References
Chen, Y.; Lai, J. K.; Parkes, D. C.; and Procaccia, A. D.
2013. Truth, justice, and cake cutting. Games and Economic
Behavior 77(1):284–297.
Cole, R.; Gkatzelis, V.; and Goel, G. 2013a. Mechanism
design for fair division: allocating divisible items without
payments. In ACM Conference on Electronic Commerce,
EC 2013, 251–268.
Cole, R.; Gkatzelis, V.; and Goel, G. 2013b. Positive re-
sults for mechanism design without money. In International
conference on Autonomous Agents and Multi-Agent Systems,
AAMAS ’13, Saint Paul, MN, USA, May 6-10, 2013, 1165–
1166.
Conitzer, V.; Freeman, R.; and Shah, N. 2017. Fair public
decision making. In Proceedings of the 2017 ACM Confer-
ence on Economics and Computation, EC ’17, Cambridge,
MA, USA, June 26-30, 2017, 629–646.
Dickerson, J. P.; Goldman, J. R.; Karp, J.; Procaccia, A. D.;
and Sandholm, T. 2014. The computational rise and fall of
fairness. In AAAI, volume 14, 1405–1411.
Fain, B.; Munagala, K.; and Shah, N. 2018. Fair allocation
of indivisible public goods. In Proceedings of the 2018 ACM
Conference on Economics and Computation, EC ’18, 575–
592.
Friedman, E.; Ghodsi, A.; and Psomas, C.-A. 2014. Strate-
gyproof allocation of discrete jobs on multiple machines. In
Proceedings of the fifteenth ACM conference on Economics
and computation, 529–546. ACM.
Ghodsi, A.; Zaharia, M.; Hindman, B.; Konwinski, A.;
Shenker, S.; and Stoica, I. 2011. Dominant resource fair-
ness: Fair allocation of multiple resource types. In NSDI,
volume 11, 24–24.
Ghodsi, A.; Zaharia, M.; Shenker, S.; and Stoica, I. 2013.
Choosy: Max-min fair sharing for datacenter jobs with con-
straints. In Proceedings of the 8th ACM European Confer-
ence on Computer Systems, 365–378. ACM.
Goldman, J., and Procaccia, A. D. 2015. Spliddit: Un-
leashing fair division algorithms. ACM SIGecom Exchanges
13(2):41–46.

Groves, T., and Ledyard, J. 1977. Optimal allocation of pub-
lic goods: A solution to the “free rider” problem. Economet-
rica: Journal of the Econometric Society 783–809.
Gutman, A., and Nisan, N. 2012. Fair allocation without
trade. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems-Volume 2,
719–728. International Foundation for Autonomous Agents
and Multiagent Systems.
Kunjir, M.; Fain, B.; Munagala, K.; and Babu, S. 2017.
ROBUS: fair cache allocation for data-parallel workloads.
In Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD, 219–234.
Kurokawa, D.; Procaccia, A. D.; and Wang, J. 2016. When
can the maximin share guarantee be guaranteed? In AAAI,
volume 16, 523–529.
Kurokawa, D.; Procaccia, A. D.; and Wang, J. 2018. Fair
enough: Guaranteeing approximate maximin shares. Jour-
nal of the ACM (JACM) 65(2):8.
Maya, A., and Nisan, N. 2012. Incentive compatible two
player cake cutting. In International Workshop on Internet
and Network Economics, 170–183. Springer.
Memcached. 2003. Memcached, a distributed memory ob-
ject caching system. https://memcached.org/.
Myerson, R. B. 1981. Optimal auction design. Mathematics
of operations research 6(1):58–73.
Parkes, D. C.; Procaccia, A. D.; and Shah, N. 2015. Beyond
dominant resource fairness: Extensions, limitations, and in-
divisibilities. ACM Transactions on Economics and Compu-
tation 3(1):3.
Pu, Q.; Li, H.; Zaharia, M.; Ghodsi, A.; and Stoica, I. 2016.
Fairride: Near-optimal, fair cache sharing. In Proceedings of
the 13th Usenix Conference on Networked Systems Design
and Implementation, NSDI’16, 393–406. USENIX Associ-
ation.
Redis. 2009. Redis. https://redis.io/.
Ruhe, G., and Fruhwirth, B. 1990. ε-optimality for bicri-
teria programs and its application to minimum cost flows.
Computing 44(1):21–34.
Samuelson, P. A. 1954. The pure theory of public expendi-
ture. The review of economics and statistics 387–389.
Verma, A.; Pedrosa, L.; Korupolu, M.; Oppenheimer, D.;
Tune, E.; and Wilkes, J. 2015. Large-scale cluster man-
agement at Google with Borg. In Proceedings of the Tenth
European Conference on Computer Systems, 18. ACM.
Yu, Y.; Wang, W.; Zhang, J.; Weng, Q.; and Letaief, K. B.
2018. Opus: Fair and efficient cache sharing for in-memory
data analytics. In 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS), 154–164.

1972

