
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Very Hard Electoral Control Problems

Zack Fitzsimmons
College of the Holy Cross

Worcester, MA 01610

Edith Hemaspaandra
Rochester Inst. of Technology

Rochester, NY 14623

Alexander Hoover
University of Chicago

Chicago, IL 60637

David E. Narváez
Rochester Inst. of Technology

Rochester, NY 14623

Abstract

It is important to understand how the outcome of an election
can be modified by an agent with control over the structure of
the election. Electoral control has been studied for many elec-
tion systems, but for all these systems the winner problem is
in P, and so control is in NP. There are election systems, such
as Kemeny, that have many desirable properties, but whose
winner problems are not in NP. Thus for such systems control
is not in NP, and in fact we show that it is typically complete
for Σp

2 (i.e., NPNP, the second level of the polynomial hier-
archy). This is a very high level of complexity. Approaches
that perform quite well for solving NP problems do not nec-
essarily work for Σp

2-complete problems. However, answer
set programming is suited to express problems in Σp

2 , and we
present an encoding for Kemeny control.

Introduction
The study of elections often deals with trade-offs for dif-
ferent properties that an election system satisfies. Elections
have a wide range of applications from voting in political
elections to applications in artificial intelligence (see, e.g.,
Brandt et al. (2016)). And given the role of elections in mul-
tiagent system settings, it is important that we study the com-
putational properties of election systems.

Attacks on the structure of an election, referred to as con-
trol, were introduced by Bartholdi, Tovey, and Trick (1992)
and model natural scenarios where an agent, with control
over the structure of an election, modifies the structure (e.g.,
by adding candidates) to ensure that their preferred candi-
date wins. It is important to study how these types of attacks
on the structure of an election can affect the outcome and
how computationally difficult it is to determine if such an
attack exists.

The complexity of electoral control has been studied for
many different natural elections systems and has been an
important line of research in computational social choice
(see, e.g., Faliszewski and Rothe (2016)). However, for all
of those systems the winner problems are in P, and so the
standard control problems are in NP. To go beyond what
can easily be encoded for SAT solvers, we need to look at
election systems with harder winner problems. But even for

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

election systems whose winner problems are in NP, the most
common control problems are still in NP.

There are election systems that have many desirable
social-choice properties, but whose winner problems are not
in NP (assuming NP 6= coNP). One important example
is the Kemeny rule (Kemeny 1959), whose winner prob-
lem is Θp

2-complete (i.e., complete for parallel access to
NP) (Hemaspaandra, Spakowski, and Vogel 2005) and so
the complexity of the standard control problems for Kemeny
are all Θp

2-hard and thus also not in NP. For election sys-
tems with Θp

2-complete winner problems, control is in Σp
2

(i.e., NPNP, the second level of the polynomial hierarchy),
and we show that control is typically Σp

2-complete for such
systems.

This is a very high level of complexity. And so a
natural question to ask is how Kemeny control can be
solved. We mention here that there has been a long line
of work that considers ways to solve hard election prob-
lems. This includes work on computing Kemeny winners
(see, e.g., (Conitzer, Davenport, and Kalagnanam 2006;
Betzler et al. 2008; Ali and Meilă 2012; Betzler, Bredereck,
and Niedermeier 2014)) and on solving election-attack prob-
lems (see, e.g., Rothe and Schend (2013)). The work on
solving hard election-attack problems has been restricted to
problems in NP, and such approaches do not work for Σp

2-
complete problems. Answer set programming (ASP) is an
approach that has been recently applied for winner deter-
mination in voting, including for systems with hard winner
problems (Charwat and Pfandler 2015). ASP is suited to ex-
press Σp

2 problems. However, encoding Σp
2-complete prob-

lems in ASP requires the use of more advanced techniques
than encoding computationally easier problems. We present
an encoding of Kemeny control using these advanced tech-
niques and discuss other related approaches.

We make the following main contributions.

• We obtain the first natural Σp
2-completeness results for

elections.

• We define several new natural and simple Σp
2-complete

graph problems to prove our results, and these problems
compare favorably in naturalness and simplicity to other
Σp

2-complete problems, and so in usefulness as problems
to reduce from.

• We show for the most commonly-studied election sys-

1933

tems with Θp
2-complete winner problems, including the

Kemeny rule, that control is typically Σp
2-complete.

• We build upon recent work on combining ASP with vot-
ing (Charwat and Pfandler 2015) by encoding our Σp

2-
complete control problems using advanced ASP tech-
niques.

Preliminaries
An election consists of a set of candidates C, and a set of
voters V , where each voter has a vote that strictly ranks each
candidate from most to least preferred. An election system,
E , maps an election (C, V) to a set of winners, where the
winner set can be any subset of the candidate set. The winner
problem for an election system, E-Winner, is defined in the
following way. Given an election (C, V) and a candidate p ∈
C, is p a winner of the election using election system E?

We consider the most important election systems with
Θp

2-complete winner problems: Kemeny, Young, and Dodg-
son.

A candidate is a Kemeny winner if it is the most-preferred
candidate in a Kemeny consensus (Kemeny 1959), which
is a total order “>” that minimizes the sum of Kendall’s
Tau distances (i.e., number of pairwise disagreements) with
the voters in an election, i.e., minimizes

∑
a,b∈C,a>b ‖{v ∈

V | b >v a}‖, where >v denotes the preference of voter v.
A candidate is a Young winner if it can become a weak

Condorcet winner (a candidate that beats-or-ties every other
candidate pairwise) by deleting the fewest voters (Young
1988).

A candidate is a Dodgson winner if it can become a Con-
dorcet winner (a candidate that beats every other candidate
pairwise) with the fewest swaps between adjacent candi-
dates in the voters’ rankings (Dodgson 1876).

Electoral control models the actions of an agent, referred
to as the election chair, who modifies the structure of the
election (e.g., the voters) to ensure that their preferred can-
didate wins (in the constructive case) (Bartholdi, Tovey, and
Trick 1992) or that their despised candidate does not win (in
the destructive case) (Hemaspaandra, Hemaspaandra, and
Rothe 2007).1 (These two papers define the standard control
actions.) We formally define constructive control by adding
candidates (CCAC) below, which models the real-world sce-
nario of an election chair adding spoiler candidates to an
election to ensure that their preferred candidate wins.

Name: E-CCAC
Given: A set of registered candidatesC, a set of unregistered
candidates D, a set of voters V having preferences over C ∪
D, an addition limit k, and a preferred candidate p ∈ C.
Question: Does there exist a set D′ ⊆ D such that ‖D′‖ ≤
k and p is a winner of (C ∪D′, V) using election system E?

1We mention here that early work that considered electoral con-
trol generally used the unique winner model whereas we allow mul-
tiple winners. This rarely makes a difference in the complexity for
concrete systems.

Computational Complexity Our results concern the
complexity classes Θp

2 and Σp
2. The class Θp

2 was intro-
duced in (Papadimitriou and Zachos 1983), named in (Wag-
ner 1990), and shown to be equivalent to PNP

|| , the class
of problems that can be solved by a polynomial-time ma-
chine with parallel access to an NP oracle, in (Hemachandra
1989). Σp

2 = NPNP is the class of problems solvable by
a nondeterministic polynomial-time machine with access to
an NP oracle, and is the second level of the polynomial hi-
erarchy (Meyer and Stockmeyer 1972; Stockmeyer 1976).
Note that NP ∪ coNP ⊆ Θp

2 ⊆ PNP ⊆ Σp
2.

Complexity Results
In this section we show that control problems for Kemeny,
Young, and Dodgson elections are typically Σp

2-complete.

Observation 1 For an election system E , the complexity of
each standard control action is in NPE-Winner.

It is easy to see that the above observation holds. For a
given election, guess the control action of the chair (e.g.,
the set of candidates to be added) and then use the oracle
to check that the preferred candidate is a winner (or that the
despised candidate is not a winner). In the case of partition
control, which will not be discussed further in this paper,
the oracle will also be used to determine which candidates
participate in the runoff.

The winner problems for Kemeny, Young, and Dodg-
son are each in Θp

2 (in fact Θp
2-complete (Hemaspaandra,

Spakowski, and Vogel 2005; Rothe, Spakowski, and Vo-
gel 2003; Hemaspaandra, Hemaspaandra, and Rothe 1997)),
and so the complexity of each standard control action is in
NPΘp

2 = Σp
2.2

Corollary 2 For Kemeny, Young, and Dodgson elections,
the complexity of each standard control action is in Σp

2.

As mentioned in Brandt et al. (2015), these control prob-
lems inherit Θp

2-hardness from their winner problems.
We will now show that these control problems are typ-

ically Σp
2-complete. Our Σp

2-completeness results are sum-
marized in Table 1 and we conjecture that for Kemeny,
Young, and Dodgson elections, the complexity of each stan-
dard control action is Σp

2-complete.3
We mention here that there are far fewer completeness

results for Σp
2 than there are for NP (see Schaefer and

Umans (2002) for a list of completeness results in the poly-
nomial hierarchy). An important reason why proving Σp

2-
hardness is difficult is the scarcity of “simple” Σp

2-complete
problems to reduce from. For example, scoring versions of
Kemeny, Young, and Dodgson are proven NP-hard by reduc-
tions from simple NP-complete problems such as Vertex-
Cover, but prior to this paper there were no Σp

2-complete
simple versions of Vertex-Cover that were suitable to show
that related control-by-adding problems are Σp

2-hard.

2Note that Σp
2 = NPNP ⊆ NPΘ

p
2 ⊆ NPPNP

= NPNP = Σp
2 .

3De Haan (2017) shows Σp
2-hardness for control by

adding/deleting issues for an analogue of Kemeny for judg-
ment aggregation. Since our setting is much more restrictive, this
lower bound does not at all imply our lower bound.

1934

Table 1: Summary of our Σp
2-completeness results for con-

trol. Kemeny′ refers to a natural variant of Kemeny defined
in (Dwork et al. 2001) and (∗) refers to the variant of control
where the chair can delete only certain candidates.

Adding Deleting
Voters Young (Thm 10) Young (Thm 9)Kemeny′ (Thm 7)
Candidates Kemeny (Thm 6) Kemeny (∗) (Thm 5)

Dodgson (Thm 11) Dodgson (Thm 11)

Below we define simple and natural Σp
2-complete versions

of Vertex-Cover (and the analogous Independent-Set ver-
sions are also Σp

2-complete). We will see that these problems
are particularly useful to show that our control problems are
Σp

2-hard. Of course, we need to show that our new simple
problems are Σp

2-hard, which is difficult. But we can then
reuse our simple problems to obtain simpler Σp

2-hard proofs
for multiple other problems.

The following problem (and its closely related
Independent-Set analogue) is particularly useful to re-
duce to control-by-adding problems. For example, we will
see that this problem quite easily reduces to Kemeny-CCAC
and that the Independent-Set analogue of this problem
reduces quite easily to Young-CCAV (control by adding
voters).
Name: Vertex-Cover-Member-Add
Given: Graph G = (V ∪ V ′, E), set of addable vertices V ′,
addition limit k, and vertex v̂ ∈ V .
Question: Does there exist a set W ⊆ V ′ of at most k
addable vertices such that v̂ is a member of a minimum ver-
tex cover4 of (V ∪W,E)?

Theorem 3 Vertex-Cover-Member-Add is Σp
2-complete.

To show the essence of the argument of the proof of
Theorem 3 and avoid some of the more finicky details of
the proof, we prove that Vertex-Cover-Member-Select is Σp

2-
complete, and then briefly discuss how this proof can be
adapted for Vertex-Cover-Member-Add.5

Name: Vertex-Cover-Member-Select
Given: Graph G = (V,E), a set V ′ ⊆ V of deletable ver-
tices, delete limit k, and vertex v̂ ∈ V .
Question: Does there exist a set W ⊆ V ′ of at most k
deletable vertices such that v̂ is a member of a minimum
vertex cover of G−W ?

Lemma 4 Vertex-Cover-Member-Select is Σp
2-complete.

Proof. Membership in Σp
2 is easy to see: Guess at most k

deletable vertices to delete, then guess a vertex cover con-
taining v̂ and use the NP oracle to check that the guessed
vertex cover is a minimum vertex cover.

4A vertex cover of a graph is a set of vertices such that every
edge is incident with at least one vertex in the set.

5We can easily prove Vertex-Cover-Member-Select Σp
2-

hard by reducing the Σp
2-complete problem Generalized-Node-

Deletion (Rutenburg 1994) to it. However, this proof does not gen-
eralize to Vertex-Cover-Member-Add. For details, see the full ver-
sion.

To show hardness, we reduce from the following
Σp

2-complete problem, QSAT2 (Stockmeyer 1976;
Wrathall 1976): all true formulas of the form
∃x1 · · · ∃xn¬(∃y1 · · · ∃ynφ(x1, . . . , xn, y1, . . . , yn)),
where φ is a formula in 3cnf.6

We first recall the standard reduction from 3SAT to
Vertex-Cover (Karp 1972). Let G be the graph constructed
by this reduction on φ(x1, . . . , xn, y1, . . . , yn), where φ is in
3cnf. Let φ = ψ1∧ψ2∧· · ·∧ψm and for each i, 1 ≤ i ≤ m,
ψi = ci,1 ∨ ci,2 ∨ ci,3. Graph G consists of 4n + 3m ver-
tices: a vertex for each xi, xi, yi, and yi and for each clause
i, 1 ≤ i ≤ m, three vertices ci,1, ci,2, and ci,3, and the fol-
lowing edges:

• for each i, 1 ≤ i ≤ n, the edges {xi, xi} and {yi, yi},
• for each i, 1 ≤ i ≤ m, the edges {ci,1, ci,2}, {ci,1, ci,3},

and {ci,2, ci,3}, (i.e., the complete graph on three ver-
tices),

• and for each vertex ci,j we have an edge to its correspond-
ing vertex candidate (e.g., if ci,j = xt in φ then we have
the edge {ci,j , xt}).

An example of this construction will follow.
Note that every vertex cover of G contains at least one

of each {xi, xi}, at least one of each {yi, yi}, and at least
two of each {ci,1, ci,2, ci,3}, so G does not have a vertex
cover of size less than 2n+2m. The properties below follow
immediately from the proof from (Karp 1972).

1. If X is a vertex cover of size 2n + 2m, then X ∩
{xi, xi, yi, yi | 1 ≤ i ≤ n} corresponds to a satisfying
assignment for φ.

2. If α is a satisfying assignment for φ, then there is a vertex
coverX of size 2n+2m such thatX∩{xi, xi, yi, yi | 1 ≤
i ≤ n} corresponds to this assignment.

Below we include an example of this construction given
the formula φ = (x1∨x1∨y1)∧(x1∨y1∨y1)∧(x1∨y1∨y1).

x1 y1 y1

c1,2

c1,1 c1,3

c2,2

c2,1 c2,3

c3,2

c3,3c3,1

x1

In the figure above vertices that are in a minimum vertex
cover are shaded in gray, and this corresponds to the satisfy-
ing assignment x1 = 0, y1 = 1 for φ.

For the reduction from QSAT2 to Vertex-Cover-Member-
Select, we construct the graph H , which is a modified ver-
sion of the graph G. For each clause i, 1 ≤ i ≤ m, instead
of the complete graph on three vertices, {ci,1, ci,2, ci,3}, we
add an extra vertex di and have the complete graph on four
vertices, {ci,1, ci,2, ci,3, di}, and we connect the fourth ver-
tex di of each clause gadget to a special new vertex v̂. So
our graph H consists of 4n+ 4m+ 1 vertices and the edges

6Note that we have the same number of variables in each quan-
tified block (we can simply pad to get this). Also, we pull the nega-
tion out of the formula so that the formula is in 3cnf and not in
3dnf.

1935

as just described. Below we give the graph corresponding to
the same formula as the previous example.

Note that every vertex cover of H contains at least one
of each {xi, xi}, at least one of each {yi, yi}, and at least
three of each {ci,1, ci,2, ci,3, di}. So H does not have a ver-
tex cover of size less than 2n + 3m, and there is a vertex
cover of size 2n+ 3m+ 1 that includes v̂. Note that H has
the following properties.

1. If X is a vertex cover of size 2n + 3m, then v̂ 6∈ X and
X∩{xi, xi, yi, yi | 1 ≤ i ≤ n} corresponds to a satisfying
assignment for φ.

2. If α is a satisfying assignment for φ, then there is a vertex
cover of size 2n + 3m such that X ∩ {xi, xi, yi, yi | 1 ≤
i ≤ n} corresponds to this assignment.
Below we include an example of this construction given

the formula ∃x1¬(∃y1φ(x1, y1)), where as before
φ = (x1 ∨ x1 ∨ y1) ∧ (x1 ∨ y1 ∨ y1) ∧ (x1 ∨ y1 ∨ y1).

x1 y1 y1

c1,2

c1,1

d1

c1,3

c2,2

c2,1

d2

c2,3

c3,2

c3,3

d3

c3,1

v̂

x1

Note that in the figure when x1 is removed (i.e., setting
x1 = 0) a minimum-size vertex cover (shaded in gray) is of
size n+ 3m = 10 and that φ(0, y1) is satisfied with y1 = 1.

We have repeated the same graph below, except now the
vertex x1 is removed (i.e., setting x1 = 1).

x1 y1 y1

c1,2

c1,1

d1

c1,3

c2,2

c2,1

d2

c2,3

c3,2

c3,3

d3

c3,1

v̂

x1

The vertices shaded in gray above correspond to a
minimum-size vertex cover of size n+ 3m+ 1 = 11. Note
that φ(1, y1) is not satisfiable and that this vertex cover in-
cludes v̂.

We will show that ∃x1 · · · ∃xn¬(∃y1 · · · ∃ynφ(x1, . . . ,
xn, y1, . . . , yn)) if and only if we can delete at most n ver-
tices in {xi, xi | 1 ≤ i ≤ n} such that v̂ is a member of a
minimum vertex cover of H-after-deletion.

From the listed properties of H and the above example,
it is not too hard to see that the statement above holds as
long as the vertices deleted from H correspond to an assign-
ment to the x-variables. However, it is possible for the set
of deleted vertices to contain neither or both of {xi, xi}. We
handle these cases in the full version. q

To prove Theorem 3, we use a similar reduction to show
that Vertex-Cover-Member-Add is Σp

2-hard. The main dif-

ference is that we need an edge and two vertices for each xi
and for each xi. For the proof, see the full version (Fitzsim-
mons et al. 2018).

Vertex-Cover-Member-Select reduces to the correspond-
ing Kemeny control problem Kemeny-CCDC∗.
Name: E-CCDC∗
Given: An election (C, V), a set of deletable candidates
D ⊆ C, a delete limit k, and a preferred candidate p ∈ C.
Question: Does there exist a set D′ ⊆ D of at most k
deletable candidates such that p is a winner of (C −D′, V)
using election system E?

Note that E-CCDC∗ is more structured than E-CCDC
(where the set of deletable candidates is C), since the chair
can only delete from a subset of C.
Theorem 5 Kemeny-CCDC∗is Σp

2-complete.7

Proof Sketch. Bartholdi, Tovey, and Trick (1989) showed
that Kemeny-Score is NP-hard by a reduction from
Feedback-Arc-Set, which was shown to be NP-hard by
Karp (1972) by a reduction from Vertex-Cover. Both these
reductions are straightforward. To show the Θp

2-hardness
of Kemeny-Winner, Hemaspaandra, Spakowski, and Vo-
gel (2005) define Θp

2-complete versions of Vertex-Cover
and Feedback-Arc-Set, namely Vertex-Cover-Member and
Feedback-Arc-Set-Member. They show that Vertex-Cover-
Member is Θp

2-complete. They then show that Vertex-Cover-
Member reduces to Feedback-Arc-Set-Member, which then
reduces to Kemeny-Winner. These two reductions are sim-
ilar to the NP reductions and also straightforward. The
same happens in our Σp

2 case: Vertex-Cover-Member-Select
easily and straightforwardly reduces to Feedback-Arc-Set-
Member-Select, which easily and straightforwardly reduces
to Kemeny-CCDC∗. For details, see the full version. q

Vertex-Cover-Member-Add easily and similarly reduces
to Feedback-Arc-Set-Member-Add (see the full version) and
then to Kemeny-CCAC.
Theorem 6 Kemeny-CCAC is Σp

2-complete.

When we try to similarly show that Kemeny-CCAV is
Σp

2-complete, it is easy to show that Feedback-Arc-Set-
Member-Add-Arcs, where we add arcs instead of vertices,
is Σp

2-complete. The problem is that in the reduction from
Feedback-Arc-Set to Kemeny-Score, each arc corresponds
to two voters. However, we were able to show this result for
what we here call Kemeny′, the natural variant of Kemeny
from (Dwork et al. 2001) where the voters do not necessarily
list all of the candidates in their votes and unlisted candidates
in a vote do not contribute to the distance to the Kemeny
consensus and so do not increase the Kemeny score. In this
case, one arc will correspond to one voter.
Theorem 7 Kemeny′-CCAV is Σp

2-complete.

We now turn to Young elections. We will explain how
Independent-Set-Member-Delete, the Independent-Set ana-
logue of Vertex-Cover-Member-Delete, which is also Σp

2-
complete, is useful to show Young-CCDV is Σp

2-complete.
7This result holds even for four voters, using the construction

from Dwork et al. (2001). For details, see the full version.

1936

Name: Independent-Set-Member-Delete
Given: GraphG = (V,E), delete limit k, and vertex v̂ ∈ V .
Question: Does there exist a setW ⊆ V such that ‖W‖ ≤ k
and v̂ is a member of a maximum independent set ofG−W ?

Theorem 8 Independent-Set-Member-Delete is Σp
2-

complete.

We reduce this problem to Young-CCDV to get the fol-
lowing result.

Theorem 9 Young-CCDV is Σp
2-complete.

The proofs of the above two theorems can be found in
the full version. The same construction as used in this proof
gives a reduction to Young-CCAV.

Theorem 10 Young-CCAV is Σp
2-complete.

Previous complexity results for Dodgson elections do
not reduce from problems related to Vertex-Cover or
Independent-Set. However, in Dodgson there is more flex-
ibility in how to construct the voters in a reduction, and so
we were able to directly reduce QSAT2 to Dodgson-CCDC
and Dodgson-CCAC, though the constructions are quite in-
volved. The proofs can be found in the full version.

Theorem 11 Dodgson-CCDC and CCAC are Σp
2-complete.

Encoding Control Problems with ASP
When faced with a computationally difficult problem at the
NP level there are several different possible ways to en-
code the problem to harness the power of solvers for hard
problems. For example, problems in NP are often encoded
for Boolean satisfiability solvers. When a problem is Σp

2-
complete there are far fewer tools to use. However, we can
encode our problem for an answer set programming (ASP)
solver.

Answer set programming is a paradigm for encoding
computationally difficult problems in a declarative way (see,
e.g., Brewka et al. (2011)). Using modern ASP input lan-
guages like the one in the Gringo grounder (Gebser et al.
2015), which extends conventional ASP with aggregates
functions like #sum and #count, we can use variable
names and predicates. A descriptive naming scheme usually
leads to natural encodings of problems when compared to
other approaches such as encoding into Boolean satisfiabil-
ity problems.

Using ASP to solve computational problems in voting was
first proposed by Konczak (2006). Recent work by Charwat
and Pfandler (2015) provides winner-problem encodings for
many election systems, including systems with hard winner
problems, and mentions encoding control problems as future
work. The predicates used in their encodings are arguably
self-explanatory and the use of aggregates provides succinct
representations of the different voting rules they consider.

Since encoding a problem in ASP can lead to natural en-
codings of a problem and since ASP can encode problems
in Σp

2 (Eiter, Gottlob, and Mannila 1997), we discuss how to
encode our control problems in ASP and present our com-
plete encoding for Kemeny-CCAC. However, we mention
here that although ASP encodings for NP problems (and in

fact even PNP problems) are fairly straightforward and com-
mon in the literature, encoding problems in Σp

2 typically re-
quires more advanced (and less intuitive) techniques such
as saturation (Eiter, Ianni, and Krennwallner 2009). We con-
sider how this saturation technique can be used for our prob-
lems and present an ASP encoding of Kemeny-CCAC that
uses saturation. We also discuss and compare other encoding
approaches for problems at this high level of complexity.

Preliminaries on Answer Set Programming
We briefly state the relevant definitions from ASP
for our encoding. (See Gebser et al. (2012) for
more detailed definitions.) A disjunctive logic pro-
gram is comprised of a finite set of rules of the form
a1 | . . . | ah ← b1, b2, . . . , bm, not bm+1, . . . , not bn where
each of a1, . . . , ah, b1, . . . , bn are atoms and each atom is a
constant or a predicate of the form p(t1, . . . , tk) such that
k ≥ 1 and each ti is a constant or a variable. We indicate
that p is a k-ary predicate by writing p/k. The left side of
the “←” is the head of the rule and the right side is the
body of the rule. In the rule, “|” denotes disjunction, “,”
denotes conjunction, and “not” refers to default negation.
Uppercase characters are used to denote variables. A ground
program is a program that contains no variables. A subset
S of the ground atoms satisfies a rule if {b1, . . . , bm} ⊆ S
and {bm+1, . . . , bn} ∩ S = ∅ implies ai ∈ S for some
1 ≤ i ≤ h. A model is a subset of the ground atoms that
satisfies each rule. An answer set is a minimal model with
respect to set inclusion.

A fact is a rule with no body and an integrity constraint
is a rule with no head. So, a fact occurs in every answer set,
and an integrity constraint eliminates answer sets where its
body is satisfied. We additionally use choice rules with car-
dinality constraints, which can be used to generate subsets
of ground atoms within a given bound, and aggregates such
as #count and #sum that count/sum ground atoms in a
statement.

It is customary to encode a decision problem as a logic
program such that the answer sets of this program corre-
spond to certificates for “yes” answers to the problem. Un-
der this approach, a “no” answer is certified by the lack of
an answer set. However, there are circumstances in which a
“no” answer must be certified by an answer set (e.g., prob-
lems in coNP). The saturation technique (see, e.g., Eiter et
al. (2009)) achieves this by designing a logic program that
has a unique answer set including a special token atom if
and only if the answer to the original decision problem is
“no.” This answer set also contains the set S of all atoms
that would be candidate certificates for “yes” answers. Rules
are added so that every time the token atom is generated,
all atoms in S are generated as well, thus “saturating” the
model. Informally, this allows us to encode a “coNP check”
into our program, which along with an “NP guess,” allows
us to encode problems in Σp

2.

Encoding Kemeny-CCAC in ASP
We assume that the input to our problem is given as a list
of facts. For E-CCAC, our input consists of a fact for the
number of registered candidates, the number of unregistered

1937

candidates, the addition limit, the preferred candidate, and
facts that describe the voters. For the voters, we follow the
approach used in Democratix (Charwat and Pfandler 2015),
where each distinct vote (c1 >i · · · >i cm) is represented
by m atoms of the form p(i, j, c) meaning candidate c is the
jth-preferred candidate by vote i. The corresponding count
is represented by votecount(i, k), meaning k voters have
vote i.

We present our complete encoding for Kemeny-CCAC by
presenting all of the rules of the encoding, split into “guess,”
“check,” and “saturate” parts, and explaining the crucial as-
pects of each part. Informally, the guess part will guess a
subset of unregistered candidates to add and a consensus
such that the preferred candidate wins. The check part (along
with the saturate part) ensures that for the guessed set of
added candidates, no candidate beats the preferred candi-
date.

preference(1..P)← prefnum(P). (1)

% Registered candidates.

candidate(1..C)← rcandnum(C). (2)

% Unregistered candidates.

ucandidate((M + 1)..(M + N))←rcandnum(M),ucandnum(N). (3)

% Guess a subset of at most K candidates to add.

{candidate(C) : ucandidate(C)}K ← limit(K). (4)

candnum(N)← N = #count{candidate(C) : candidate(C)}. (5)

% Number of times candidate C is ranked below D.

wrank(P,C,D)← p(P,X,C), p(P, Y,D), Y < X. (6)

wrankC(C,D,N)← candidate(C), candidate(D),

N = #sum{V C, P : votecount(P, V C),wrank(P,C,D)}. (7)

position(1..M)← candnum(M). (8)

% Guess a consensus. (9)

gpref(X,C) | ungpref(X,C)← position(X), candidate(C). (10)

← gpref(X,C), gpref(Y,C), X 6= Y. (11)

← gpref(X,C), gpref(X,D), D 6= C. (12)

← grepf(X,C), ungpref(X,C). (13)

% Loop checks if all possible positions for a given cand. are in ungpref .

npos(X,Y)← position(X), Y = X + 1. (14)

countTo(C, 1)← ungpref(1, C). (15)

countTo(C,X)← countTo(C, Y), npos(Y,X), ungpref(X,C). (16)

← countTo(C,X), candidate(C), candnum(X). (17)

% In the guessed consensus C > D. (18)

rank(C,D)← gpref(X,C), gpref(Y,D), X < Y. (19)

% Number of votes that disagree on C and D. (20)

gwrankC(C,D,N)← rank(C,D),wrankC(C,D,N). (21)

← preferredCand(X), gpref(Y,X), position(Y), Y 6= 1. (22)

Figure 1: Rules of the guess part of Kemeny-CCAC.

Figure 1 shows guess part of Kemeny-CCAC that assumes
an input as described in Democratix (Charwat and Pfandler
2015), but extended with predicates for the control prob-
lem. We start by guessing (with a choice rule) a subset of

at most K of the unregistered candidates to add to the elec-
tion and we update the number of candidates (candnum/1).
We then define predicates wrank/3 and wrankC/3 to define
the number of times that a candidate is ranked “worse” than
another in the given election, and we guess a consensus. This
generally follows what is done in Democratix (Charwat and
Pfandler 2015). Specifically, we follow the naming conven-
tions for different predicates, and rules 6, 7, 19, and 21 are
from Democratix. However, our rules to guess a consensus
(gpref/2) are more involved, since we use a head disjunc-
tion.

% Guess another consensus.

gpref
′
(X,C) | ungpref

′
(X,C)← position(X), candidate(C). (23)

sat← gpref
′
(X,C), gpref

′
(Y,C), X 6= Y. (24)

sat← gpref
′
(X,C), gpref

′
(X,D), D 6= C. (25)

% Loop checks if all possible positions for a given cand. are in ungpref′.

sat← gpref
′
(X,C), ungpref

′
(X,C). (26)

countTo
′
(C, 1)← ungpref

′
(1, C). (27)

countTo
′
(C,X)← countTo

′
(C, Y),npos(Y,X),ungpref

′
(X,C). (28)

% Saturate if all possible positions for a given candidate are in ungpref′,

% which means a candidate is not ranked in the guess.

sat← countTo
′
(C,X), candidate(C), candnum(X). (29)

% In the guessed consensus C > D.

rank
′
(C,D)← gpref

′
(X,C), gpref

′
(Y,D), X < Y. (30)

% Number of votes that disagree on C and D. (31)

gwrankC
′
(C,D,N)← rank

′
(C,D),wrankC(C,D,N). (32)

sat← #sum{M,C1, C2, pos : gwrankC
′
(C1, C2,M);

−N,D1, D2, neg : gwrankC(D1, D2, N)} >= 0. (33)

sat← preferredCand(X), gpref
′
(1, X). (34)

Figure 2: Rules of the check part of Kemeny-CCAC.

Figure 2 shows the rules of the check part of Kemeny-
CCAC. The check part essentially checks that given the
added candidates from the guess, there is no candidate that
beats the preferred candidate. Note that this is quite similar
to the guess part (Figure 1). However what were integrity
constraints there are now rules that generate the special sat-
uration token sat. We describe two important aspects of the
check part below.

In the check part, we start by guessing a possible con-
sensus. This is done in the same way as the guess part of
Kemeny-CCAC. In line 33 we use a #sum aggregate that
generates the saturation atom if a candidate other than the
preferred candidate has a lower Kemeny score. Note that
the use of saturation-dependent aggregates may causes un-
desirable behavior in the check part of an encoding and the
interpretation of aggregates is solver dependent. However,
the interpretation of aggregates in Clingo 4 (see Harrison et
al. (2014)) allows us to use the #sum aggregate in this way.
We mention that our use of aggregates here follows how they
are used in the saturation encodings in Abseher et al. (2015).

The final part of our encoding is the saturation step. Fig-
ure 3 shows the rules that ensure that an “incorrect” guess

1938

gpref
′
(X,C)← position(X), candidate(C), sat. (35)

ungpref
′
(X,C)← position(X), candidate(C), sat. (36)

possibleCount(0..X)← voternum(X). (37)

gwrankC
′
(C,D,N)← candidate(C), candidate(D),

possibleCount(N), sat. (38)

rank
′
(C,D)← candidate(C), candidate(D), sat. (39)

countTo
′
(C,N)← candidate(C), position(N), sat. (40)

← not sat. (41)

Figure 3: Rules of the saturation part of Kemeny-CCAC.

for the check program will cause all of the predicates that
depend on the guessed consensus gpref ′/2 to have all pos-
sible values in the stable model, thus saturating the solution.

Combining the guess, check, and saturate parts we obtain
our complete ASP program that is satisfiable if and only if
there is a subset of unregistered candidates that can be added
such that the preferred candidate is a winner.

The above encoding for Kemeny-CCAC is not as straight-
forward as ASP encodings for problems at the NP level, but
we still have a close relationship to the definition of the
problem and retain easy adaptability to minor changes in
the problem description. For example, it is not difficult to
change the above encoding to work for Kemeny-CCDC.

As with many declarative problem solving tools, there is
a trade-off between expressibility and performance. In our
tests using Clingo 4.5.4 and Preflib (Mattei and Walsh 2013)
(the standard dataset of real-world preference data), we no-
ticed the above encoding suffers from the so-called “ground-
ing bottleneck.” That is, even on instances of Kemeny-
CCAC with around 10 candidates, we are faced with pro-
hibitively large programs after all variables are instantiated.
This is in part due to the use of loops in saturation (which
is the standard way to replace default negation, the use of
which is limited in saturation), which were found in related
work on encoding Σp

2-complete problems in ASP to have a
strong negative impact on performance (Gaggl et al. 2015).
For a preliminary test of our encoding, we attempted to solve
the Kemeny-CCAC problem for all elections from Preflib
with 4 or more candidates having complete strict order votes,
making the first candidate the preferred candidate and hold-
ing out the last fifth of the candidates as unregistered with
an add limit equal to one third of the number of unregistered
candidates. There were 215 elections in total, and we were
able to solve 114 of them using a timeout of 1 hour and a
limit of 16GB of memory. Some noteworthy instances we
could solve are summarized in Table 2. Of the 101 instances
that we were not able to solve, 56 ran out of memory and
the rest timed out. Despite its limitations, our encoding is
an important starting point for future optimization and com-
parison of techniques. In particular, we are interested in how
techniques for overcoming the grounding bottleneck such as
rewriting large rules (Bichler, Morak, and Woltran 2016) can
improve the performance of our encoding.

Instance # Reg. # Unreg. # Voters Seconds Control Possible
ED-9-2 5 2 153 1.79† No
ED-9-1 7 2 146 368.036‡ No

ED-15-48 8 2 4 193.133‡ Yes
ED-15-78 9 3 4 78.132‡ Yes
ED-6-4 11 3 9 3.619† No

Table 2: Details on some of the Preflib instances we were
able to solve. The times reported were obtained on AMD
Opteron(tm) 6180 SE (†) and AMD Opteron(tm) 6282 SE
(‡) processors.

Related Encoding Approaches
We presented an encoding of Kemeny-CCAC using the satu-
ration technique since it is the standard technique to encode
Σp

2-complete problems in ASP and a starting point for ex-
ploring how these problems can be encoded. There are alter-
natives to our approach.

Eiter and Polleres (2006) address the issue of having to
use advanced techniques, like saturation, when writing ASP
encodings of Σp

2 problems by providing a template “meta-
interpreter” and a transformation of ASP programs that
can, together, be used to integrate a program that guesses
a solution to the Σp

2 problem with a program that checks
whether the guessed solution is incorrect. Their combination
amounts to a “guess and check” encoding of a Σp

2 problem.8
However, this approach does not support ASP programs
with aggregates (e.g., #count), which leads to more com-
plex and somewhat less intuitive programs. To work around
this issue, one could use the lp2normal tool (Bomanson,
Gebser, and Janhunen 2014), which transforms ASP pro-
grams with aggregates into equivalent ASP programs with-
out aggregates.

The work by Gebser et al. (2011) also addresses ASP en-
codings for problems with complexity higher than NP with a
different metaprogramming approach that does support ag-
gregates by using optimization rules.

The framework of stable-unstable semantics by Bogaerts
et al. (2016) provides a similar “guess and check” strategy
for solving problems in Σp

2. They point out that an advan-
tage of the stable-unstable semantics is they can be easily
extended to represent problems at any level of the poly-
nomial hierarchy. In their implementation guess and check
programs are each normalized, essentially discarding aggre-
gates altogether.

It is an interesting direction for future work to determine
how the performance of the above techniques and alterna-
tive paradigms for constraint satisfaction compare with sat-
uration encodings for very hard control problems in terms of
implementation and adaptability.

Future Work
In addition to the future work on ASP described at the end
of the previous section, it will be interesting to see if our
newly-defined simple Σp

2-complete problems will be useful

8Note this is different and much more involved than the guess
and check technique for NP problems from, e.g., Eiter et al. (2009).

1939

in proving other problems Σp
2-hard, in particular the remain-

ing control cases and other election-attack problems such as
manipulation for systems with hard winner problems.
Acknowledgments: We thank Andreas Pfandler for help-
ful conversations and we thank the referees for their helpful
comments and suggestions. This work was supported in part
by an NSF-GRF under grant no. DGE-1102937.

References
Abseher, M.; Bliem, B.; Charwat, G.; Dusberger, F.; and Woltran,
S. 2015. Computing secure sets in graphs using answer set pro-
gramming. Journal of Logic and Computation.
Ali, A., and Meilă, M. 2012. Experiments with Kemeny ranking:
What works when? Mathematical Social Sciences 64(1):28–40.
Bartholdi, III, J.; Tovey, C.; and Trick, M. 1989. Voting schemes
for which it can be difficult to tell who won the election. Social
Choice and Welfare 6(2):157–165.
Bartholdi, III, J.; Tovey, C.; and Trick, M. 1992. How hard is it to
control an election? Mathl. Comput. Modelling 16(8/9):27–40.
Betzler, N.; Fellows, M.; Guo, J.; Niedermeier, R.; and Rosamond,
F. 2008. Fixed-parameter algorithms for Kemeny scores. In AAIM-
08, 60–71.
Betzler, N.; Bredereck, R.; and Niedermeier, R. 2014. Theoretical
and empirical evaluation of data reduction for exact Kemeny Rank
Aggregation. JAAMAS 28(5):721–748.
Bichler, M.; Morak, M.; and Woltran, S. 2016. The power of non-
ground rules in answer set programming. TPLP 16(5-6):552–569.
Bogaerts, B.; Janhunen, T.; and Tasharrofi, S. 2016. Stable-
unstable semantics: Beyond NP with normal logic programs. TPLP
16(5-6):570–586.
Bomanson, J.; Gebser, M.; and Janhunen, T. 2014. Improving the
normalization of weight rules in answer set programs. In JELIA-14,
166–180.
Brandt, F.; Brill, M.; Hemaspaandra, E.; and Hemaspaandra, L.
2015. Bypassing combinatorial protections: Polynomial-time al-
gorithms for single-peaked electorates. JAIR 53:439–496.
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia, A.
2016. Handbook of Computational Social Choice. Cambridge Uni-
versity Press.
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer set
programming at a glance. CACM 54(12):92–103.
Charwat, G., and Pfandler, A. 2015. Democratix: A declarative
approach to winner determination. In ADT-15, 253–269.
Conitzer, V.; Davenport, A.; and Kalagnanam, J. 2006. Improved
bounds for computing Kemeny rankings. In AAAI-06, 620–626.
de Haan, R. 2017. Complexity results for manipulation, bribery
and control of the Kemeny judgment aggregation procedure. In
AAMAS-17, 1151–1159.
Dodgson, C. 1876. A method of taking votes on more than two
issues. Pamphlet printed by the Clarendon Press, Oxford.
Dwork, C.; Kumar, R.; Naor, M.; and Sivakumar, D. 2001. Rank
aggregation methods for the web. In WWW-01, 613–622.
Eiter, T., and Polleres, A. 2006. Towards automated integration
of guess and check programs in answer set programming: A meta-
interpreter and applications. TPLP 6(1-2):23–60.
Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunctive datalog.
ACM Transactions on Database Systems 22(3):364–418.
Eiter, T.; Ianni, G.; and Krennwallner, T. 2009. Answer set pro-
gramming: A primer. In Reasoning Web, 40–110.

Faliszewski, P., and Rothe, J. 2016. Control and bribery in voting.
In Handbook of Computational Social Choice. Cambridge Univer-
sity Press. 146–168.
Fitzsimmons, Z.; Hemaspaandra, E.; Hoover, A.; and Narváez, D.
2018. Very hard electoral control problems. Technical Report
arXiv:1811.05438 [cs.GT], arXiv.org.
Gaggl, S.; Manthey, N.; Ronca, A.; Wallner, J.; and Woltran, S.
2015. Improved answer-set programming encodings for abstract
argumentation. TPLP 15(4-5):434–448.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T. 2012.
Answer Set Solving in Practice. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool.
Gebser, M.; Harrison, A.; Kaminski, R.; Lifschitz, V.; and Schaub,
T. 2015. Abstract Gringo. TPLP 15:449–463.
Gebser, M.; Kaminski, R.; and Schaub, T. 2011. Complex opti-
mization in answer set programming. TPLP 11(4-5):821–839.
Harrison, A.; Lifschitz, V.; and Yang, F. 2014. The semantics of
Gringo and infinitary propositional formulas. In KR-14, 32–41.
Hemachandra, L. 1989. The strong exponential hierarchy col-
lapses. JCSS 39(3):299–322.
Hemaspaandra, E.; Hemaspaandra, L.; and Rothe, J. 1997. Exact
analysis of Dodgson elections: Lewis Carroll’s 1876 voting system
is complete for parallel access to NP. JACM 44(6):806–825.
Hemaspaandra, E.; Hemaspaandra, L.; and Rothe, J. 2007. Anyone
but him: The complexity of precluding an alternative. AIJ 171(5–
6):255–285.
Hemaspaandra, E.; Spakowski, H.; and Vogel, J. 2005. The com-
plexity of Kemeny elections. TCS 349(3):382–391.
Karp, R. 1972. Reducibilities among combinatorial problems. In
Complexity of Computer Computations, 85–103.
Kemeny, J. 1959. Mathematics without numbers. Daedalus
88:577–591.
Konczak, K. 2006. Voting theory in answer set programming. In
WLP-06, 45–53.
Mattei, N., and Walsh, T. 2013. PREFLIB: A library for prefer-
ences. In ADT-13, 259–270.
Meyer, A., and Stockmeyer, L. 1972. The equivalence problem for
regular expressions with squaring requires exponential space. In
SWAT-72, 125–129.
Papadimitriou, C., and Zachos, S. 1983. Two remarks on the power
of counting. In Theoretical Computer Science, 269–276.
Rothe, J., and Schend, L. 2013. Challenges to complexity shields
that are supposed to protect elections against manipulation and con-
trol: A survey. AMAI 68(1–3):161–193.
Rothe, J.; Spakowski, H.; and Vogel, J. 2003. Exact complexity of
the winner problem for Young elections. TOCS 36(4):375–386.
Rutenburg, V. 1994. Propositional truth maintenance systems:
Classification and complexity analysis. AMAI 10(3):207–231.
Schaefer, M., and Umans, C. 2002. Completeness in the
polynomial-time hierarchy: A compendium. SIGACT News
33(3):32–49.
Stockmeyer, L. 1976. The polynomial-time hierarchy. TCS 3(1):1–
22.
Wagner, K. 1990. Bounded query classes. SICOMP 19(5):833–
846.
Wrathall, C. 1976. Complete sets and the polynomial-time hierar-
chy. TCS 3(1):23–33.
Young, H. 1988. Condorcet’s theory of voting. American Political
Science Review 82(2):1231–1244.

1940

